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ON THE GROWTH OF SOLUTIONS OF ALGEBRAIC

DIFFERENTIAL EQUATIONS WHOSE COEFFICIENTS

ARE ARBITRARY ENTIRE FUNCTIONS1

STEVEN BANK

1. Introduction: In this paper we treat the problem of determining

the rate of growth of entire functions which are solutions of first order

algebraic differential equations whose coefficients are arbitrary entire func-

tions (i.e. equations of the form Ω(z, y, dy/dz) = 0, where Ω(z, y, dy\dz) —

Σ fkj(z)yk(dyldz)3 is a polynomial in y and dy/dz, whose coefficients fkJ{z)
k,j>o

are entire functions).

In [7], Valiron treated the special case where the coefficients fkί(z) are

polynomials, and in this case, it was shown ([7; p. 41]) that any entire

solution must be of finite order. In [1], the author considered the special

case where the coefficients fkj(z) are entire functions of finite order. Clearly

such equations can possess entire solutions of infinite order (for example,

exp (exp z), sin(cos z))9 but it was shown in [1] that when all the coefficients

are of finite order, the growth of an entire solution h(z) is restricted in the

following natural way: For any real number λ which is greater than the

order of each coefficient fkj{z), the maximum modulus M{r; h) of h{z)

satisfies the inequality M{r\ h) <exp (exp rλ) for all r greater than some

number ro(λ).

In this paper, we treat the general case where the coefficients fkj(z)

are arbitrary entire functions (i.e. each coefficient can be of finite or infinite

order). This is accomplished in part through the use of the concept of

"an order" of an entire function f(z), which was introduced by Blumenthal

in [2] in the case when f(z) is of infinite order. Roughly speaking, an

order of f{z) is a special kind of monotone nondecreasing function μ(r) with

the property that M(r; f) ^ e x p (rμir)) for all sufficiently large r. (For the
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108 STEVEN BANK

reader's convenience, the definition of u an order" as introduced in [2], is

reviewed in §2 below). Our main result here (§3 below) states the fol-

lowing: Let φ(r) be a monotone nondecreasing function greater than 1,

which for all sufficiently large r, is greater than the order of each coefficient

having finite order, and is greater than an order of each coefficient having

infinite order. Then for any entire solution h{z) of Ω(z,y,dyldz) = 0 and

any real number a>l, the inequality M(r; h) ̂ e x p (exp r^ar)a) holds for

all r greater than some number ro(a).

In § 5, we consider the application of our main result to meromorphic

solutions of Ω{z, y, dy/dz) = 0.

The principal tools used in the proof of the main result consist of (i) the

Wiman-Valiron theory of the maximum term ([9, 10, 11] or for a complete

discussion [6; Chapter 9]); (ii) Certain results ([2; p. 97] and [5; p. 336])

concerning the minimum modulus of entire functions, and (iii) Certain

results ([9; pp. 239-240]), concerning the relation between the maximum

modulus and maximum term of an entire function.

2. We review here briefly the concept of order for an entire function

f{z). Let M{r; f) = max \f{z) | and let v(r) be defined by the relation
\z\=r

M{r; f) — exp (r ( r ) ). The order of / is λ = limsup v{r). If λ = + oo, then
r->+m°°

an order of /, as defined in [2; pp. 21, 22, 31], is a monotone nondecreasing
function μ(r), defined on an interval [A, + oo), satisfying the following three

conditions:

(I) There exists a continuous decreasing function ε(r) on [A, + oo),

with lim ε(r) = 0, such that for each r^[A, + oo), μ{γλ) ^μ(r) 1 + ε ( r ) , where

(II) For all r e [A, + oo), v{r)^μ{r) (so Λf(r;/)<exp(r*<r>)).

(Ill) There exists a continuous decreasing function δ(r) on [A, + °°),

with lim δ{r) = 0, such that for a sequence or values of r tending to + oo,

μ(r) < v(r)ι^r\

It is proved in [2; pp. 23-24] that orders exist for every entire function

of infinite order. Also developed in [2], is a method for estimating the

magnitude of an order, which roughly states the following: If μ[{r) is a

monotone nondecreasing function satisfying (I) and (II) above for a certain

type of ε(r), then there is an order μ(r) of /, such that μ(r) ̂  μx{r) for all
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ALGEBRAIC DIFFERENTIAL EQUATIONS 109

, + oo). For a complete discussion, the reader is referred to [2; pp.

117-128].

3. We now state our main result:

THEOREM. Let Ω{z,y,dy\dz) - Σ ficj{z)yk{dyjdz)J be a polynomial in y
k,j>0

and dy/dz, where each coefficient fkj{z) is an entire function. For each coefficient

ficj{z) having infinite order, let μkJ {r) be an order of fkJ (z). If fkJ {z) has finite

order λkj, set μkJ {r) identically equal to λkj. Let φ{r) be a monotone nondecreasing

function on an interval [RQ, + oo), such that for all r^[R0, + oo), <p(r) > 1 and

{*kj(r)<<P(r) for each (k,j). Let h(z) be an entire function which satisfies

Ω{z9h{z),h/(z))^0, and let M{r; h) — max \h{z)\. Then for any real number
\z\=r

a>l, there exists a positive real number ro{a) such that M[r\ h)^Lexp (exprφ(ar)a)

for all r >ro{a).

4. Proof of the Theorem: If h{z) is a polynomial, clearly the result

holds. Hence we may assume that

oo

(1) h is an entire transcendental function. Let Σ cnz
n be the power

n = 0

series expansion of h{z), a n d let M(r) = m a x \h(z)\. F o r each r>09 let
\z\=r

N(r) be the central index [3; p. 183] of h (i.e. N(r) is the maximum j such

that \Cj\rj = max \cm\rm). Then in view of (1),

(2) N(r) is an unbounded monotone nondecreasing function of r, and

it is proved in [6; pp. 198, 210] (and also in [8; pp. 95, 103]) that there

exists « G ( 0 , 1 ) such that if we exclude from the interval (1, + oo) an infinite

sequence of exceptional finite open intervals (WS,W'S) for which,
oo

(3) 2 (log Ws — log Ws) converges, and for which we may assume,

(4) Wί < Ws+1 for all 5 and limW's = + 00, then in the remaining set
S—>co

00

(1, + 00) — E, where £ = U {WS9W
f

s), the following are true: There exists
s=l

a number R1^l such that for r>Rί and r&E, we have

(5) log M(r) > c(N(r))a, where c is a positive constant independent of

r, and if z is any point on \z\ = r at which \h(z)\ ~ M(r), then

(6) h'(z) = {N(r)lz)(l + δ(z))h{z), where \δ(z)\ < N(r)"v for some fixed

η > 0. (These elements of (1, +00) are called ordinary values of index a in

[6, 7, 8]).
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Now by our assumption concerning ψ{r), we clearly have that there

exists R2 > 1 such that if r>R2 then

(7) IΛ, (z)!^exp(r^>) on \z\ = r for all (k,j).

Now (as in the statement of the theorem) let a be any real number

greater than 1, and set

(8) ε = (a— l)/3 and b = -fcΓ. (Thus ε > 0 and b > 1). Let

(9) p = max {k + : fkj 3= 0} and m = max {; : fp-jtί & 0}, and consider

the coefficient fp-mtfΛ(z). Let μ{r) be the function μp-m,m(r) as in the state-

ment of the theorem.

Suppose first that fp-m%m{z) is of infinite order, so μ(r) is an order of

fp-m,m- In this case it is proved in [2; p. 97], that if d19d29 is the

sequence of zeros of fp~mtm9 then we can remove from the plane, open

disks \z — dn\ < θn (n = 1,2, ) such that

(10) Σθn converges, and such that in the remaining domain we have

(11) \fp-m,m(z)\ > exp (— ru{r)1+ε) on \z\ = r9 when r is greater than some

number R^. Letting F be the union of all the open intervals (\dn\ — θn9

\dn\ + θn) for n = 1,2, , clearly (11) holds on \z\= r if r> R'3 and r&F.

By our assumption, μ(r) < <p(r) for r^RQ9 so if R3 = max {RQ9R'Z} then by

(ID,

(12) ]fp-ntn(z)\ > e x p ( - r ^ > 1 + ε ) on \z\ = r, if r>R3 and r $ Λ In

view of (10), clearly F can be written as the union of a sequence of finite

open intervals {TS9T
f

s) such that

(13) T's < Ts+1 for all 5, and Σ (Tί — Ts) converges.

We now show that (12) and (13) also hold in the case when fp-mtm(z)

is of finite order. In this case μ(r) = λ where λ is the order of fp.m.m{z).

Now φ(R0) > 1 by assumption, so ε' = (ll2)φ(R0)(φ{RQY — 1) is strictly positive.

Let dί9d29 be the non-zero roots of / p . m ι Λ and let D be the domain

obtained by removing from the plane all the disks \z — dn\ < \dn\~(λ+ε'K

Then since λ is the order of fp~m,m and εf > 0, it is proved in [5; p. 328]

that

(14) Σ l ^ J ~ " ( ; + £ / ) converges, and it is proved in [5; p. 336] that there

exists i?3 > 1 such that for z&D,

(15) l/p-m.mte)! ^ e x p ( - rλ+εf)) when \z\ = r> Ri. Let F be the union
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of all the open intervals {\dn\-\dn\-«+<'>), \dn\ + \dn\-«+t'>) for n = 1,2, .

Then it is clear that (15) holds on \z\ = r if r > R'3 and r^F, and it follows

from (14). that F can be written as the union of open intervals {TS,T'S) sa-

tisfying (13). As before, let R3 = max {RO,R'Z}. Then for r > R3, φ{r)>l

and λ = μ(r) < φ{r). Thus by definition of ε' and the fact that ψ is mono-

tone nondecreasing we have λ + ε' < φ{r)1+ε for all r > R3. In view of (15),

we thus obtain (12) even in the case where fp-m,m{z) is of finite order, and

so (12) and (13) hold in any case.

In view of (3), (4) and (13), clearly we may write EOF as the union

of a sequence of finite open intervals,

(16) EUF= U (Ug9Uί), where
5=1

(17) Uί < Us+1 for all s, and limU', = + oo, and
s—>oo

CO

(18) Σ (log Us — log Us) converges. Now define,

(19) A = {r\r > 1 and N{r) > exp (3r^(r)1+ε)}. We now prove,

LEMMA A. There exists a real number ri>l such that An{rl9 + co) a EOF.

Proof. Assume the contrary. Then there exists a sequence of distinct

values of r in (1, + °°) tending to + oo, such that

(20) r e Λ but

Let B be the set of values of r comprising this sequence.

Now h(z) satisfies the relation,

(21)

Let r<=B and let 2 be a point on \z[= r at which \h{z)\ = M(r). Then

h{z)^0 and so by dividing equation (21) by {h{z))p (where p is as in (9)),

we can write (21) in the form,

(22) Jlfp-ίtJ(z)(h'(z)lh(z))J = - Σ fφ)(h'(z)lh(z)Y(h(z))
J=0 k+j<V

We will denote the left side of (22) by Λ(z) and the right side by Φ(z).

Let Ri = max R. .

We now assert that there exists a real number R$ > RA such that if

r<=B and r>R5 then
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(23) IΦ{z) I ̂  (M(r))~1/2 exp (r*<r>),

at each point of \z\ = r at which \h(z)\ = M(r).

To prove (23), we recall first from (20) that if r^B then r&E and

r&F. Since N{r) -> + oo as r - > + o o (by (2)), clearly 5(2) (in (6)) tends to

zero as r->+<*> in B. Since M(r) also tends to + 00, there exists Rl>R4

such that for r^B and r>Rl, we have

(24) M ( r ) > l , N(r)>l and |5(«)I < 1/2.

Let r be any element of B such that r > R'4 and let 2; be any point on

\z\ =r at which \h(z)\ = M(r). We refer to the right side of (22). If

k+ j<p, then p-(k+j)^l so \h(z)\k+i'p = M{rf+j~p ̂ Mir)"1 (since Λf(r)>l).

Since [5(z) |<l/2, we have by (6) that \h'{z)lh{z)\ ^2N{r)/r <2N{r) since

r > l . Thus |/*/(z)//z(z)|;<2ί'7V(r)?) if k+j<p. In view of the above

estimates and (7), it is clear that

(25) \Φ(z) I ̂  K{N{r)Y{M(r)Yι exp (r^ r ))

where K is a positive constant independent of r. Now by (5), N(r) < {C1

logM(r))1 / α, and so from (25),

(26) \Φ(z)\ <Ψ(r) (M(r))"1/2 exp ( H r ) ) ,

where F(r) = /iΓίc'Uog M(r))p / α(M(r))"1 / 2. Since M{r) -> + 00 as r-^ + 00, clearly

?Γ(r) -^0 as r-> + 00. Thus there exists R5 > R'A such that, Ψ(r) < 1 for r > i ? 5 .

Then (23) follows from (26).

We now consider Λ{z) (i.e. the left side of (22)).

Case I. m = 0. Then Λ(z) = fp-m,m{z). Since Λ(z) = Φ{z) (by (22)), we

have by (12) and (23) that, exp ( - rφ^r)ί+ε) ^ (M(r))"1/2 exp (r^(r)) if r(ΞB and

r > R5. Since ^(r) > 1, φ{r) < φ{r)ί+ε, so we obtain

(27) M(r)^exp(4r^ ( r ) 1 + e ) if r<=B and r > R5. But if r e £ then r e y l so

N{r) > exp (3r^(r)1+ε). Hence by (5), log M{r) > c exp (3arφ(r)1+ε), which together

with (27) gives

(28) (c/4)r-*'(r)1+ exp(3αr ί > ( r ) 1 + i )<l if r ε 5 and r > R5. But since c > 0,

α > 0 and ^(r)i+«_>_j_ 00 as r-> + oo, it is clear that the left side of (28)

tends to + 0 0 as r - > + 00. Thus (28) is impossible (since by our assumption

(20), there exist r-values in B tending to + 00). This contradiction proves

Lemma A in the case m = 0.
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Case II. m > 0. By (24), if r e £ a n d r > R5 t h e n \δ{z)\ < 1/2, a n d so

at each p o i n t of \z\ = r a t w h i c h \h(z)\ = M(r), we h a v e by (6) t h a t ,

\h'(z)lh(z\\>(l-\δ(z)\)N(r)lr>(2rYιN(r). But if r e £ then 7V(r) > exp(3r^>1+ε)

(by (19)). Thus if r e 5 and r > / ? 5 , then

(29) I h'(z)jh(z) I >: φr)""1 exp (3r^r>1+ε),

at each point of \z\ = r at which |/z(z)I = M(r).

Now we observe that Λ(z) can be written in the form,

m - l

(30) yf(2) = /„-„.„(«) (h>(z)lh(z))m(l + Σ W ) , where

(31) F,(z) = (fp-az)lfp-n.n(z)) (h'(z)lh(z)y-™, for = 0,1, . . , m - 1 . We

consider the Ψj(z) at points on \z\ = r at which \h(z)\ = M(r), where r ε 5

and r > R5. In view of the estimates given in (7), (12) and (29), we easily

see that for j = 0,1, , m—1,

(32) 1^(3)1 < ( 2 r Γ exp (-r^> 1 + ε ) .

Since φ(r)>l, it is clear that the right side of (32) tends to zero as

Hence there exists 7?6 > R5 such that for r e B and r>RQ,

(33) I ?r,(s) I <c l/(»ι + 1) for j = 0,1, , m-\.

m~\

Now by (30), \Λ(z)\>\fp_mtm(z)\\h'(z)lh(z)\m(l- Σ I^(«)I), and so in view

of the estimates given in (12), (29) and (33), we easily see that for r e B and

r> Re,

(34) \Λ(z)\ >. (ll(m + 1)) (2r)"m exp ((3m - l)r*<'>1+')

at each point of \z\ = r at which |/*(z)| = M(r). We may write (34) as,

(35)

where Q(r) = (l/(m + 1)) (2r)"m exp ((3m - 2)r^ r ) 1 + ε). Now since w ^ l and

φ(r)>l, clearly Q(r) -> + oo as r-> + oo. Thus there exists R7>RQ such

that if r>R7 then Q(r) > 1. Hence in view of (35), if r e £ and r>R7

then

(36) M(z)| > exp (r^>1 + ε),

at each point of \z\ = r at which [/&(£)| = M(r).

Since yl(̂ ) = Φ(z) (by (22)), we have by (23) and (36) that if r e B and

r > RΊ, then exp (r^r>1+ε) < (M(r))~1/2 exp ( r w ) . Since ^(r) < φ(r)1+% we thus
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obtain,

(37) M(r) < 1 if r^B and r > R7.

But M ( r ) - > + o o as r - > + ° o (by (1)), so (37) is impossible (since by our

assumption (20) there exist r-values in B tending to + oo). This contra-

diction proves Lemma A in Case I I and so the proof of Lemma A is

complete.

We now prove,

LEMMA B. There exists a real number r2 > 1 such that N(r) ^exp (3{br)φ(b r)1+ε)

for all r^r2 (where b is as in (8)).

Proof. By Lemma A, there exists r1 > 1 such that

(38) AΠ(r19 + oo)czE{JF.

Now by (16), EOF is the union of open intervals (US9Uί) satisfying (17)

and (18). In view of (18), lim (Uί/Us) = 1, and by (17), lim Uί = + °°.
S—>co s—too

Thus since b>l (by (8)), there exists s0 such that

(39) {U'slUs) < b and Uί > r, for all 5 > s0.

We will show that if r2 is taken to be Ui0, then the conclusion of

Lemma B holds. Let r>.r2.

If r Φ Λ then by (19), N(r) ^ e x p (3rn r ) 1 + e). Since b>l and φ is

monotone nondecreasing, clearly then N(r) ^ e x p (3{br)φ(br)1+ε).

If r^Λ, then by (38), r^EUF. Hence for some t, r(=(Ut,U't). Since

Uso = r2^r <U't, we have t > s0 (by (17)), and so (39) holds for s = t.

Now in view of (17), the endpoint U[ is clearly not in EOF. Hence by

(38), U'tGA. Thus AΓ(ί/0^exp(3(ί/0w ! ) 1 + ε). Hence by (39) (and the fact

that φ is monotone nondecreasing), we have N(U't)^exp {3(bUt)
nbUt)i+£). Since

Ut<r, we obtain N(U't) ^ e x p {3(br)φ^br)l+ί). Since N is monotone nondec-

reasing, and r<U'l9 we thus obtain N(r) ^ e x p (3(br)Hbr)1+ε), proving Lemma

B completely.

Now for each r ^ O , let q{r) be the maximum term [6; p. 193] of h

(i.e. if Σ cnz
n is the power series expansion of h, then q(r) = max \cn\rn).

It is proved in [6; p. 195] that for any r0 > 0,

(40) log q(r) = log q(r0) + Γ [N(x)jx)dx.
J r 0
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Applying (40) with r0 equal to r2 (where r2 is as in Lemma B)? and ob-

serving that for r2 ^ x ^ r, N{x)/x ^ N(x) ̂  N{r) (since r2 > 1 and N is.

monotone nondecreasing), we obtain,

(41) log q{r)< log q{r2) + {r-r2) N{r) for all r>r2. But by Lemma B,

N{r)^exp{3(br)φ(br)1+ε) for r>.r2<f and since log q(r2) is a constant, it follows

easily from (41) that there exists r3 > r2 such that

(42) log q{r)^ exp {4{br)φ^^1+ε) for all r ^

Now it is proved in [8; p. 106] that the following relation holds between

M{r) and q(r): For any εί > 0, there exists r4 > r3 such that if we remove

from (r4, + oo) an infinite sequence of exceptional finite open intervals

(V99Vί) for which

oo

(43) 2 (log V's — log Vg) converges, and for which we may assume that
5 = 1

(44) Vs <VS+1 for all 5 and limFί = + ^, then for all r in (r4, - f ^ - G , .
S—>co

where G = U (Fβ,Fί), we have,
l

(45) M(r) < q(r) (log

We apply the above with ε1 = 1/2, and using (42), we obtain for r > r4

and

(46) log M(r) < exp

Hence clearly there exists r5 > r4 such that

(47) log M(r) < exp (5(^r)^δr)1+ε) for r > r5 and

We now prove,

LEMMA C. There exists r6 > 1 JWA that

(48) log M(r) < exp ${ar)^ar^)9

for all r>.r^ [where a is as in (8)).

Proof. I n v i e w o f (43), c l e a r l y \imV'JVg) = 1. S i n c e b>l ( b y (8)) a n d
S—>oo

ΠmVί = + 00 (by (44)), there exists t0 such that
S—> co

(49) VίlVs < b and Vί > r5 if s > t0.
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Set r6 = Fί0 and let r>r^ If rΦG then (48) follows from (47) in view

of the fact that ψ is monotone non-decreasing and b < b2 — a (by (8)).

If rεG, then re{Vt,V't) for some t. In view of (44), t > t0 so (49)

holds for s = t. Clearly the endpoint V't is not in G so (47) holds for the

point V't. Since φ is monotone nondecreasing and V/

t<bVt (by (49)), we

then obtain log M(V't) < exp (5(bΨt)
Hb2v<)1+'). Since Vt < r < V't and log M is

increasing (and noting that b2 = a), it is now clear that (48) holds for r,

proving Lemma C.

We now conclude the proof of our theorem. By hypothesis, φ(r)>l

for r>R0. Let K0=φ(R0Y — l. Then Ko > 0, so there exists r0 > max

{R0,rs} such that (log a/log r) < KQ/2 and (log 5/log r) < K0/2 for all r > r0.

Since φ is monotone nondecreasing and φ(ar) > 1, we obtain φ(ar)1+ε{φ(arY—

((log tf/log r) + 1)) > K0l2 > log 5/log r for r > r0. It now easily follows from

(48) that logM(r) < exp (r^7")1"2') for r > r0, and since 1 + 2ε < a (by (8)), we

obtain finally M(r) < exp (exp rHar)a) for r>r0, which concludes the proof

of the theorem.

5. Remark: In this remark, we consider the application of our

main result to meromorphic solutions H(z) of Ω{z,y,y') = J]fkj{z)y1c(y'y = 0

(i.e. meromorphic functions H(z) such that Ω{z,H{z),H'(z)) = 0 at each point

z at which H is analytic). We observe first that if H(z) is a meromorphic

solution of Ω(z, y, y') = 0, say H{z) = h{z)lg(z), where h and g are entire

functions, then h and g satisfy the relation,

(50) Σ f*j(z)(g(z))»-«+*>Kh(z))k(g(z)h'(z) - h{z)g'(z))j = 0,

where n = max {& + 2j : Λy ί 0}. Thus the entire function h{z) satisfies the

algebraic differential equation (50) whose coefficients belong to the subring

of the ring of entire functions generated by g, gr and the fkj. Similarly,

g satisfies the equation (50) whose coefficients belong to the subring gene-

rated by h,hf and the fkj. These observations, together with our main

result, permit us to obtain information on the growth of h (respectively, g),

if we have growth information on g (respectively, h) and the fkj. Since

H= h/g, we will then have growth information on H (using, of course, the

Nevanlinna characteristic to measure the growth).

As a simple example of this observation, suppose each coefficient fkj is

of finite order, and suppose H=h/g is a meromorphic solution of Ω(z,y,y') = 09

where g is of finite order. Then (50) shows that h is an entire solution of
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an equation whose coefficients are of finite order. By our theorem (taking

φ(r) in our theorem to be a sufficiently large constant), we have that there

exist constants σ>l and r0 > 1 such that M(r; h) ^ exp (exp rή for all r > r0.

Since g was assumed to be of finite order, it follows easily (using [4; pp.

15, 24]), that for some constant d > 0, the Nevanlinna characteristic T{r, H)

of H{z) satisfies the inequality, T{r,H) :<exp {rd) for all sufficiently large r.

(By a symmetric argument, clearly the same conclusion holds if h, instead

of g, is assumed to be of finite order).
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