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nilpotent group of class 2 whose derived subgroup has exponent 3. We also compute the non-abelian
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1. Introduction

The non-abelian tensor square G⊗G of a group G is the group generated by the symbols
g ⊗ h, where g, h ∈ G, subject to the relations

gg′ ⊗ h = (gg′ ⊗ gh)(g ⊗ h) and g ⊗ hh′ = (g ⊗ h)(hg ⊗ hh′),

for all g, g′, h, h′ ∈ G, where gg′ denotes the conjugation action gg′g−1.
A group is 2-Engel if it satisfies the left normed commutator law [x, y, y]. The purpose

of this paper is to compute the non-abelian tensor square of the free 2-Engel group of
rank n for each n > 3. By computing the tensor square of a group G, we mean finding a
simplified and standard presentation for G ⊗ G.

The non-abelian tensor square has its roots in algebraic K-theory [9] as well as in
topology [6,7]. This group construction was first investigated from a purely group theo-
retic perspective in the seminal paper by Brown et al . [8], in which they compute G ⊗ G
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for all groups of order up to thirty. Subsequent papers investigate explicit descriptions
of the non-abelian tensor square for particular groups; for nilpotent of class 2 groups
see [1–3,13,16], for metacyclic groups see [5,14], and for linear groups see [12]. A recent
survey article on the non-abelian tensor squares and the more general non-abelian tensor
products of groups can be found in [15].

In [1,2], the non-abelian tensor squares of nilpotent of class 2 groups were investigated.
The non-abelian tensor square of the free nilpotent group of class 2 and rank 2, which
is exactly the free 2-Engel group of rank 2, was shown to be free abelian of rank 6. The
non-abelian tensor square of the free 2-Engel group of rank 3 was computed in [4]; it is
the direct product of a free abelian group of rank 11 and a nilpotent group of class 2.

Since 2-Engel groups are metabelian, the following proposition from [4] shows that
their tensor squares are abelian or nilpotent of class 2.

Proposition 1.1. Let G be a group. If the derived subgroup G′ is nilpotent of class
cl(G′), then G ⊗ G is nilpotent with class equal to cl(G′) or cl(G′) + 1.

In light of Proposition 1.1 and the fact that the tensor square of the free 2-Engel group
of rank 3 is not abelian [4], we conclude that the tensor squares of the free 2-Engel groups
of rank n > 3 are nilpotent of class 2.

Our method for computing non-abelian tensor squares uses the concept of a crossed
pairing.

Definition 1.2. Let G and L be groups. A function Φ : G×G → L is called a crossed
pairing if

Φ(gg′, g′′) = Φ(gg′, gg′′)Φ(g, g′′), (1.1)

Φ(g, g′g′′) = Φ(g, g′)Φ(g′
g, g′

g′′) (1.2)

for all g, g′, g′′ ∈ G.

The following proposition allows us to determine homomorphic images of G ⊗ G.

Proposition 1.3 (see [7]). A crossed pairing Φ : G × G → L determines a unique
homomorphism of groups Φ∗ : G ⊗ G → L such that Φ∗(g ⊗ g′) = Φ(g, g′) for all g, g′

in G.

To compute the non-abelian tensor square of a group G, we first conjecture a group L

and find a crossed pairing Φ : G×G → L. We then show that the homomorphism induced
by the crossed pairing is actually an isomorphism and hence G ⊗ G ∼= L.

In the case of computing the tensor square for the free 2-Engel groups, we were guided
in our conjecture of L by computing the tensor square of a finite homomorphic image of
these groups, namely, the Burnside groups of rank n and exponent 3 for n = 4, 5 and 6.
These computations were performed using methods developed in [10] and implemented
in Gap [11]. We provide a more detailed outline of our computational method in § 3.

https://doi.org/10.1017/S0013091502000998 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000998


On computing the non-abelian tensor squares of the free 2-Engel groups 307

Our main result is the following.

Theorem 1.4. The non-abelian tensor square of the free 2-Engel group of rank n > 2
is a direct product of a free abelian group of rank 1

3n(n2 + 2) and an n(n − 1)-generated
nilpotent group of class 2 whose derived subgroup has exponent 3.

Corollary 1.5. The non-abelian tensor square of the Burnside group of rank n > 2
and exponent 3 is a direct product of an elementary abelian 3-group of rank 1

3n(n2 + 2)
and an n(n − 1)-generated nilpotent group of class 2 having exponent 3.

In the next section we record various results needed to compute the non-abelian tensor
square for 2-Engel groups. We prove Theorem 1.4 and Corollary 1.5 in § 3.

2. Preliminary results

The following familiar identities for 2-Engel groups are stated here without proof (see,
for example, [18]). Recall that any nilpotent group of class 2 is a 2-Engel group.

Lemma 2.1. Let G be a 2-Engel group. For x, y, z, w ∈ G and n ∈ Z we have

[x, y, z, w] = [x, y, z]3 = 1, (2.1)

[x, y, z] = [z, x, y] = [x, z, y]−1, (2.2)

[x, yn] = [xn, y] = [x, y]n. (2.3)

Throughout the paper, let E = E(n, 2) denote the free 2-Engel group of rank n > 2
with a fixed ordering on its generators, which are labelled g1, g2, . . . , gn. It follows from
Lemma 2.1 that any element g in E can be written uniquely (with respect to the ordering
of the generators) as the product

g =
n∏

i=1

gαi
i

∏
1�j<k�n

[gj , gk]βj,k

∏
1�r<s<t�n

[gr, gs, gt]γr,s,t , (2.4)

where each αi and βj,k is an integer and (by Equation (2.1)) each γr,s,t is an integer
modulo 3. Since E/E3 is isomorphic to B(n, 3), the Burnside group of rank n and expo-
nent 3, we can also express each element of B(n, 3) similarly, where each αi and βj,k is
now also an integer modulo 3.

The following lemma provides formulae for multiplication and conjugation of arbitrary
elements in E .

Lemma 2.2. Let g and g′ be elements of E , where g is defined in (2.4) and

g′ =
n∏

i=1

g
α′

i
i

∏
1�j<k�n

[gj , gk]β
′
j,k

∏
1�r<s<t�n

[gr, gs, gt]γ
′
r,s,t , (2.5)

where each α′
i and β′

j,k is an integer and each γ′
r,s,t is an integer modulo 3. Then the

product g · g′ can be written in the form

g · g′ =
n∏

i=1

g
α∗

i
i

∏
1�j<k�n

[gj , gk]β
∗
j,k

∏
1�r<s<t�n

[gr, gs, gt]γ
∗
r,s,t , (2.6)
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where α∗
i = αi + α′

i, β∗
j,k = βj,k + β′

j,k − α′
jαk and

γ∗
r,s,t ≡ γr,s,t + γ′

r,s,t + βs,tα
′
r − βr,tα

′
s + βr,sα

′
t − α′

rαsαt + α′
rα

′
sαt − α′

rαsα
′
t mod 3.

Left conjugation of g′ by g is the product

gg′ =
n∏

i=1

g
α†

i
i

∏
1�j<k�n

[gj , gk]β
†
j,k

∏
1�r<s<t�n

[gr, gs, gt]γ
†
r,s,t , (2.7)

where

α†
i = α′

i,

β†
j,k = β′

j,k − α′
jαk + αjα

′
k,

γ†
r,s,t ≡ γ′

r,s,t + βs,tα
′
r − βr,tα

′
s + βr,sα

′
t − α′

rαsαt + α′
rα

′
sαt

− α′
rαsα

′
t − β′

s,tαr + β′
r,tαs − β′

r,sαt − αrαsα
′
t + αrα

′
sαt + αrα

′
sα

′
t mod 3.

The following lemma states general properties for the non-abelian tensor square of any
group.

Lemma 2.3 (see [8]). Let G be any group and x, v, y, z ∈ G. Then in G⊗G we have

x ⊗ 1 = 1 ⊗ x = 1⊗, (2.8)

[x ⊗ v, y ⊗ z] = [x, v] ⊗ [y, z], (2.9)

where 1⊗ denotes the identity element of G ⊗ G.

Let each of g and g′ be either a generator or commutator of E . We define the weight
of an element g ⊗ g′ of E ⊗ E as the sum of the commutator weights of g and g′, where a
generator has weight one. For example, the three variable element x ⊗ [y, z] has weight
three while the three variable element x ⊗ [x, y, z] has weight four.

We list several identities used to express the elements of E⊗E in terms of the generators
g1, g2, . . . , gn of E . We start with two- and three-variable identities that hold in the tensor
square of a 2-Engel group and its subgroups. The proofs of these identities can be found
in [3,4].

Lemma 2.4. Let G be a nilpotent group of class at most 2. Then, for x, y ∈ G and
m, n ∈ Z, the following identity holds in G ⊗ G:

xm ⊗ yn = (x ⊗ y)mn(y ⊗ [x, y])m(n
2)(x ⊗ [x, y])n(m

2 ). (2.10)

Lemma 2.5. Let G be a 2-Engel group. Then, for any x, y, z ∈ G, the following
identities hold in G ⊗ G:

(z ⊗ [y, x])(y ⊗ [x, z])(x ⊗ [z, y]) = ([y, z] ⊗ [x, z])([y, z] ⊗ [x, y])([x, z] ⊗ [x, y]), (2.11)

([x, y] ⊗ z)−1 = ([y, x] ⊗ z) = (z ⊗ [y, x])−1 = (z ⊗ [x, y]). (2.12)
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The following lemma lists four-variable identities found in [4].

Lemma 2.6. Let G be a 2-Engel group. For x, y, z, v ∈ G, the following identities
hold in G ⊗ G:

[x, v] ⊗ [y, z] = ([x, v, y] ⊗ z)(y ⊗ [x, v, z]), (2.13)

([x, v, y] ⊗ z)(y ⊗ [x, v, z])([y, z, x] ⊗ v)(x ⊗ [y, z, v]) = 1⊗. (2.14)

The next lemma explicitly shows that all generators of E ⊗ E involving five or more
variables equal the identity. Moreover, all generators of E ⊗ E expressed in four variables
can be written as a product of weight four generators of a common form and have
exponent 3.

Lemma 2.7. Let G be a 2-Engel group. Then, for any u, v, x, y, z ∈ G, the following
hold in G ⊗ G:

[u, v] ⊗ [x, y, z] = [x, y, z] ⊗ [u, v] = 1⊗, (2.15)

([x, v] ⊗ [y, z])3 = 1⊗, (2.16)

v ⊗ [x, y, z] = ([v, x] ⊗ [y, z])([v, y] ⊗ [x, z])−1([v, z] ⊗ [x, y]). (2.17)

Proof. Substituting [u, v] for x, x for y, y for z and z for v in (2.14) yields (2.15).
We note that, by (2.10) and (2.1), for any v, x, y, z in G,

(v ⊗ [x, y, z])3 = v ⊗ [x, y, z]3 = v ⊗ 1 = 1⊗.

Hence, by (2.13), we have

([x, v] ⊗ [y, z])3 = ([x, v, y] ⊗ z)3(y ⊗ [x, v, z])3 = 1⊗,

and thus (2.16) holds.
To show (2.17) we first rearrange (2.13) using (2.12) as follows:

z ⊗ [x, v, y] = (y ⊗ [x, v, z])([v, x] ⊗ [y, z]). (2.18)

By interchanging v with y in (2.18), and using (2.2) and (2.12), we obtain

z ⊗ [v, x, y] = (v ⊗ [x, y, z])([v, z] ⊗ [x, y]). (2.19)

Now interchange (respectively) y with z and x with z in (2.19) to get

y ⊗ [v, x, z] = (v ⊗ [x, y, z])−1([v, y] ⊗ [x, z]) (2.20)

and

x ⊗ [v, y, z] = (v ⊗ [x, y, z])([v, x] ⊗ [y, z]). (2.21)

Also, from (2.13), we have

[x, v] ⊗ [y, z] = (z ⊗ [v, x, y])(y ⊗ [x, v, z]). (2.22)
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Interchange x with z and y with v in (2.22), and use (2.2) and (2.12) to obtain

[x, v] ⊗ [y, z] = (x ⊗ [z, y, v])(v ⊗ [y, z, x]). (2.23)

Note that the left-hand sides of (2.22) and (2.23) are equal, so we may equate the right-
hand sides, and, after applying (2.2) as needed, substitute the expressions on the right-
hand sides of (2.19), (2.20) and (2.21). This gives

(v ⊗ [x, y, z])([v, z] ⊗ [x, y])(v ⊗ [x, y, z])([v, y] ⊗ [x, z])−1

= (v ⊗ [x, y, z])−1([v, x] ⊗ [y, z])−1(v ⊗ [x, y, z]).

Hence
(v ⊗ [x, y, z])2 = ([v, x] ⊗ [y, z])−1([v, y] ⊗ [x, z])([v, z] ⊗ [x, y])−1.

Since (v ⊗ [x, y, z])3 = 1⊗, we have (v ⊗ [x, y, z])2 = (v ⊗ [x, y, z])−1 and we arrive at
Equation (2.17). �

The following proposition is from [4].

Proposition 2.8. For a 2-Engel group G, the defining relations of G ⊗ G reduce to

xy ⊗ z = (x ⊗ [y, z])(y ⊗ z)(x ⊗ z), (2.24)

x ⊗ yz = ([z, x] ⊗ y)(x ⊗ y)(x ⊗ z). (2.25)

We generalize Proposition 2.8 in two steps. We first show the following.

Proposition 2.9. Let G be a 2-Engel group. Let x1, . . . , xn ∈ G. Let b be an element
of the derived subgroup of G. Then, for n � 2,

( n∏
i=1

xi

)
⊗ b =

n∏
k=2

k−1∏
j=1

(xj ⊗ [xk, b])
n∏

i=1

(xi ⊗ b) (2.26)

and

b ⊗
( n∏

i=1

xi

)
=

n∏
k=2

k−1∏
j=1

([xk, b] ⊗ xj)
n∏

i=1

(b ⊗ xi). (2.27)

Proof. We induct on n. Consider Equation (2.26). Let x1, x2 ∈ G and let b lie in the
derived subgroup of G. By Proposition 2.8 and Equation (2.9) we have

x1x2 ⊗ b = (x1 ⊗ [x2, b])(x2 ⊗ b)(x1 ⊗ b) = (x1 ⊗ [x2, b])(x1 ⊗ b)(x2 ⊗ b),

which has the form of (2.26) for n = 2.
Suppose now that Equation (2.26) holds for some n � 2. For i = 1, . . . , n + 1, let

xi ∈ G. Let b be an element of the derived subgroup of G. Then, by Proposition 2.8, we
have

(n+1∏
i=1

xi

)
⊗ b =

(( n∏
i=1

xi

)
⊗ [xn+1, b]

)
(xn+1 ⊗ b)

(( n∏
i=1

xi

)
⊗ b

)
. (2.28)
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Since [xn+1, b] is in the centre of G, the factor (
∏n

i=1 xi) ⊗ [xn+1, b] of (2.28) expands
linearly (by Proposition 2.8). By the inductive hypothesis, the last factor on the right-
hand side of (2.28) is

( n∏
i=1

xi

)
⊗ b =

n∏
k=2

k−1∏
j=1

(xj ⊗ [xk, b])
n∏

i=1

(xi ⊗ b).

These facts put together give us the following:

(n+1∏
i=1

axi

)
⊗ b =

(( n∏
i=1

xi

)
⊗ [xn+1, b]

)
(xn+1 ⊗ b)

(( n∏
i=1

xi

)
⊗ b

)

=
( n∏

i=1

(xi ⊗ [xn+1, b])
)

(xn+1 ⊗ b)
n∏

k=2

k−1∏
j=1

(xj ⊗ [xk, b])
n∏

i=1

(xi ⊗ b)

=
n+1∏
k=2

k−1∏
j=1

(xj ⊗ [xk, b])
n+1∏
i=1

(xi ⊗ b).

The proof of Equation (2.27) is similar. �

Proposition 2.9 is used to show the following result, which has a similar inductive
proof. The proof can be found in [17].

Proposition 2.10. Let G be a 2-Engel group. For u = 1, . . . , n, let xu, yu, x and y

be elements of G. Then, for n � 3,

( n∏
u=1

xu

)
⊗ y =

n∏
l=3

l−1∏
k=2

k−1∏
j=1

(xj ⊗ [xk, [xl, y]])
n∏

s=2

s−1∏
r=1

(xr ⊗ [xs, y])
n−1∏
m=0

(xn−m ⊗ y)

and

x ⊗
( n∏

u=1

yu

)
=

n∏
l=3

l−1∏
k=2

k−1∏
j=1

([yk, [yl, x]] ⊗ yj)
n∏

s=2

s−1∏
r=1

([ys, x] ⊗ yr)
n∏

u=1

(x ⊗ yu).

Appropriate substitutions in Proposition 2.10 show that some expansions are linear,
such as in the following corollary.

Corollary 2.11. Let G be a 2-Engel group. Let x ∈ G and suppose that bi is an
element of the derived subgroup of G for i = 1, . . . , n. Then, for n � 2,

( n∏
i=1

bi

)
⊗ x =

n∏
i=1

(bi ⊗ x) and x ⊗
( n∏

i=1

bi

)
=

n∏
i=1

(x ⊗ bi).
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3. Computing the tensor square

In this section we prove Theorem 1.4, which provides a simplified presentation for E ⊗E .
The following is an outline of our method for making the computations needed in proving
the theorem.

Using the identities for E ⊗ E developed in § 2, we first express an arbitrary generator
g⊗g′ of E ⊗E as a product of a fixed set of elements of E ⊗E whose exponent expressions
depend on the exponents in the representations of g and g′ found in (2.4) and (2.5).
Then we construct a group Ln and define a multiplication formula for it in terms of the
exponents of its generators (see Example 3.3).

To prove Theorem 1.4, we define a function Φ : E × E → Ln that we show is a crossed
pairing. Verifying that Φ is a crossed pairing involves multiplying and conjugating ele-
ments of E using Lemma 2.2 and multiplying elements in Ln as defined in Example 3.3.
These operations are described by formulae on the exponents of the generators of these
groups, respectively. We consider these formulae as functions. Verification of the iden-
tities (1.1) and (1.2) for Φ is completed by composing these exponent functions. Since
some of these compositions involve manipulating hundreds of terms, the computations
were performed using Maple [19]. We complete the proof of the theorem by showing
the homomorphism induced by the crossed pairing Φ is an isomorphism.

We express the element g of E , defined in (2.4), as the product abc, where

a =
n∏

i=1

gαi
i , b =

∏
1�j<k�n

[gj , gk]βj,k , c =
∏

1�r<s<t�n

[gr, gs, gt]γr,s,t . (3.1)

Similarly, we express g′ ∈ E , defined in (2.5), as the product a′b′c′, where

a′ =
n∏

i=1

g
α′

i
i , b′ =

∏
1�j<k�n

[gj , gk]β
′
j,k , c′ =

∏
1�r<s<t�n

[gr, gs, gt]γ
′
r,s,t . (3.2)

As a first step, we use Proposition 2.8 repeatedly to compute an expansion formula for
g ⊗ g′ in terms of the factors a, b, c, a′, b′ and c′. We use the fact that E is nilpotent of
class 3 to simplify the expansion,

g ⊗ g′ = a · b · c ⊗ a′ · b′ · c′

= (a · b ⊗ [c, a′ · b′ · c′])(c ⊗ a′ · b′ · c′)(a · b ⊗ a′ · b′ · c′)

= (c ⊗ a′ · b′ · c′)(a · b ⊗ a′ · b′ · c′)

= ([c′, c] ⊗ a′ · b′)(c ⊗ a′ · b′)(c ⊗ c′)([c′, a · b] ⊗ a′ · b′)(a · b ⊗ a′ · b′)(a · b ⊗ c′)

= ([b′, c] ⊗ a′)(c ⊗ a′)(c ⊗ b′)(c ⊗ c′)(a · b ⊗ a′ · b′)(a ⊗ [b, c′])(b ⊗ c′)(a ⊗ c′)

= (c ⊗ a′)(c ⊗ b′)(c ⊗ c′)(a · b ⊗ a′ · b′)(b ⊗ c′)(a ⊗ c′). (3.3)

By Corollary 2.11, the factors (c ⊗ c′), (c ⊗ b′) and (b ⊗ c′) in Equation (3.3) expand
linearly into products of elements of E ⊗ E of weight at least five, which are all equal to
the identity by (2.15). Hence our expansion becomes

a · b · c ⊗ a′ · b′ · c′ = (c ⊗ a′)(a · b ⊗ a′ · b′)(a ⊗ c′). (3.4)

https://doi.org/10.1017/S0013091502000998 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000998


On computing the non-abelian tensor squares of the free 2-Engel groups 313

We expand (a · b ⊗ a′ · b′) using Proposition 2.8, obtaining

(a · b ⊗ a′ · b′) = (a ⊗ [b, a′ · b′])(b ⊗ a′ · b′)(a ⊗ a′ · b′)

= (a ⊗ [b, a′])([b′, b] ⊗ a′)(b ⊗ a′)(b ⊗ b′)([b′, a] ⊗ a′)(a ⊗ a′)(a ⊗ b′)

= (a ⊗ [b, a′])(b ⊗ a′)(b ⊗ b′)([b′, a] ⊗ a′)(a ⊗ a′)(a ⊗ b′). (3.5)

Putting the expansions (3.4) and (3.5) together we get

a · b · c ⊗ a′ · b′ · c′

= (c ⊗ a′)(a ⊗ [b, a′])(b ⊗ a′)(b ⊗ b′)([b′, a] ⊗ a′)(a ⊗ a′)(a ⊗ b′)(a ⊗ c′). (3.6)

We next show that every generator of E⊗E can be expressed as a product of a prescribed
set of elements in E ⊗ E in a fixed ordering. We accomplish this goal by expanding each
of the eight factors in (3.6) as products involving the generators g1, . . . , gn of E . For the
sake of notational convenience in the sequel, we set

I1 = {(i, j, k) | 1 � i, j, k � n; i � max{j, k}; j < k},

I2 = {(i, j, k, l) | 1 � i < j � n; i � k < l � n; (i, j) < (k, l) lexicographically}.

Lemma 3.1. Let g and g′ be arbitrary elements of E . Then

g ⊗ g′ =
n∏

i=1

(gi ⊗ gi)ρi ·
∏

(i,j,k)∈I1

(gi ⊗ [gj , gk])σi,j,k

·
∏

(i,j,k,l)∈I2

([gi, gj ] ⊗ [gk, gl])τi,j,k,l ·
n−1∏
i=0

n∏
j=1

j �=n−i

(gn−i ⊗ gj)νn−i,j , (3.7)

where each ρi, σi,j,k and νi,j is an integer and each τi,j,k,l is an integer modulo 3.

Proof. We continue to consider g and g′ as written in (2.4) and (2.5), respectively.
The eight sets of forms listed below in (3.8)–(3.15) are the possible element forms that
arise when the eight terms of (3.6) are expanded using Propositions 2.8–2.10:

[gr, gs, gt]γr,s,t ⊗ g
α′

u
u , (3.8)

gαu
u ⊗ [[gr, gs]βr,s , g

α′
v

v ], (3.9)

[gr, gs]βr,s ⊗ g
α′

u
u , [g

α′
q

q , [gr, gs]βr,s ] ⊗ g
α′

p
p , (3.10)

[gr, gs]βr,s ⊗ [gp, gq]β
′
p,q , (3.11)

[[gr, gs]β
′
r,s , gαv

v ] ⊗ g
α′

u
u , (3.12)

gαu
u ⊗ g

α′
v

v , gαr
r ⊗ [gαs

s , g
α′

u
u ], gαr

r ⊗ [gαs
s , gαt

t , g
α′

u
u ],

gαr
r ⊗ [gαs

s , g
α′

p
p , g

α′
q

q ], g
α′

r
r ⊗ [gα′

t
t , gαu

u , g
α′

s
s ], g

α′
r

r ⊗ [gα′
s

s , gαu
u ],

⎫⎬
⎭ (3.13)

gαu
u ⊗ [gr, gs]β

′
r,s , gαp

p ⊗ [gαq
q , [gr, gs]β

′
r,s ], (3.14)

gαu
u ⊗ [gr, gs, gt]γ

′
r,s,t , (3.15)

where 1 � r < s < t � n, 1 � p < q � n and 1 � u, v � n.
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For example, by Corollary 2.11 and Proposition 2.9,

b ⊗ a′ =
∏

1�r<s�n

[gr, gs]βr,s ⊗
n∏

u=1

g
α′

u
u

=
∏

1�r<s�n

(
[gr, gs]βr,s ⊗

n∏
u=1

g
α′

u
u

)

=
∏

1�r<s�n

( n∏
q=2

q−1∏
p=1

([g
α′

q
q , [gr, gs]βr,s ] ⊗ g

α′
p

p )
n∏

u=1

([gr, gs]βr,s ⊗ g
α′

u
u )

)
.

Hence we have the element forms shown in (3.10).
We extract the exponents for each of the forms found in (3.8)–(3.15) using (2.3)

and (2.10):

([gr, gs, gt] ⊗ gu)α′
uγr,s,t , (3.16)

(gu ⊗ [gr, gs, gv])αuβr,sα′
v , (3.17)

([gr, gs] ⊗ gu)βr,sα′
u , (gu ⊗ [gr, gs, gu])βr,s(α′

u
2 ), ([gq, [gr, gs]] ⊗ gp)α′

qβr,sα′
p , (3.18)

([gr, gs] ⊗ [gp, gq])β′
p,qβr,s , (3.19)

([gr, gs, gv] ⊗ gu)β′
r,sαvα′

u , , (3.20)

(gu ⊗ gv)αuα′
v , (gv ⊗ [gu, gv])αu(α′

v
2 ),

(gu ⊗ [gu, gv])α′
v(αu

2 ), (gr ⊗ [gs, gu])αrαsα′
u ,

(gr ⊗ [gr, [gs, gu]])αsα′
u(αr

2 ), (gr ⊗ [gs, [gt, gu]])αrαsαtα
′
u ,

(gr ⊗ [gs, gp, gq])αrαsα′
pα′

q , (gr ⊗ [gt, gu, gs])α′
rα′

tαuα′
s ,

(gr ⊗ [gu, gs])α′
rα′

sαu , (gr ⊗ [gr, [gs, gu]])α′
sαu(α′

r
2 ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.21)

(gu ⊗ [gr, gs])αuβ′
r,s , (gu ⊗ [gu, [gr, gs]])β′

r,s(αi
2 ), (gp ⊗ [gq, [gr, gs]])αpαqβ′

r,s , (3.22)

(gu ⊗ [gr, gs, gt])γ′
r,s,tαu , (3.23)

where 1 � r < s < t � n, 1 � p < q � n and 1 � u, v � n.
Hence an arbitrary generator of E ⊗ E can be written as a product of the element

forms listed in (3.16)–(3.23). The only non-central elements in this list are the powers of
elements of the form gi ⊗ gj for i �= j. Hence the exponents have no effect in rewriting
the other element forms to match the factors listed in the statement of the lemma. There
are only two basic form types that need to be rewritten. For (3.16), we have, using
Equations (2.12) and (2.17),

([gr, gs, gt] ⊗ gu) = (gu ⊗ [gr, gs, gt])−1

= ([gu, gr] ⊗ [gs, gt])−1([gu, gs] ⊗ [gu, gt])([gu, gt] ⊗ [gs, gr])−1.
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We then reorder the subscripts as needed by repeatedly using (2.12) and keeping track
of the sign changes of the exponents as necessary. We rewrite the other element forms
that involve a weight three commutator in E similarly.

Elements of the form gk ⊗ [gi, gj ] for which k > max{i, j} can be rewritten using (2.11),

(gk ⊗ [gi, gj ])

= (gi ⊗ [gj , gi])−1(gj ⊗ [gj , gk])−1([gi, gk] ⊗ [gj , gk])([gi, gk] ⊗ [gj , gi])([gj , gk] ⊗ [gj , gi]).

Again, we reorder the subscripts, as needed, using (2.12).
We can order the non-central factors gi⊗gj , for i �= j, as specified in the lemma, noting

that the commutators [gi ⊗ gj , gk ⊗ gl] = [gi, gj ] ⊗ [gk, gl] (where k �= l) lie in the centre
of E ⊗ E . Hence the reordering of the non-central factors does not add any new element
forms. �

An arbitrary element of E ⊗ E is a product of generators of the form g ⊗ g′. By
Lemma 3.1, each of these generators can be written in a common form (3.7). Hence E ⊗E
is finitely generated by the factors in the product (3.7).

Remark 3.2. We note that Lemma 3.1 also holds for the generators of

B(n, 3) ⊗ B(n, 3),

where the exponents are taken to be integers modulo 3. Moreover, an arbitrary element
of B(n, 3) ⊗ B(n, 3) can be expressed as the product (3.7), where all the exponents are
again considered to be integers modulo 3.

The exponents ρi, σi,j,k, νi,j and τi,j,k,l specified in Lemma 3.1 are used later in the
proof of Theorem 1.4 to define a mapping Φ : E × E → Ln (where Ln is defined in
Example 3.3 below). An explicit expression for these exponents is determined by a careful
analysis of how the exponents arise during the expansion and collection process of g⊗g′ as
a product of the generators indicated in Lemma 3.1. This analysis, which was performed
completely in [17], relies on tracking the indices of each of the products in the expansion
process described in the proof of the lemma to form the exponent expressions listed
below. When all of the forms in the expansion are collected, we note that each basic form
must be considered in several cases dependent only on the relative ordering of its indices.
We arrive at the following descriptions of the exponents of the generators of E ⊗ E .

For generators of weight two, the exponents are

ρi = αiα
′
i and νi,j = αiα

′
j (i �= j). (3.24)

For generators of weight three, we have four cases to consider, with indices ordered
i < j < k. The exponent for each generator gi ⊗ [gj , gk] is

σi,j,k = −α′
iβj,k + αiβ

′
j,k − αiα

′
jαk + α′

iαjα
′
k + αiαjα

′
k − α′

iα
′
jαk + α′

kβi,j − αkβ′
i,j .

(3.25)
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For each generator gi ⊗ [gi, gj ], the exponent is

σi,i,j = −α′
iβi,j + αiβ

′
i,j − αiα

′
iαj + αiα

′
iα

′
j − αj

(
α′

i

2

)
+ α′

j

(
αi

2

)
.

The exponent for each generator (gj ⊗ [gi, gk]) is

σj,i,k = −α′
jβi,k + αjβ

′
i,k − α′

iαjαk + αiα
′
jα

′
k − α′

kβi,j + αkβ′
i,j .

For each generator (gj ⊗ [gi, gj ]), the exponent is

σj,i,j = −α′
jβi,j + αjβ

′
i,j + αi

(
α′

j

2

)
− α′

i

(
αj

2

)
.

For generators of weight four, we have six cases to consider, with indices ordered
i < j < k < l. The exponent for each generator [gi, gj ] ⊗ [gi, gk] is

τi,j,i,k = −α′
iγi,j,k + αiγ

′
i,j,k + αiα

′
iβj,k − αiα

′
jβi,k + αiα

′
kβi,j − αiα

′
iβ

′
j,k + α′

iαjβ
′
i,k

− α′
iαkβ′

i,j + βi,jβ
′
i,k − β′

i,jβi,k + βj,k

(
α′

i

2

)
− α′

iα
′
jβi,k + α′

iα
′
kβi,j + αiαjβ

′
i,k

− αiαkβ′
i,j − β′

j,k

(
αi

2

)
− αiα

′
iαjαk + αiα

′
iα

′
jα

′
k − αiα

′
iαjα

′
k + αiα

′
iα

′
jαk

+ α′
jαk

(
αi

2

)
− αjα

′
k

(
α′

i

2

)
− αjα

′
k

(
αi

2

)
+ α′

jαk

(
α′

i

2

)
− α′

kβi,j + αkβ′
i,j .

For each generator [gi, gj ] ⊗ [gj , gk], the exponent is

τi,j,j,k = −α′
jγi,j,k + αjγ

′
i,j,k + α′

iαjβj,k − αjα
′
jβi,k + αjα

′
kβi,j − αiα

′
jβ

′
j,k + αjα

′
jβ

′
i,k

− α′
jαkβ′

i,j + βi,jβ
′
j,k − β′

i,jβj,k − βi,k

(
α′

j

2

)
+ α′

jα
′
kβi,j − αjαkβ′

i,j

+ β′
i,k

(
αj

2

)
+ α′

iαjα
′
jαk − α′

iαk

(
αj

2

)
+ αiα

′
k

(
α′

j

2

)
− α′

kβi,j + αkβ′
i,j .

The exponent for each generator [gi, gk] ⊗ [gj , gk] is

τi,k,j,k = −α′
kγi,j,k + αkγ′

i,j,k + α′
iαkβj,k − α′

jαkβi,k + αkα′
kβi,j − αiα

′
kβ′

j,k + αjα
′
kβ′

i,k

− αkα′
kβ′

i,j + βi,kβ′
j,k − β′

i,kβj,k + βi,j

(
α′

k

2

)
− β′

i,j

(
αk

2

)
− α′

kβi,j + αkβ′
i,j .

For each generator [gi, gj ] ⊗ [gk, gl], the exponent is

τi,j,k,l = −α′
iγj,k,l + α′

jγi,k,l + α′
kγi,j,l − α′

lγi,j,k + αiγ
′
j,k,l − αjγ

′
i,k,l − αkγ′

i,j,l

+ αlγ
′
i,j,k + αiα

′
jβk,l − α′

iαjβk,l − α′
iαkβj,l + α′

iαlβj,k − αiα
′
kβj,l + αjα

′
kβi,l

+ α′
jαkβi,l − α′

jαlβi,k + αiα
′
lβj,k − αjα

′
lβi,k − αkα′

lβi,j + α′
kαlβi,j − α′

iαjβ
′
k,l

+ αiα
′
jβ

′
k,l + αiα

′
kβ′

j,l − αiα
′
lβ

′
j,k + α′

iαkβ′
j,l − α′

jαkβ′
i,l − αjα

′
kβ′

i,l + αjα
′
lβ

′
i,k
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− α′
iαlβ

′
j,k + α′

jαlβ
′
i,k + α′

kαlβ
′
i,j − αkα′

lβ
′
i,j + βi,jβ

′
k,l − β′

i,jβk,l + α′
iα

′
jβk,l

− α′
iα

′
kβj,l + α′

jα
′
kβi,l + α′

iα
′
lβj,k − α′

jα
′
lβi,k − α′

kα′
lβi,j − αiαjβ

′
k,l + αiαkβ′

j,l

− αjαkβ′
i,l − αiαlβ

′
j,k + αjαlβ

′
i,k + αkαlβ

′
i,j + α′

iαjαkαl − αiα
′
jα

′
kα′

l

− αiα
′
jαkαl + α′

iαjα
′
kα′

l + αiαjα
′
kαl − α′

iα
′
jαkα′

l − αiαjαkα′
l + α′

iα
′
jα

′
kαl

+ αiαjα
′
kα′

l − αiα
′
jαkα′

l + α′
iαjαkα′

l + αiα
′
jα

′
kαl − α′

iαjα
′
kαl − α′

iα
′
jαkαl.

The exponent for each generator [gi, gk] ⊗ [gj , gl] is

τi,k,j,l = α′
iγj,k,l + α′

jγi,k,l + α′
kγi,j,l + α′

lγi,j,k − αiγ
′
j,k,l − αjγ

′
i,k,l − αkγ′

i,j,l − αlγ
′
i,j,k

− αiα
′
jβk,l − α′

iαjβk,l − α′
iαkβj,l − α′

iαlβj,k + αiα
′
kβj,l + αjα

′
kβi,l + α′

jαkβi,l

+ α′
jαlβi,k − αiα

′
lβj,k − αjα

′
lβi,k − αkα′

lβi,j − α′
kαlβi,j + α′

iαjβ
′
k,l + αiα

′
jβ

′
k,l

+ αiα
′
kβ′

j,l + αiα
′
lβ

′
j,k − α′

iαkβ′
j,l − α′

jαkβ′
i,l − αjα

′
kβ′

i,l − αjα
′
lβ

′
i,k + α′

iαlβ
′
j,k

+ α′
jαlβ

′
i,k + α′

kαlβ
′
i,j + αkα′

lβ
′
i,j + βi,kβ′

j,l − β′
i,kβj,l − α′

iα
′
jβk,l + α′

iα
′
kβj,l

+ α′
jα

′
kβi,l − α′

iα
′
lβj,k − α′

jα
′
lβi,k − α′

kα′
lβi,j + αiαjβ

′
k,l − αiαkβ′

j,l

− αjαkβ′
i,l + αiαlβ

′
j,k + αjαlβ

′
i,k + αkαlβ

′
i,j + α′

iαjαkαl − αiα
′
jα

′
kα′

l

+ αiα
′
jαkαl − α′

iαjα
′
kα′

l − αiαjα
′
kαl + α′

iα
′
jαkα′

l + αiαjαkα′
l − α′

iα
′
jα

′
kαl

− αiαjα
′
kα′

l + αiα
′
jαkα′

l + α′
iαjαkα′

l − αiα
′
jα

′
kαl − α′

iαjα
′
kαl − α′

iα
′
jαkαl.

Finally, the exponent of each generator [gi, gl] ⊗ [gj , gk] is

τi,l,j,k = −α′
iγj,k,l − α′

jγi,k,l + α′
kγi,j,l + α′

lγi,j,k + αiγ
′
j,k,l + αjγ

′
i,k,l − αkγ′

i,j,l

− αlγ
′
i,j,k + αiα

′
jβk,l + α′

iαjβk,l − α′
iαkβj,l − α′

iαlβj,k − αiα
′
kβj,l − αjα

′
kβi,l

+ α′
jαkβi,l + α′

jαlβi,k + αiα
′
lβj,k + αjα

′
lβi,k − αkα′

lβi,j − α′
kαlβi,j − α′

iαjβ
′
k,l

− αiα
′
jβ

′
k,l + αiα

′
kβ′

j,l + αiα
′
lβ

′
j,k + α′

iαkβ′
j,l + α′

jαkβ′
i,l − αjα

′
kβ′

i,l − αjα
′
lβ

′
i,k

− α′
iαlβ

′
j,k − α′

jαlβ
′
i,k + α′

kαlβ
′
i,j + αkα′

lβ
′
i,j + βi,lβ

′
j,k − β′

i,lβj,k + α′
iα

′
jβk,l

− α′
iα

′
kβj,l − α′

jα
′
kβi,l + α′

iα
′
lβj,k + α′

jα
′
lβi,k − α′

kα′
lβi,j − αiαjβ

′
k,l + αiαkβ′

j,l

+ αjαkβ′
i,l − αiαlβ

′
j,k − αjαlβ

′
i,k + αkαlβ

′
i,j − α′

iαjαkαl + αiα
′
jα

′
kα′

l

− αiα
′
jαkαl + α′

iαjα
′
kα′

l + αiαjα
′
kαl − α′

iα
′
jαkα′

l − αiαjαkα′
l + α′

iα
′
jα

′
kαl

+ αiαjα
′
kα′

l − αiα
′
jαkα′

l − α′
iαjαkα′

l + αiα
′
jα

′
kαl + α′

iαjα
′
kαl − α′

iα
′
jαkαl.

We now construct the group Ln that we show is isomorphic to E ⊗ E .

Example 3.3. Let F be the free group of rank n(n − 1) and set N to be F/γ3(F ) =
〈yi,j | 1 � i, j � n; i �= j〉, the free nilpotent group of class 2 and rank n(n − 1). Set

N = 〈[yi,j , yj,i], [yi,j , yk,l][yi,j , yl,k], [yi,j , yk,l][yj,i, yk,l],
[yi,j , yk,l][yl,k, yj,i], [yi,j , yk,l]3 | 1 � i, j, k, l � n; i �= j; k �= l〉.

Since N � N ′ � Z(N ), the subgroup N is normal in N . Set

Wn = N/N = 〈wi,j | 1 � i, j � n; i �= j〉,
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where wi,j = yi,jN for 1 � i, j � n and i �= j. Set Un to be the free abelian group on the
generating set

{xi | 1 � i � n} ∪ {ui,j,k | 1 � i, j, k � n; i � max(j, k); j < k}.

The allowable subscript triples for ui,j,k match the four cases of subscript triples that
arise in the generators of the tensor square E ⊗E for factors of the form gi⊗ [gj , gk]. There
are 2

(
n
2

)
+ 2

(
n
3

)
= 2

(
n+1

3

)
such triples, and thus Un has rank n + 2

(
n+1

3

)
= 1

3n(n2 + 2).
We set Ln to be the direct product Un × Wn.

Denote the commutator [wi,j , wk,l] by zi,j,k,l. We represent an arbitrary element h

of Ln as

h =
n∏

i=1

xκi
i ·

∏
(i,j,k)∈I1

u
λi,j,k

i,j,k ·
∏

(i,j,k,l)∈I2

z
µi,j,k,l

i,j,k,l ·
n−1∏
i=0

n∏
j=1

j �=n−i

w
ηn−i,j

n−i,j , (3.26)

where each κi, λi,j,k and ηn−i,j is an integer and each µi,j,k,l is an integer modulo 3. Let

h′ =
n∏

i=1

x
κ′

i
i ·

∏
(i,j,k)∈I1

u
λ′

i,j,k

i,j,k ·
∏

(i,j,k,l)∈I2

z
µ′

i,j,k,l

i,j,k,l ·
n−1∏
i=0

n∏
j=1

j �=n−i

w
η′

n−i,j

n−i,j (3.27)

be another element of Ln, where each κ′
i, λ′

i,j,k and η′
n−i,j is an integer and each µ′

i,j,k,l

is an integer modulo 3. Then the product hh′ is

hh′ =
n∏

i=1

x
κ∗

i
i ·

∏
(i,j,k)∈I1

u
λ∗

i,j,k

i,j,k ·
∏

(i,j,k,l)∈I2

z
µ∗

i,j,k,l

i,j,k,l ·
n−1∏
i=0

n∏
j=1

j �=n−i

w
η∗

n−i,j

n−i,j ,

where

κ∗
i = κi + κ′

i, η∗
i,j = ηi,j + η′

i,j , λ∗
i,j,k = λi,j,k + λ′

i,j,k (3.28)

and (computing modulo 3)

µ∗
i,j,i,k = µi,j,i,k + µ′

i,j,i,k + ηj,iη
′
k,i − ηi,jη

′
k,i + ηi,kη′

j,i − ηi,kη′
i,j , i < j < k,

µ∗
i,j,j,k = µi,j,j,k + µ′

i,j,j,k + ηj,iη
′
k,j − ηi,jη

′
k,j + ηj,kη′

j,i + ηi,jη
′
j,k, i < j < k,

µ∗
i,k,j,k = µi,k,j,k + µ′

i,k,j,k − ηk,jη
′
k,i + ηj,kη′

k,i − ηi,kη′
k,j + ηi,kη′

j,k, i < j < k,

µ∗
i,j,k,l = µi,j,k,l + µ′

i,j,k,l + ηj,iη
′
l,k − ηi,jη

′
l,k − ηj,iη

′
k,l + ηi,jη

′
k,l, i < j < k < l,

µ∗
i,k,j,l = µi,k,j,l + µ′

i,k,j,l + ηk,iη
′
l,j − ηi,kη′

l,j + ηj,lη
′
k,i + ηi,kη′

j,l, i < j < k < l,

µ∗
i,l,j,k = µi,l,j,k + µ′

i,l,j,k − ηk,jη
′
l,i + ηj,kη′

l,i − ηi,lη
′
k,j + ηi,lη

′
j,k, i < j < k < l.

Proof of Theorem 1.4. Let g, g′, g′′ be arbitrary elements of E , where g and g′ are
defined in (2.4) and (2.5), respectively, and

g′′ =
n∏

i=1

g
α′′

i
i ·

∏
1�j<k�n

[gj , gk]β
′′
j,k ·

∏
1�r<s<t�n

[gr, gs, gt]γ
′′
r,s,t , (3.29)
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where each α′′
i and β′′

j,k is an integer and each γ′′
r,s,t is an integer modulo 3. We define

the mapping Φ : E × E → Ln by

Φ(g, g′) =
n∏

i=1

xρi

i ·
∏

(i,j,k)∈I1

u
σi,j,k

i,j,k ·
∏

(i,j,k,l)∈I2

z
τi,j,k,l

i,j,k,l ·
n−1∏
i=0

n∏
j=1

j �=n−i

w
νn−i,j

n−i,j ,

where the exponents ρi, σi,j,k, τi,j,k,l and νn−i,j are as specified in Lemma 3.1.
To show that Φ is a crossed pairing, we must show that Equations (1.1) and (1.2) hold.

Consider Equation (1.1) and let

Φ(gg′, g′′) =
n∏

i=1

x
ρ†

i
i ·

∏
(i,j,k)∈I1

u
σ†

i,j,k

i,j,k ·
∏

(i,j,k,l)∈I2

z
τ†

i,j,k,l

i,j,k,l ·
n−1∏
i=0

n∏
j=1

j �=n−i

w
ν†

n−i,j

n−i,j (3.30)

and

Φ(gg′, gg′′)Φ(g, g′′) =
n∏

i=1

x
ρ‡

i
i ·

∏
(i,j,k)∈I1

u
σ‡

i,j,k

i,j,k ·
∏

(i,j,k,l)∈I2

z
τ‡

i,j,k,l

i,j,k,l ·
n−1∏
i=0

n∏
j=1

j �=n−i

w
ν‡

n−i,j

n−i,j .

(3.31)

The expressions (3.30) and (3.31) are equal if the exponents of the corresponding gener-
ators are equal. Hence we must show that ρ†

i = ρ‡
i , σ†

i,j,k = σ‡
i,j,k, τ †

i,j,k,l ≡ τ ‡
i,j,k,l mod 3,

and ν†
i,j = ν‡

i,j .
We start by showing that ρ†

i = ρ‡
i . For each i, where 1 � i � n, consider α∗

i , α†
i , ρi,

κ∗
i (defined in (2.6), (2.7), (3.24) and (3.28), respectively) as functions of two variables.

Thus

α∗
i (αi, α

′
i) = αi + α′

i, α†
i (αi, α

′
i) = α′

i, ρi(αi, α
′
i) = αi · α′

i and κ∗
i (κi, κ

′
i) = κi + κ′

i.

By the definition of Φ and the formulae for computing in E and in Ln, we obtain

ρ†
i = ρi(α∗

i (αi, α
′
i), α

′′
i )

= ρi(αi + α′
i, α

′′
i )

= (αi + α′
i)α

′′
i

= αiα
′′
i + α′

iα
′′
i

and

ρ‡
i = κ∗

i (ρi(α
†
i (αi, α

′
i), α

†
i (αi, α

′′
i )), ρi(αi, α

′′
i ))

= κ∗
i (ρi(α′

i, α
′′
i ), ρi(αi, α

′′
i ))

= ρi(α′
i, α

′′
i ) + ρi(αi, α

′′
i )

= α′
iα

′′
i + αiα

′′
i .

By inspection, ρ†
i = ρ‡

i , as needed. A similar argument shows that ν†
i,j = ν‡

i,j for each pair
(i, j), where 1 � i, j � n and i �= j.
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We next show
σ†

i,j,k = σ‡
i,j,k

for two of the four possible orderings of the indices i, j and k. First we write β∗
i,j , β†

i,j

and λ∗
i,j,k (defined in (2.6), (2.7) and (3.28), respectively) as functions:

β∗
i,j(αi, αj , βi,j , α

′
i, α

′
j , β

′
i,j) = βi,j + β′

i,j − α′
iαj ,

β†
i,j(αi, αj , βi,j , α

′
i, α

′
j , β

′
i,j) = β′

i,j − α′
iαk + αiα

′
j ,

λ∗
i,j,k(λi,j,k, λ′

i,j,k) = λi,j,k + λ′
i,j,k.

Consider the case when the indices are ordered i < j < k. In functional notation,
Equation (3.25) becomes

σi,j,k(αi, αj , αk, βi,j , βi,k, βj,k, α′
i, α

′
j , α

′
k, β′

i,j , β
′
i,k, β′

j,k)

= −α′
iβj,k + αiβ

′
j,k − αiα

′
jαk + α′

iαjα
′
k + αiαjα

′
k − α′

iα
′
jαk + α′

kβi,j − αkβ′
i,j .

Using the definition of Φ and the formulae for computing in E and in Ln, we express

σ†
i,j,k = σi,j,k(α∗

i (αi, α
′
i), α

∗
j (αj , α

′
j), α

∗
k(αk, α′

k), β∗
i,j(αi, αj , βi,j , α

′
i, α

′
j , β

′
i,j),

β∗
i,k(αi, αk, βi,k, α′

i, α
′
k, β′

i,k), β∗
j,k(αj , αk, βj,k, α′

j , α
′
k, β′

j,k),

α′′
i , α′′

j , α′′
k , β′′

i,j , β
′′
i,k, β′′

j,k)
(3.32)

and

σ‡
i,j,k = λ∗

i,j,k(σi,j,k(α†
i (αi, α

′
i), α

†
j(αj , α

′
j), α

†
k(αk, α′

k), β†
i,j(αi, αj , βi,j , α

′
i, α

′
j , β

′
i,j),

β†
i,k(αi, αk, βi,k, α′

i, α
′
k, β′

i,k), β†
j,k(αj , αk, βj,k, α′

j , α
′
k, β′

j,k),

α†
i (αi, α

′′
i ), α†

j(αj , α
′′
j ), α†

k(αk, α′′
k), β†

i,j(αi, αj , βi,j , α
′′
i , α′′

j , β′′
i,j),

β†
i,k(αi, αk, βi,k, α′′

i , α′′
k , β′′

i,k), β†
j,k(αj , αk, βj,k, α′′

j , α′′
k , β′′

j,k)),

σi,j,k(αi, αj , αk, βi,j , βi,k, βj,k, α′′
i , α′′

j , α′′
k , β′′

i,j , β
′′
i,k, β′′

j,k)).
(3.33)

Maple [19] was then used to compose these functions and to simplify the result-
ing expressions. All subsequent calculations were performed with Maple and indepen-
dently checked using Gap [11]. In particular, these computations immediately show that
σ†

i,j,k − σ‡
i,j,k = 0.

The corresponding computation of the case σ†
i,i,j − σ‡

i,i,j , where i < j, results in the
expression

−α′′
j

(
α′

i

2

)
− α′′

j

(
αi

2

)
− αiα

′
iα

′′
j + α′′

j

(
αi + α′

i

2

)
.

Since, for any two integers m and n, the identity(
m + n

2

)
=

(
m

2

)
+

(
n

2

)
+ mn (3.34)
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holds, this expression also evaluates to zero. By similar calculations and applications
of (3.34), for each of the remaining two cases, σ†

i,j,k − σ‡
i,j,k is also zero.

The exponent of zi,j,k,l has six possible orderings of the indices i, j, k and l. The case
τ †
i,j,i,k − τ ‡

i,j,i,k mod 3 for i < j < k yields the expression

β′′
j,k

(
αiα

′
i +

(
αi

2

)
+

(
α′

i

2

)
−

(
αi + α′

i

2

))

+ α′
jα

′′
k

(
αi − 2αiα

′
i − α2

i +
(

α′
i

2

)
−

(
αi + α′

i

2

))

+ αjα
′
k

(
α′′

i − α′′
i
2 −

(
α′′

i

2

))
+ αjα

′′
k

(
αiα

′
i +

(
αi

2

)
+

(
α′

i

2

)
−

(
αi + α′

i

2

))

+ α′′
j αk

((
αi + α′

i

2

)
− αiα

′
i −

(
αi

2

)
−

(
α′

i

2

))

+ α′′
j α′

k

(
α2

i − αi + 2αiα
′
i −

(
α′

i

2

)
+

(
αi + α′

i

2

))
.

By the identity (3.34) and the fact that
(
m
2

)
≡ m − m2 mod 3, we conclude that

τ †
i,j,i,k − τ ‡

i,j,i,k ≡ 0 mod 3.

For each of the other five possible orderings of the indices i, j, k and l, the expression
τ †
i,j,k,l − τ ‡

i,j,k,l mod 3 was similarly computed using Maple and verified to be congruent
to zero modulo three.

These computations show that Equation (1.1) holds for Φ. Equation (1.2) holds by a
similar analysis. Thus Φ is a crossed pairing.

By Proposition 1.3, Φ determines a unique homomorphism Φ∗ : E ⊗ E → Ln with
Φ∗(g ⊗ g′) = Φ(g, g′) for all g, g′ ∈ E . It follows that

Φ∗(gi ⊗ gi) = Φ(gi, gi) = xi,

Φ∗(gi ⊗ gj) = Φ(gi, gj) = wi,j ,

Φ∗(gi ⊗ [gj , gk]) = Φ(gi, [gj , gk]) = ui,j,k,

Φ∗([gi, gj ] ⊗ [gk, gl]) = Φ([gi, gj ], [gk, gl]) = zi,j,k,l.

It remains to be shown that Φ∗ is one-to-one and onto. Let h, represented as in (3.26),
be an arbitrary element of Ln and define V in E ⊗ E to be

V =
∏

1�i�n

(gi ⊗ gi)κi ·
∏

(i,j,k)∈I1

(gi ⊗ [gj , gk])λi,j,k

·
∏

(i,j,k,l)∈I2

([gi, gj ] ⊗ [gk, gl])µi,j,k,l ·
n−1∏
i=0

n∏
j=1

j �=n−i

(gn−i ⊗ gj)ηn−i,j . (3.35)
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Then

Φ∗(V ) =
∏

1�i�n

Φ∗(gi ⊗ gi)κi ·
∏

(i,j,k)∈I1

Φ∗(gi ⊗ [gj , gk])λi,j,k

·
∏

(i,j,k,l)∈I2

Φ∗([gi, gj ] ⊗ [gk, gl])µi,j,k,l ·
n−1∏
i=0

n∏
j=1

j �=n−i

Φ∗(gn−i ⊗ gj)ηn−i,j

=
n∏

i=1

xκi
i ·

∏
(i,j,k)∈I1

u
λi,j,k

i,j,k ·
∏

(i,j,k,l)∈I2

z
µi,j,k,l

i,j,k,l ·
n−1∏
i=0

n∏
j=1

j �=n−i

w
ηn−i,j

n−i,j

= h.

Hence Φ∗ is onto.
Suppose Φ∗(V ) = 1Ln , where V is defined as in (3.35). It is immediate from the def-

initions of Ln and Φ that V = 1E⊗E . We conclude that Φ∗ : E ⊗ E → Ln is one-to-one,
and therefore is an isomorphism. �

Proof of Corollary 1.5. Let B denote the Burnside group of rank n and exponent 3
and let

f(n) = n + 2
(

n + 1
3

)
+ 3

(
n + 1

4

)
+ n(n − 1),

which enumerates both the generators listed in Equation (3.7) and the generators xi,
ui,j,k, zi,j,k,l and wn−i,j of Ln. As we noted in Remark 3.2, our analysis holds for B ⊗ B
by replacing ‘integer’ with ‘integer modulo 3’ throughout. It follows that |B ⊗ B| � 3f(n).
Let ḡ, ḡ′, ḡ′′ ∈ B have representations analogous to (2.4), (2.5) and (3.29), where all of
the exponents are taken modulo 3. We define Ψ : B × B → Ln/L3

n by

Ψ(ḡ, ḡ′) = Ψ(gE3, g′E3) = Φ(g, g′)L3
n.

Since Φ is a crossed pairing, a similar argument shows that Ψ is a crossed pairing. Thus,
by Proposition 1.3 and the fact that Ψ is onto, Ln/L3

n is a homomorphic image of B ⊗B.
Thus 3f(n) � |B ⊗ B| � |Ln/L3

n| = 3f(n), proving our claim. �
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