
J. Aust. Math. Soc. 106 (2019), 104–126
doi:10.1017/S1446788718000071

NILPOTENT SUBSPACES AND NILPOTENT ORBITS

DMITRI I. PANYUSHEV� and OKSANA S. YAKIMOVA

(Received 11 July 2017; accepted 24 February 2018; first published online 30 May 2018)

Communicated by A. Henderson

Abstract

Let G be a semisimple complex algebraic group with Lie algebra g. For a nilpotent G-orbit O ⊂ g, let
dO denote the maximal dimension of a subspace V ⊂ g that is contained in the closure of O. In this
note, we prove that dO 6 1

2 dimO and this upper bound is attained if and only if O is a Richardson orbit.
Furthermore, if V is B-stable and dim V = 1

2 dimO, then V is the nilradical of a polarisation of O. Every
nilpotent orbit closure has a distinguished B-stable subspace constructed via an sl2-triple, which is called
the Dynkin ideal. We then characterise the nilpotent orbits O such that the Dynkin ideal (1) has the
minimal dimension among all B-stable subspaces c such that c ∩ O is dense in c, or (2) is the only B-stable
subspace c such that c ∩ O is dense in c.

2010 Mathematics subject classification: primary 17B08; secondary 17B20.
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1. Introduction

Let G be a connected complex semisimple algebraic group with Lie algebra g. We
fix a Borel subgroup B ⊂ G, a maximal torus T ⊂ B, and the corresponding triangular
decomposition g = u− ⊕ t ⊕ u. Here Lie (B) = b = t ⊕ u. Let N denote the cone of
nilpotent elements of g and N/G the (finite) set of G-orbits in N. A subspace V of
g is said to be nilpotent if V ⊂ N. Then G ·V is the closure of a nilpotent orbit. If
G ·V = O for some O ∈ N/G, then we say that V is associated with O. In general, one
has to distinguish the numbers dO = max{dim V | V ⊂ O} and d̄O = max{dim V | V ⊂
O & V ∩ O , ∅} = max{dim V | G ·V = O}. Clearly, d̄O 6 dO.

In this article, we study the set of nilpotent subspaces associated with a given O.
Our main observation is that if V ⊂ O, then dim V 6 1

2 dimO and this upper bound
is attained if and only if O is a Richardson orbit. Furthermore, if V is B-stable and
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dim V = 1
2 dimO, then V is the nilradical of a polarisation of O (Theorem 3.2). In

other words, dO 6 1
2 dimO and O ⊂ N is Richardson if and only if d̄O = dO = 1

2 dimO.
Our upper bound for dim V generalises a classical result of Gerstenhaber for sln [6].
Recall that O ∈ N/G is said to be Richardson if there is a parabolic subalgebra p, with
nilradical pnil, such that O ∩ pnil is dense in pnil. Then p is called a polarisation of O
and dimO = 2 dim pnil. Without loss of generality, one may assume that a polarisation
p is standard (that is, p ⊃ b) and then pnil ⊂ u is B-stable.

This result suggests that it is interesting to study B-stable subspaces associated with
O. Let I(b) denote the finite set of all B-stable subspaces (= b-ideals) of u. If V
is nilpotent and B-stable, then V ⊂ u, that is, V ∈ I(b). Restricting ourselves with
the B-stable subspaces associated with O, we obtain a subset I(b)O and the partition
I(b) =

⊔
O∈N/G I(b)O. We regardI(b) as a poset with respect to inclusion and then each

I(b)O is a subposet of I(b). The sets I(b)O were first considered by Sommers [12],
who called them ‘equivalence classes of ideals’. Using a suitable sl2-triple and Z-
grading of g associated with O, one defines a special element of I(b)O, which is called
the Dynkin ideal, denoted cDy(O). We consider the following numbers related to I(b)O:

• dmin(O) = min{dim c | c ∈ I(b)O};
• dDy(O) = dim cDy(O), the dimension of the Dynkin ideal;
• dmax(O) = max{dim c | c ∈ I(b)O}.

Then dmin(O) 6 dDy(O) 6 dmax(O) 6 1
2 dimO and dmax(O) = 1

2 dimO if and only if O is
Richardson. It is also interesting to study maximal and minimal elements of the poset
I(b)O and, we notice that if O is induced from a nilpotent orbit O′ in a Levi subalgebra
l, then the maximal elements of I(bl)O′ yield maximal elements of I(b)O (Lemma 4.3).

We say that O is extreme if dmin(O) = dDy(O). Using a general formula for dmin(O)
suggested by Sommers, see Equation (5.1), and verified case-be-case in [5, 8, 12], we
provide two characterisations of the extreme orbits (Proposition 5.2) and classify them
in all simple Lie algebras. It is easily seen that the principal nilpotent orbit Opr and
the minimal nilpotent orbit Omin are always extreme. An intriguing a posteriori fact
is that if the highest root of g is fundamental, then there are exactly three extreme
orbits: Opr, Omin, and yet another one, which is said to be intermediate and denoted
Oimd (Theorem 6.6). Moreover, the intermediate orbits admit a uniform description
via the principal nilpotent orbit in the Levi subalgebra associated with the highest root
(Proposition 6.5). The highest root is not fundamental if and only if g is of type An or
Cn. The number of nonzero extreme orbits in sp2n is n; and, for sln, this number is at
least [n/2], depending on the parity of n; see Theorem 6.2.

We say that O is lonely if cDy(O) is the only element of I(b)O. Obviously, a lonely
orbit is extreme and, using our classification of extreme orbits, we classify the lonely
orbits in Section 7. It is easily seen that u is the only b-ideal associated withOpr; hence,
Opr is always lonely. A complete description is the following; see Theorem 7.14:

(1) for An (n > 1), Bn (n > 3), and F4, the only lonely orbit is Opr;
(2) for Dn (n > 4), G2, and En (n = 6, 7, 8), the lonely orbits are Opr and Oimd;
(3) for Cn (n > 1), all extreme orbits are lonely.
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In particular, Omin is lonely only for the symplectic Lie algebras. Recall that sl2 = sp2
and here Opr = Omin.

Notation. Associated with our fixed triangular decomposition, there are the following
objects: W is the Weyl group and ∆ is the root system of (g, t). Then ∆+ ⊂ ∆

corresponds to u, Π is the set of simple roots in ∆+, and gγ is the root space
corresponding to γ ∈ ∆. If g is simple, then θ ∈ ∆+ is the highest root. If H ⊂ G
and e ∈ g, then He is the centraliser of e in H and he is the centraliser of e in h = Lie H.

For any S ⊂ Π, p{S} stands for the standard parabolic subalgebra such that S is
exactly the set of simple roots occurring in p{S}nil. Then l{S} is the standard Levi
subalgebra of p{S} (that is, l{S} ⊃ t and Π \ S is the set of simple roots of l{S}). In
particular, p{∅} = g and p{Π} = b.

Algebraic groups are denoted by capital Roman letters and their Lie algebras
are denoted by the corresponding small Gothic letters (and vice versa). Our basic
references for semisimple Lie algebras and their nilpotent orbits are [3, 16].

2. Preliminaries on nilpotent orbits

2.1. sl2-triples, gradings, and centralisers. Recall the Dynkin–Kostant theory on
sl2-triples and nilpotent orbits; see [3, Ch. 3] and [16, Ch. 6, Section 2]. For e ∈ N \ {0},
let {e, h, f } be an sl2-triple (that is, [h, e] = 2e, [e, f ] = h, and [h, f ] = −2 f ). The
semisimple element h determines the Z-grading of g =

⊕
i∈Z g(h; i), where g(h; i) is

the i-eigenspace of ad h in g (hence e ∈ g(h; 2)). Set g(h;>k) =
⊕

i>k g(h; i). Replacing
{e, h, f } with a G-conjugate sl2-triple, we may assume that h is dominant, that is, h ∈ t
and α(h) > 0 for all α ∈ Π. Such a triple is said to be adapted (to the chosen triangular
decomposition of g). Then α(h) ∈ {0, 1, 2} and the weighted Dynkin diagram (= wDd)
is obtained by putting the integers α(h) (α ∈ Π) at the corresponding nodes of the
Dynkin diagram.

If h is dominant, then the subspaces g(h;>k) are B-stable. Moreover, p〈h〉 := g(h;>0)
is a standard parabolic subalgebra, g(h; 0) is a standard Levi subalgebra of p〈h〉, and
pnil
〈h〉 = g(h;>1) ⊂ u. Furthermore, [g(h; 0), e] = g(h; 2) and [p〈h〉, e] = g(h;>2). In terms

of the corresponding connected groups G(h; 0) and P〈h〉, this means that G(h; 0) · e
is dense in g(h; 2) and P〈h〉 · e is dense in g(h;>2). Note also that p〈h〉 = p{Sh}, where
Sh = {α ∈ Π | α(h) > 0}. For an adapted sl2-triple, we have b = b(h; 0) ⊕ g(h;>1), where
b(h; 0) = b ∩ g(h; 0) is a Borel subalgebra of g(h; 0).

An element e ∈ N (or orbit G · e) is even if the eigenvalues of ad h are even. It is
equivalent to g(h; 1) = 0 or [p〈h〉, e] = pnil

〈h〉. Since dim ge = dim g(h; 0) + dim g(h; 1) and
dim g(h; i) = dim g(h;−i), we have dim g(h;>2) = (dimO − dim g(h; 1))/2. Therefore,
O is even if and only if dim g(h;>2) = 1

2 dimO.

2.2. Induced and Richardson orbits. Let O = G · e be a nilpotent orbit in g. Let p
be a parabolic subalgebra of g, l a Levi subalgebra of p, and O′ = L · e′ a nilpotent L-
orbit in [l, l]. Then O is said to be induced from (O′, l, p) if O is dense in G · (e′ + pnil).
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Basic results on the induction of nilpotent orbits can be found in [3, Ch. 7]. This
construction depends only on (the conjugacy class of) l. That is, if p̃ is another
parabolic subalgebra with the same Levi subalgebra l, then the dense G-orbits in
G · (e′ + pnil) and G · (e′ + p̃nil) coincide. Therefore, one can omit p from the notation
and denote the induced orbit by O = Indg

l
(O′). Furthermore,

dimO = dimO′ + 2 dim pnil = dimO′ + (dim g − dim l). (2.1)

Equivalently, codimg(O) = codiml(O′). A nilpotent orbit O is Richardson if it
is induced from the zero orbit in some Levi subalgebra (that is, e′ = 0 in the
above construction). Any of the corresponding parabolic subalgebras p is called a
polarisation of O. Then dimO = 2 dim pnil and P · e is dense in pnil. Without loss
of generality, we may always assume that p is standard and hence pnil ⊂ u. An even
nilpotent orbit is Richardson, because one can take p〈h〉 = g(h;>0) as a polarisation.

If O cannot be induced from a proper Levi subalgebra l ⊂ g and some O′ ⊂ l, then
O is said to be rigid. All Richardson and rigid orbits are known and we will freely use
that information in what follows. Namely, Kempken explicitly described induction
in the classical Lie algebras in terms of partitions [9]; see also [3, Ch. 7]. For the
exceptional Lie algebras, the induction was investigated by Elashvili. An account of
his results is given in [14, pages 171–177].

2.3. Orbital varieties. For O ∈ N/G, the irreducible components of O ∩ u are called
the orbital varieties of O. It is known that O ∩ u is of pure dimension 1

2 dimO [13, 15].
If O is Richardson and p is a standard polarisation of it, then pnil ⊂ u ∩ O and
dimpnil = 1

2 dimO in view of (2.1). Therefore, pnil is the closure of an orbital variety of
O. In particular, for the Richardson orbits, the closure of an orbital variety is smooth.
We will prove below that the converse is also true.

2.4. The closure relation. Letting O1 ≤ O2 if O1 ⊂ O2, we make N/G a finite poset.
For the classical Lie algebras, the description of (N/G, ≤) via partitions is due

to Gerstenhaber and Hesselink; see [3, Ch. 6, Section 2]. Explicit results for the
exceptional types are due to Shoji and Mizuno. The corresponding Hasse diagrams are
depicted
in [14, pages 247–250].

3. An upper bound

In this section, we obtain an upper bound on the dimension of a linear subspace
sitting in the closure of a nilpotent orbit. We begin with a preliminary result.

Lemma 3.1. IfO , {0}, then the closure of any orbital variety ofO contains a line of the
form gα, α ∈ Π. In particular, an orbital variety of a nontrivial orbit does not belong
to [u, u].

Proof. For w ∈ W, let wu denote the w-conjugate of u. That is, wu = ⊕γ: w−1γ∈∆+gγ. By
[7, 9.6], the closure of an orbital variety is of the form B · (u ∩ wu) for some w ∈ W.
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The subspace u ∩wu is nonzero if and only if w is not the longest element of W, and in
that case u ∩wu contains a root subspace gα for some α ∈ Π. �

Theorem 3.2. Let O = G · e ⊂ g be a nilpotent orbit and V a subspace in O.

(i) Then dim V 6 1
2 dimO and there is also a B-stable subspace in O of the same

dimension. If V is B-stable, then V ⊂ u.
(ii) If dim V = 1

2 dimO, then O is Richardson; furthermore, if V is B-stable and
dim V = 1

2 dimO, then V = pnil, where p is a standard polarisation of O.

Proof. (i) Consider V as a point in the Grassmannian Grd(g) of d-dimensional
subspaces of g, where d = dim V . By the Borel fixed point theorem, the closure
of B · {V} in Grd(g) contains a B-fixed point {V ′}. Then V ′ is a d-dimensional B-
stable subspace sitting in O. In particular, V ′ is T -stable and nilpotent. Therefore,
V ′ =

⊕
γ∈M g

γ for some M ⊂ ∆. Assume that γ ∈ M ∩ ∆−. Then e−γ ∈ b, e−γ(V ′) ⊂ V ′,

and [e−γ, eγ] is a nonzero semisimple element in V ′. Hence, M ⊂ ∆+ and V ′ ⊂ u ∩ O.
Since dim(u ∩ O) = 1

2 dimO for any nilpotent orbit [13, 15], we conclude that dim V =

dim V ′ 6 1
2 dimO.

(ii) By part (i), we may assume that V itself is B-stable and thereby V ⊂ u ∩ O. If
dim V = 1

2 dimO, then V is the closure of an orbital variety of O. Hence, V 1 [u, u] in
view of Lemma 3.1. Set ΠV = {α ∈ Π | gα ⊂ V} and let p = p{ΠV } be the corresponding
standard parabolic subalgebra. Recall that Π \ ΠV is the set of simple roots of a
standard Levi subalgebra l{ΠV } =: l ⊂ p. Let L be the Levi subgroup corresponding
to l. Since V is B-stable, we have V ⊃ pnil. Hence, V = (V ∩ l) ⊕ pnil and Vl = V ∩ l is
a B ∩ L-stable subspace of ul := u ∩ l.

Let Ol be the dense L-orbit in L ·Vl. Then Vl ⊂ O and the above description shows
that O = Indg

l
(Ol). Hence,

2 dim V = dimO = dimOl + 2 dim pnil.

Since dimOl = 2(dim V − dimpnil) = 2 dim Vl, we see that Vl is the closure of an orbital
variety of Ol. By the very construction of ΠV , Vl does not contain simple roots of l;
hence, Vl ⊂ [ul, ul]. It then follows from Lemma 3.1 that Ol = {0} and hence Vl = {0}.
Thus, V = pnil and we are done. �

We provide below some nice-looking consequences of this theorem.

Corollary 3.3. If V ⊂ N is B-stable, then dim G ·V > 2 dim V. Moreover, the equality
holds if and only if V = pnil for a standard parabolic subalgebra p.

Corollary 3.4. For a nilpotent orbit O, the following properties are equivalent:

(i) O is Richardson;
(ii) there is an orbital variety of O whose closure is smooth;
(iii) there is an orbital variety of O whose closure is an affine space.

https://doi.org/10.1017/S1446788718000071 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000071


[6] Nilpotent subspaces and nilpotent orbits 109

Proof. (i)⇒ (ii) We already noticed that if p is a standard polarisation of O, then pnil

is the closure of an orbital variety of O.
(ii)⇒ (iii) Since O is a cone, the closure of any orbital variety X is an affine conical

variety with vertex {0} (that is, if x ∈ X and t ∈ C, then tx ∈ X). As is well known (and
easily seen), an affine conical smooth variety is necessarily an affine space.

(iii)⇒ (i) This is proved in Theorem 3.2(ii). �

Set d̄O = max{dim V | V ⊂ O & V ∩ O , ∅} = max{dim V | G ·V = O} and dO =

max{dim V | V ⊂ O}. Then dO = max
O′⊂O

d̄O′ , dO 6 1
2 dimO, and an obvious consequence

of Theorem 3.2 is the following corollary.

Corollary 3.5. The orbit O ⊂ N is Richardson if and only if d̄O = dO = 1
2 dimO.

For the non-Richardson orbits, we have d̄O 6 dO < 1
2 dimO, and it is not known to

the authors what is the precise value of dO and whether it is always true that d̄O = dO.

Example 3.6.
(a) For g = sln, the nilpotent orbits are parametrised by the partitions of n. Let

λ = (λ1, . . . , λt) be such a partition and O(λ) the corresponding orbit. That is, λ1, . . . , λt
are the sizes of blocks in the Jordan normal form for e ∈ O(λ). Let λ̂ = (c1, . . . , cm) be
the dual partition. By [6, Theorem 2], if V ⊂ O(λ), then

dim V 6
1
2

(
n2 −

m∑
j=1

c2
j

)
=

1
2

dimO(λ) .

It is also shown in [6] that this upper bound on dim V is achieved for any λ. Since all
nilpotent orbits in sln are Richardson [3, 7.2], our Theorem 3.2 is a generalisation of
that classical result of Gerstenhaber to arbitrary semisimple Lie algebras.

(b) For g = sp2n (respectively g = son), the nilpotent orbits correspond to the
partitions λ of 2n (respectively n) such that each odd (respectively even) part occurs
an even number of times [3, 5.1]. (Recall also that if λ is very even in the orthogonal
case, that is, all λi are even, then there are two different corresponding S On-orbits.) In
both cases, not all nilpotent orbits are Richardson. Therefore, the dimension formula
for O(λ) [3, Corollary 6.1.4] does not provide a precise upper bound on dim V for all
orbits.

4. Posets of B-stable nilpotent subspaces

Let I(b) denote the set of all B-stable subspaces (=b-ideals) of u (also called ad-
nilpotent ideals). It is a finite poset with respect to inclusion and there is a rich
combinatorial theory related to I(b) that we do not touch upon here; see [1, 2]. Any
c ∈ I(b) is a sum of root spaces and we write ∆(c) for the respective set of positive
roots. That is, γ ∈ ∆(c) if and only if gγ ⊂ c. A usual partial order ‘4’ in ∆+ is defined
by the condition that γ 4 µ if and only if µ − γ is a nonnegative linear combination of
simple roots. Then ∆(c) is an upper ideal of (∆+,4) and therefore it is fully determined
by its subset of minimal elements with respect to ‘4’.
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If c ∈ I(b), then G · c is closed and thereby is the closure of a nilpotent orbit. The
b-ideals c1, c2 are equivalent if G · c1 = G · c2. The equivalence classes are parametrised
by the nilpotent orbits and I(b)O stands for the class associated with O ⊂ N. That
is, I(b)O = {c ∈ I(b) | G · c = O}. Clearly, I(b)O is a subposet of I(b) and, by
Theorem 3.2(i), it is also the set of all B-stable subspaces in O that meet O. The
classes I(b)O have first been considered by Sommers [12]. For c ∈ I(b)O, we also say
that (the b-ideal) c is associated with O.

If {e, h, f } is an adapted sl2-triple (e ∈ O), then the b-ideal g(h; >2) belongs to
I(b)O; see 2.1. Hence, I(b)O is nonempty for any O. Following [12], we say that
cDy(O) := g(h;>2) is the Dynkin ideal associated with O = G · e (and an adapted sl2-
triple {e, h, f }).

Given O ∈ N/G, we consider the following numbers related to I(b)O:

• dmin(O) = min{dim c | c ∈ I(b)O};
• dDy(O) = dim cDy(O), the dimension of the Dynkin ideal;
• dmax(O) = max{dim c | c ∈ I(b)O}.

Note that the definition of dO and d̄O in Section 3 exploits arbitrary nilpotent subspaces
V , whereas here we only allow B-stable subspaces. Obviously, dmax(O) 6 d̄O. Hence,

dmin(O) 6 dDy(O) 6 dmax(O) 6 d̄O 6 dO 6 1
2 dimO. (4.1)

It follows from Theorem 3.2 that dmax(O) = 1
2 dimO if and only if O is Richardson.

Furthermore, as noted in Section 2.1, dDy(O) = 1
2 dimO if and only if O is even. As

we shall see in Section 8, it can happen that O1 ⊂ O2, but dmax(O1) > dmax(O2). The
reason is that if V ⊂ O, V ∩ O , ∅, and V ′ is a B-stable subspace in the closure of
B · {V} in the Grassmannian Grdim V (g) (see proof of Theorem 3.2), then it is possible
that V ′ ∩ O = ∅. That is, it can happen that dmax(O) is considerably less that dO.
However, the following is true.

Proposition 4.1. For any O ∈ N/G, we have dO = max
O′ ⊂O

dmax(O′).

Proof. If V ⊂ O and V ′ is a B-stable subspace in the closure of B · {V}, then dim V =

dim V ′ and V ′ is associated with one of the G-orbits in O. �

Unfortunately, dmax(O) is not easily computable for non-Richardson orbits.
Therefore, this does not provide a quick way to compute dO for all nilpotent orbits.

Example 4.2. If p is a standard polarisation ofO ∈ N/G, then pnil ∈ I(b)O and dimpnil =

dmax(O). Moreover, all elements of I(b)O of maximal dimension are of this form
(Theorem 3.2(ii)). But there can exist other maximal elements of the poset I(b)O
having a smaller dimension. For instance, if λ = (2, 2, 1, 1) for sl6, then λ̂ = (4, 2),
dimO(λ) = 16, and dmax(O(λ)) = 8. But I(b)O(λ) also contains a maximal b-ideal of

dimension 5. The two nilradicals associated with O(λ) are and , while the
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five-dimensional ideal is (in the usual upper-triangular matrix form). However,
we are not aware of examples of O such that I(b)O contains a minimal element of a
nonminimal dimension.

If O is not rigid, for example O = Indg
l
(O′) for some O′ ⊂ l, then the knowledge of

associated bl-ideals for O′ provides significant information on I(b)O.

Lemma 4.3. Let p be a standard parabolic subalgebra of g, l a standard Levi
subalgebra of p, O′ ⊂ l a nilpotent L-orbit, and O = Indg

l
(O′). Then bl = b ∩ l is a

Borel subalgebra of l and, if c′ ∈ I(bl)O′ , then c′ ⊕ pnil ∈ I(b)O. Moreover, if c′ is a
maximal element of I(bl)O′ , then c′ ⊕ pnil is a maximal element of I(b)O.

Proof. The first assertion readily follows from the definition of induction. We have
only to check the last assertion. If c̃ ∈ I(bl) and c′  c̃, then c̃ is associated with a
larger nilpotent L-orbit Õ, since c′ was maximal. Then Equation (2.1) shows that
dim Indg

l
(Õ) > dimO. Hence, c̃ ⊕ pnil is not associated with O. �

Remark 4.4. It is important in Lemma 4.3 that one can use different standard
parabolics p with conjugate Levi subalgebras. This yields different nilradicals pnil

and hence different (maximal) elements of I(b)O.

It follows from Lemma 4.3 that if O is induced from (l,O′), then

dmax(O) > dmax(O′) + dim pnil = dmax(O′) + 1
2 (dim g − dim l).

However, there can be several different ways to induce O from a smaller orbit (that is,
several essentially different pairs (l,O′)) and the numbers dmax(O′) + dimpnil can differ
for different pairs. Computations related to this observation suggest the following
assertion.

Conjecture 4.5. If O is not rigid, then there is always a pair (l,O′) such that O =

Indg
l
(O′) and dmax(O) = dmax(O′) + dim pnil.

If true, this assertion would reduce the problem of finding dmax(O) to the rigid orbits.
(However, we do not know yet how to determine dmax(O) for the rigid orbits.) Another
simple but useful observation is the following lemma.

Lemma 4.6. Given O ∈ N/G, suppose that c ∈ I(b)O contains simple root spaces gα

(α ∈ S) for some S ⊂ Π. ThenO is induced from a nilpotent orbit in the Levi subalgebra
l{S} of the parabolic subalgebra p{S}.

Proof. Since c is b-stable and gα ⊂ c for all α ∈ S, we have gγ ⊂ c whenever γ ∈ ∆+

has a positive α-coordinate for some α ∈ S, that is, γ < α. That is, p{S}nil ⊂ c. Let
l{S} be the standard Levi subalgebra of p{S}. As in the proof of Theorem 3.2, we have
c = p{S}nil ⊕ c′, where c′ is a nilpotent b ∩ l{S}-stable subspace of l{S}. IfO′ is the dense
orbit in L{S} · c′, then O = Indg

l
(O′). �

Corollary 4.7. The orbit O ∈ N/G is rigid if and only if c ⊂ [u, u] for any c ∈ I(b)O.
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5. Extreme orbits

Definition 5.1. A nilpotent orbit O = G · e is said to be extreme if dmin(O) = dDy(O).

Let B(Ge) be a Borel subgroup of the centraliser Ge. If c ∈ I(b)O and e ∈ c ∩ O, then
dim c > dim B · e > dim B − dim B(Ge). Hence, dmin(O) > dim B − dim B(Ge). It was
conjectured in [12, Conjecture 5.4] that

dmin(O) = dim B − dim B(Ge). (5.1)

This was verified for the exceptional simple Lie algebras in [8] (see also [12]) and for
the classical Lie algebras in [5]. That is, Equation (5.1) is completely proved via a
case-by-case verification. It might be very interesting to have a conceptual proof of
this equality.

Using properties of Z-gradings associated with sl2-triples, we derive from
Equation (5.1) some practical characterisations of the extreme orbits and classify them.

Proposition 5.2. Let {e, h, f } be an sl2-triple and O = G · e. Then:

(i) dim g(h; 2) + rk Ge > rk G and O is extreme if and only if

dim g(h; 2) + rk Ge = rk G; (5.2)

(ii) O is extreme if and only if the derived group of G(h; 0) acts trivially on g(h; 2).

Proof. (i) Let Ge = Gred
e ×Gu

e be a Levi decomposition (semidirect product), that is, Gu
e

(respectively Gred
e ) is the unipotent radical (respectively a maximal reductive subgroup)

of Ge. Then rk Gred
e = rk Ge and

dim B(Ge) = dim B(Gred
e ) + dim Gu

e . (5.3)

Without loss of generality, we may assume that Gred
e is the stabiliser of e in G(h; 0)

[3, 3.7]. Recall that dim Ge = dim g(h; 0) + dim g(h; 1) and also

dim Gu
e = dim g(h; 1) + dim g(h; 2). (5.4)

Therefore,

dDy(O) =
dim G− dim g(h;0)−2 dim g(h;1)

2
=

dim G− dim Ge− dim g(h;1)
2

and

0 6 dDy(O)−dmin(O) =
dim G− dim Ge− dim g(h;1)

2
− dim B+ dim B(Ge)

= −
dim T + dim g(h; 1)

2
+ dim B(Ge) −

dim Ge

2

=
(5.3)

dim Gu
e + rk Ge− dim T− dim g(h;1)

2
=

(5.4)

dim g(h;2) + rk Ge− dim T
2

.
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(ii) Alternatively, we can write dDy(O)=(dim G+ dim g(h;0))/2− dim Ge and then
similar transformations show that

0 6 dDy(O) − dmin(O) =
dim g(h; 0) − dim T

2
− (dim Ge − dim B(Ge))

= dim U(G(h; 0)) − dim U(Gred
e ),

where U(·) stands for a maximal unipotent subgroup. Because Gred
e = G(h;0)e ⊂

G(h;0), the equality dDy(O) = dmin(O) exactly means that the derived group of G(h; 0)
is contained in Gred

e . �

Remark 5.3. The property of being extreme is equivalent to that g(h; 2) has an open
T -orbit; that is, the roots of g(h; 2) are linearly independent. For the extreme orbits, the
Dynkin ideal g(h;>2) is both a minimal element and an element of minimal dimension
in the poset I(b)O. But I(b)O may also contain some other b-ideals of minimal
dimension.

Using Equations (5.3) and (5.4), one obtains for e ∈ O ∩ g(h; 2),

dmin(O) = dim B − dim B(Ge) = dim B − dim B(Gred
e ) − dim Gu

e

= dim B(h; 0) + dim g(h;>1) − dim B(Gred
e ) − dim g(h; 1) − dim g(h; 2)

= dim B(h; 0) − dim B(Gred
e ) + dim g(h;>3)

6 dim B(h; 0) · e + dim g(h;>3). (5.5)

This suggests the following approach to proving Equation (5.1) and also a more
precise (conjectural) statement. In order to obtain a b-ideal of minimal dimension
in I(b)O, we attempt to reduce g(h; 2), while keeping g(h;>3) intact. If e ∈ O ∩ g(h; 2)
is such that B(h; 0)e is a Borel subgroup of G(h; 0)e = Gred

e , then B(h; 0) · e has the
minimal dimension among all B(h; 0)-orbits in O ∩ g(h; 2) and the equality holds in
Equation (5.5). Furthermore, if one can find e such that B(h; 0) · e is a subspace, then
B(h; 0) · e ⊕ g(h;>3) is a required b-ideal forO. This provides our conjectural assertion.

Conjecture 5.4. Let g =
⊕

i∈Z g(h; i) be the grading associated with an sl2-triple
{e, h, f }. Let B(h; 0) be a Borel subgroup of G(h; 0). Then there is a B(h; 0)-orbit
of minimal dimension in G · e ∩ g(h; 2) whose closure is a subspace of g(h; 2).

Using the Jordan normal form, we can prove this conjecture for g = sln. However,
our proof does not readily generalise to the other classical series. Therefore, we omit it.

6. Classification of the extreme orbits

Our next goal is to classify the extreme orbits in all simple Lie algebras. Clearly,
the trivial orbit O = {0} is extreme, with dDy(O) = dmin(O) = 0. We describe below all
nontrivial extreme orbits.

Example 6.1. The principal Opr and minimal Omin nilpotent orbits are extreme. The
corresponding values are:
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• Opr: dim g(h; 2) = rk G, rk Ge = 0;
• Omin: dim g(h; 2) = 1, rk Ge = rk G − 1.

Theorem 6.2.
(i) For An, the extreme orbits O(λ) correspond to the following partitions:

– if g = sl2n, then λ = (2m, 12n−2m) with m = 0, 1, . . . , n;
– if g = sl2n+1, then λ = (2m, 12n+1−2m) with m = 0, 1, . . . , n or

λ = (m, 2n + 1 − m) with m = n + 1, . . . , 2n or λ = (2n + 1).

(ii) For Cn, the extreme orbits O(λ) correspond to the partitions λ = (2m, 12n−2m)
with m = 0, 1, . . . , n.

Proof. Recall that {e,h, f } is an sl2-triple and e ∈ O(λ). Let R(d) be the simple 〈e,h, f 〉-
module of dimension d + 1. The h-weights in R(d) are d, d−2, . . . , 2−d,−d, that is, the
h-weight ‘2’ occurs if and only if d is even.

(i) It is harmless but notationally more convenient to replace sln with gln. Then
G = GLn. If λ = (λ1, . . . , λt), then rk Ge = t and

gln =

t⊕
i, j=1

R(λi − 1) ⊗ R(λ j − 1)

as an 〈e, h, f 〉-module. The Clebsch–Gordan formula implies that the subspace
of h-weight ‘2’ in R(λi − 1) ⊗ R(λi − 1) is of dimension λi − 1. Hence, the sum⊕t

i=1 R(λi − 1) ⊗R(λi − 1) yields a subspace of dimension
∑t

i=1(λi − 1) = rk G − rk Ge
in g(h; 2). Therefore, O(λ) is extreme if and only if neither of the remaining 〈e, h, f 〉-
modules R(λi − 1) ⊗ R(λ j − 1) with i , j has h-weight ‘2’. It is easily seen that the
h-weight ‘2’ occurs exactly in the following cases:

(a) both λi and λ j are even;
(b) both λi and λ j are odd and at least one them is bigger than 1.

Excluding these ‘bad’ possibilities, we obtain the required list of the λ.
(ii) A partition λ = (λ1, . . . , λt) of 2n represents a nilpotent orbit O(λ) = G · e in sp2n

if and only if each part of odd size occurs an even number of times [3, 5.1]. Then

sp2n =

[ t⊕
i=1

S2R(λi − 1)
]
⊕

[⊕
i< j

R(λi − 1) ⊗ R(λ j − 1)
]

as an 〈e, h, f 〉-module. Using the Clebsch–Gordan formula, one verifies that the
subspace of h-weight ‘2’ in S2R(λi − 1) is of dimension [λi/2].

(ii-1) Suppose that all λi are even. Then the sum
⊕t

i=1 S
2R(λi − 1) already yields

a subspace of dimension 1
2
∑
λi = n = rk G in g(h; 2). Here Equation (5.2) is only

satisfied if t = 1, that is, λ = (2n) and e ∈ Opr.
(ii-2) Suppose that all λi are odd. Using a slightly different notation, we can write

λ = ((2m1 + 1)2k1 , . . . , (2ms + 1)2ks ),

https://doi.org/10.1017/S1446788718000071 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000071


[12] Nilpotent subspaces and nilpotent orbits 115

with m1 > · · · > ms > 0. Here Gred
e = Sp2k1

× · · · × Sp2ks
[3, Theorem 6.1.3] and rk Ge =∑s

j=1 k j. Then the sum
⊕t

i=1 S
2R(λi − 1) =

⊕s
j=1 2k j S

2R(2m j) yields a subspace of
dimension

∑s
j=1 2k jm j in g(h; 2). Therefore,

dim g(h; 2) + rk Ge >
s∑

j=1

k j(2m j + 1) = n = rk G.

Furthermore, if m1 > 1, then there is also a nontrivial contribution to g(h; 2) from a
summand of the form R(2m1) ⊗R(2m1). Hence, the only possibility for Equation (5.2)
to hold is s = 1 and m1 = 0, that is, λ = (12n) and e = 0.

(ii-3) The general case. Separating the even and odd parts of λ, we can write
λ = (λev; λodd), which yields a decomposition

e = e′ + e′′ ∈ sp(V ′) ⊕ sp(V ′′) ⊂ sp(V),

where V = V ′ ⊕ V ′′ and dim V = 2n. Here e′ ∈ O(λev) ⊂ sp(V ′) and e′′ ∈ O(λodd) ⊂
sp(V ′′). Using the equality of sp(V ′) ⊕ sp(V ′′)-modules

sp(V) ' S2(V) = S2(V ′) ⊕ S2(V ′′) ⊕ (V ′ ⊗ V ′′) ' sp(V ′) ⊕ sp(V ′′) ⊕ (V ′ ⊗ V ′′),

one readily sees that if O(λ) is extreme, then so are O(λev) and O(λodd). Then
combining parts (ii-1) and (ii-2) shows that e′ is principal in sp(V ′) and e′′ = 0.
Therefore, if dim V ′ = 2m, then λ must be of the form (2m, 12n−2m) and this is also
sufficient for O(λ) to be extreme. �

Remark 6.3. The partitions in Theorem 6.2 include those corresponding to Opr and
Omin.

sln : Opr = O(n), Omin = O(2, 1n−2),
sp2n : Opr = O(2n), Omin = O(2, 12n−2).

Theorem 6.4. Let g be an orthogonal Lie algebra.

(i) For type Bn, the nontrivial extreme orbits O(λ) correspond to the following
partitions λ:

• (2, 2, 12n−3) [Omin];
• (2n − 3, 2, 2) [‘intermediate’ orbit];
• (2n + 1) [Opr].

(ii) For type Dn, the nontrivial extreme orbits O(λ) correspond to the following
partitions λ:

• (2, 2, 12n−4) [Omin];
• (2n − 5, 2, 2, 1) [‘intermediate’ orbit];
• (2n − 1, 1) [Opr].
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Proof. Recall that a partition λ = (λ1, . . . , λt) of n represents a nilpotent orbit O(λ) =

G · e in son if and only if each part of even size occurs an even number of times [3,
5.1]. Then

son =

[ t⊕
i=1

∧2R(λi − 1)
]
⊕

[⊕
i< j

R(λi − 1) ⊗ R(λ j − 1)
]

as an 〈e, h, f 〉-module. Using the Clebsch–Gordan formula, one verifies that the
subspace of h-weight ‘2’ in ∧2R(λi − 1) is of dimension [(λi − 1)/2]. The subsequent
argument exploits the same approach as the proof of Theorem 6.2(ii). Therefore, we
omit computational details in the rest of the proof.

First, we determine all possible partitions whose all parts are odd. The output is
(1, . . . , 1), or (2n + 1) for Bn, or (2n − 1, 1) for Dn.

Second, we determine all possible partitions whose all parts are even. The only
output here is λ = (2, 2).

Third, using the separation λ = (λev;λodd) and combining the above two possibilities
yields exactly the partitions in the formulation. �

Suppose that g is simple and let θ ∈ ∆+ be the highest root. Consider the root
subsystem ∆(0) = {γ ∈ ∆ | (γ, θ) = 0} and the corresponding Levi subalgebra l = t ⊕
(
⊕

γ∈∆(0) g
γ). Let ẽ be a principal nilpotent element of l.

Proposition 6.5. If θ is fundamental, then the G-orbit Õ = G · ẽ is extreme, with
rk Gẽ = 1.

Proof. Since θ is fundamental, there is a unique β ∈ Π such that (β, θ) , 0 and such β is
long. In particular, Π \ {β} ⊂ ∆(0) and rk ∆(0) = rk ∆ − 1. Let {eθ, h, fθ} be an sl2-triple
containing eθ ∈ gθ and fθ ∈ g−θ. For the Z-grading of g determined by h,

g =

2⊕
i=−2

g(h; i), g(h; 0) = l, g(h; 2) = gθ = 〈eθ〉.

Here l = [l, l] ⊕ 〈h〉, g(h;>0) = p{β} is the maximal parabolic subalgebra corresponding
to β, and p{β}nil is a Heisenberg Lie algebra. Let {ẽ, h̃, f̃ } be a principal sl2-triple in
[l, l]. Since [l, l] is the reductive part of the centraliser of eθ, the two sl2-triples under
consideration (pairwise) commute. Without loss of generality, we may also assume
that h̃ ∈ t ⊂ l and α(h̃) = 2 for all α ∈ Π \ {β}.

Since ẽ is principal in l, the h̃-weights in l = g(h; 0) are even. If l =
⊕

i∈Z l(h̃; 2i),
then l(h̃; 0) = t and l(h̃; 2) =

⊕
α∈Π\{β} g

α. On the other hand, g(h; 1) is a symplectic
simple [l, l]-module. Since the triple {ẽ, h̃, f̃ } ⊂ [l, l] is principal, the h̃-weights in g(h; 1)
are odd. Recall that [h̃, eθ] = 0. Therefore, g(h̃; 0) = g−θ ⊕ t ⊕ gθ and dim g(h̃; 2) =

dim l(h̃; 2) = dim t − 1. It follows that gred
ẽ = 〈eθ, h, fθ〉 and rk Gẽ = 1.

Thus, rk Gẽ + dim g(h̃; 2) = rk G and we are done. �

The orbits considered in Proposition 6.5 are said to be intermediate and denoted by
Oimd. One easily verifies that the ‘intermediate’ orbits of Theorem 6.4 coincide with
those occurring in Proposition 6.5 in the orthogonal case.
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Table 1. The intermediate orbits in the exceptional Lie algebras.

Alg. Oimd wDd of Oimd dimOimd d(h; 1) d(h; 2) rk Ge dDy

G2 Ã1 1W0 8 2 1 1 3
F4 C3 2–1⇐0–1 42 4 3 1 19

E6 A5
2–1–0

1

–1–2
64 6 5 1 29

E7 D6
2–2–1–0

1

–1–2
118 6 6 1 56

E8 E7
2–2–2–1–0

1

–1–2
232 6 7 1 113

Theorem 6.6. If g is simple and the highest root θ is fundamental (that is, g , sln
or sp2n), then there are exactly three nontrivial extreme orbits: Opr, Omin, and the
intermediate orbit Oimd.

Proof. For the series Bn (n > 3) and Dn (n > 4), this follows from Theorem 6.4. For
the exceptional simple Lie algebras, one consults Elashvili’s tables in [4]. Those tables
include all the required information: the dimension of g(h; 2) and the description of
Gred

e for all nilpotent orbits. �

In Table 1, d(h; i) = dim g(h;i), i = 1, 2, and dDy = dDy(Oimd). The second column
contains the usual notation for nilpotent orbits in the exceptional Lie algebras
(see [3, 8.4]) and the third column shows the weighted Dynkin diagram (=wDd) of
Oimd.

7. Lonely orbits

Definition 7.1. A nilpotent orbit O is said to be lonely if #(I(b)O) = 1. In other words,
the Dynkin ideal is the only element of I(b)O.

Clearly, a lonely orbit is extreme. Therefore, to classify the lonely orbits, one has to
explore the explicit list of extreme orbits from Section 6.

Example 7.2. The principal nilpotent orbit Opr is always lonely, since u is the only
element of I(b)Opr .

Lemma 7.3. If there is a long root α ∈ Π such that (α, θ) , 0 and α , θ, then Omin is
not lonely.

Proof. Clearly, the root space gθ is the only minimal element of I(b)Omin . Moreover,
if α is long and α , θ, then the two-dimensional b-ideal 〈gθ, gθ−α〉 also belongs to
I(b)Omin . �

This lemma applies to the minimal orbits in all simple Lie algebras except sp2n
(n > 1). Note that sp2 = sl2.
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Lemma 7.4. If O ⊂ N is Richardson, but not even, then it is not lonely.

Proof. SinceO ⊂ N is Richardson, dmax(O) = 1
2 dimO. IfO is not even, then g(h; 1) , 0

and hence dmax(O) − dDy(O) = 1
2 dim g(h; 1) > 0. �

Lemma 7.4 applies to all noneven orbits in sln, but a stronger assertion is true.

Proposition 7.5. In g = sln, the only nonzero lonely orbit is Opr.

Proof. Here all nonzero orbits O(λ) are Richardson. If p is a standard polarisation of
O(λ), then pnil ∈ I(b)O(λ). Therefore, if O(λ) is lonely, then it has a unique standard
polarisation. This means that all the diagonal blocks of p must be equal, that is, λ is
rectangular. However, O(λ) must also be extreme. Comparing with Theorem 6.2(i),
we get only two possibilities: either λ is a single row (that is, O(λ) = {0}) or λ is a
single column (that is, O(λ) = Opr). �

Example 7.6. For types Bn (n > 3) and F4, the intermediate orbits are Richardson and
not even. Hence, they are not lonely. In both cases, the semisimple part of l is of type
A2. The wDd ofOimd(F4) is given in Table 1 and the wDd ofOimd(Bn) is (2 . . . 2︸︷︷︸

n−3

10⇒1).

Thus, for An (n > 1), Bn (n > 3), and F4, the only lonely orbit is Opr.

7.1. Lonely orbits in the symplectic Lie algebra. We use the embedding sp2n ⊂

sl2n such that

sp2n =

{(
A B

C −Â

)
| A,B,C ∈ gln, B = B̂,C = Ĉ

}
, (7.1)

where A 7→ Â is the transpose with respect to the antidiagonal. Then our fixed
Borel subalgebra b(sp2n) is the set of symplectic upper-triangular matrices. For the
roots of sp2n, we use the standard notation in which Π = {α1 = ε1 − ε2, . . . , αn−1 =

εn−1 − εn, αn = 2εn}.
Let Om(n) denote the extreme orbit in sp2n that corresponds to λ = (2m, 12n−2m),

1 6 m 6 n. In particular, O1(n) = Omin and On(n) = Opr. Our goal is to prove that all
these orbits are lonely. Before starting the proof, we gather some relevant data.

1o. For m < n, the wDd of Om(n) is (2 . . . 2︸︷︷︸
m−1

1 0 . . . 0⇐0︸     ︷︷     ︸
n−m

). For m = n, we have

On(n) = Opr and hence wDd is (2 . . . 2⇐2). The orbit Om(n) consists of (symplectic
nilpotent) 2n × 2n matrices of rank 2m − 1.

2o. Using the above weighted Dynkin diagram, one readily determines the Z-
grading associated with {e,h, f }, where e ∈ Om(n). For instance, dim g(h; 1) = 2n − 2m,
dim g(h; 2) = m, and dDy(Om(n)) = dim g(h;>2) = (m − 1)(2n − m + 1) + 1.

3o. The orbit Om(n) is rigid if and only if m = 1 and, for m > 2, Om(n) is induced
from (Cn−1,Om−1(n−1)). Note that sp2n contains a unique standard Levi subalgebra
of (semisimple) type Ck with k < n and hence the above induction is well defined.
Expanding the chain of induction, we see that Om(n) is induced from the rigid orbit
Omin = O1(n −m + 1) in the unique Levi subalgebra l ⊂ sp2n such that [l, l] = sp2(n−m+1).

https://doi.org/10.1017/S1446788718000071 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000071


[16] Nilpotent subspaces and nilpotent orbits 119

Figure 1. The Dynkin ideal for the extreme orbit Om(n) in sp2n.

Actually, the pair (Cn−m+1,O1(n − m + 1)) represents the only possibility to obtain
Om(n) via induction from a rigid orbit in a Levi subalgebra of sp2n.

Lemma 7.7. The extreme orbit O1(n) is lonely.

Proof. For sp2n, α1 = ε1 − ε2 is the only simple root that is not orthogonal to θ = 2ε1,
and α1 is short. Since O1(n) consists of matrices of rank 1 and the unique two-
dimensional b-ideal 〈gθ, gθ−α1〉 contains matrices of rank 2, the root space gθ is the
only b-ideal associated with O1(n). �

Since On(n) is always lonely, this implies that all extreme orbits for n = 1, 2 are
lonely.

Theorem 7.8. The extreme orbits Om(n) are lonely for all m 6 n.

Proof. Arguing by induction on n, we may assume that all orbits Om(n′) with n′ < n
and m 6 n′ are lonely. The cases with n = 1, 2 form the base of induction.

Since On(n) and O1(n) are lonely, we may assume that 1 < m < n. We know that
dmin(Om(n)) = dDy(Om(n)) = (m − 1)(2n −m + 1) + 1. The minimal roots of the Dynkin
ideal cDy(Om(n)) are α1, . . . , αm−1, 2εm. The corresponding root spaces are marked by
‘∗’ in Figure 1. Here 2εm is the highest root of the regular simple subalgebra of type
Cn−m+1 whose simple roots are αm, . . . , αn. This structure of cDy(Om(n)) and Figure 1
visibly demonstrate thatOm(n) is induced from the minimal nilpotent orbit in sp2(n−m+1)
via the use of the standard parabolic subalgebra p{α1, . . . , αm−1}.

Assume that there is another c ∈ I(b)Om(n). Since Om(n) is extreme, we must have
dim c > (m − 1)(2n − m + 1) + 1.
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• If ∆(c) contains a simple root αk, then Om(n) is induced from a nilpotent orbit
in l{αk} = glk ⊕ sp2n−2k; see Lemma 4.6. Since glk has no nontrivial rigid orbits
and the only rigid orbit from which Om(n) can be induced is contained in
sp2(n−m+1), we must have k 6 m − 1 and α1, . . . , αk−1 also belong to ∆(c). Then c =

p{α1, . . . , αk}
nil ⊕ c′, where c′ is an ideal associated with the orbit Om−k(n − k) in

[l{α1, . . . , αk}, l{α1, . . . , αk}] ' sp2(n−k). By the induction assumption, Om−k(n − k)
is lonely. Hence, c′ is necessarily the Dynkin ideal for Om−k(n − k) and then c is
the Dynkin ideal for Om(n).

• It remains to handle the case in which ∆(c) contains no simple roots, that is,
c ⊂ [u, u] =: u′. The dense Sp2n-orbit meeting u′ corresponds to the partition
β = (n, n). For 2m > n, the largest part of β is less than that of λ. Then the
description of the closure relation in N/Sp2n via partitions [3, 6.2] shows that
Om(n) 1 O(β), that is, it cannot meet u′. Hence, c cannot lie in u′ and thereby
Om(n) is lonely whenever m > n/2.

• Finally, we assume that m 6 n/2 and show that if c is a b-ideal such that c ⊂ u′ and
rk A 6 2m − 1 for any A ∈ c, then dim c < (m − 1)(2n − m + 1) + 1 = dDy(Om(n)).
The subsequent argument exploits (1) the chosen matrix form of sp2n and (2) the
fact that ∆(c) is an upper ideal of ∆+.

– If εm − ε j ( j > m + 1) belongs to ∆(c), then c contains a matrix of rank
> 2m. For the same reason, εm + ε j ( j > 2m) does not belong to ∆(c), too.
Therefore, all roots of c are of the form εi − ε j (i 6 m − 1 and j > i) or εi + ε j
(i 6 m − 1) or εs + εt (s 6 t 6 2m − 1).

– If the positive roots ε1 + ε2m, ε2 + ε2m−1, . . . , εm + εm+1 belong to ∆(c),
then c contains a matrix of rank 2m. (These roots are marked by ‘?’ in
Figure 1 and, since the submatrix B in Equation (7.1) is symmetric with
respect to the antidiagonal, this gives rise to 2m nonzero entries.) Hence,
at least one of them does not belong to ∆(c). Take the minimal i such that
εi + ε2m+1−i < ∆(c). Since c is B-stable (that is, ∆(c) is an upper ideal of
(∆+,4)), ∆(c) is contained in(
{εl − ε j | l < j & l 6 i − 1} ∪ {εs + εt | s 6 t 6 2m − i}

)
\ {α1, . . . , αm−1}

and a direct calculation shows that dim c 6 (i − 1)(2n − 2m + (i − 2)/2) +

((2m + 1 − i)(2m − i))/2. Now the desired assertion that dim c < dDy(Om(n))
is implied by the next lemma.

Thus, our assumption that there is another c ∈ I(b)Om(n) leads to a contradiction and
we are done. �

Lemma 7.9. If 1 6 i 6 m 6 n/2 and m > 2, then

(i − 1)
(
2n − 2m +

i − 2
2

)
+

(2m + 1 − i)(2m − i)
2

< (m − 1)(2n − m + 1) + 1.

Proof. The difference of the two quantities in question can be written as (m − i)
[2(n − 2m) + m + i − 1] + i − 1, which is positive. �
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7.2. Lonely orbits in the even orthogonal and exceptional Lie algebras. Write
Oimd(g) for the intermediate orbit in g with the fundamental θ. The algebras of type Dn

(n > 5) and En (n = 6, 7, 8) have a unique standard Levi subalgebra l with [l, l] = so8
and their intermediate orbits are induced from (l,Oimd(so8)). Moreover, this is the only
possibility to induce them from a rigid orbit in a proper Levi subalgebra. Using this
property, we prove below that the intermediate orbits in all Dn and En are lonely. It is
also easily seen directly that Oimd(G2) is lonely.

We use the embedding so2n ⊂ sl2n such that so2n consists of the skew-symmetric
matrices with respect to the antidiagonal. For the simple roots of so2n, we use the
standard notation in which αi = εi − εi+1 (i 6 n − 1) and αn = εn−1 + εn.

Lemma 7.10. The intermediate orbit in so8 is lonely.

Proof. If O = Oimd(so8), then dimO = 16 and dDy(O) = 5. The minimal roots of
∆(cDy(O)) are α1 + α2 + α3, α1 + α2 + α4, and α2 + α3 + α4. This b-ideal is abelian,
that is, [cDy(O), cDy(O)] = 0. The orbit O is spherical [10, Equation (4.4)]. Actually, it
is the maximal spherical nilpotent orbit. By [11, Proposition 4.1], if g is simply laced
and O is spherical, then any element of I(b)O is an abelian b-ideal. Here cDy(O) is a
maximal abelian ideal. There are also three other maximal abelian ideals of dimension
6 (their minimal roots are α1, α3, and α4, respectively) and three other nonmaximal
abelian ideals of dimension 5 (their minimal roots are α1 + α2, α2 + α3, and α2 + α4,
respectively). But all these abelian ideals are associated with smaller nilpotent orbits
(of dimension 12). Hence, cDy(O) is the only element of I(b)O and O is lonely. �

Set On = Oimd(so2n), n > 4. We know that O4 is lonely and On corresponds
to the partition λn = (2n − 5, 2, 2, 1). The wDd of On is 2– · · · –2–1–0

1

–1 and the

minimal roots of ∆(cDy(On)) are α1, . . . , αn−4, αn−3 + αn−2 + αn−1, αn−3 + αn−2 + αn,
and αn−2 + αn−1 + αn.

This structure of cDy(On) in Figure 2 visibly demonstrates that On is induced from
(so8,O4) via the use of the standard parabolic subalgebra p{α1, . . . , αn−4}. The central
square represents so8 and the three marked roots inside it are the minimal roots of
cDy(O4). Using the wDd or Figure 2, one computes that dDy(On) = n2 − n − 7 (n > 4).

Proposition 7.11. If O5 is lonely, then so are all On with n > 6.

Proof. Arguing by induction on n, we may assume that O4, . . . ,On−1 are lonely and
n > 6. Suppose that c ∈ I(b)On .

• If ∆(c) contains an αk ∈ Π, then On is induced from a nilpotent L{αk}-orbit O′

in l{αk} = glk ⊕ so2n−2k; see Lemma 4.6. Since glk has no nontrivial rigid orbits
and the only rigid orbit from which On can be induced is contained in the unique
standard Levi subalgebra of semisimple type D4, we must have k 6 n − 4 and
α1, . . . , αk−1 also belong to ∆(c). Then c = p{α1, . . . , αk}

nil ⊕ c′, where c′ is an
ideal associated with On−k in [l{α1, . . . , αk}, l{α1, . . . , αk}] ' so2(n−k) and n−k > 4.
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Figure 2. The Dynkin ideal for the extreme orbit On = Oimd(so2n).

By the induction assumption, On−k is lonely. Hence, c′ is the Dynkin ideal for
On−k and then c is the Dynkin ideal for On.

• Assume that c ⊂ u′ := [u, u]. The dense orbit in S O2n · u
′ corresponds to the

partition

β =

(2m − 1, 2m − 1, 1, 1) if n = 2m,
(2m + 1, 2m − 1, 1, 1) if n = 2m + 1.

For n > 6, the largest part of β is less than that of λn. Then the description of the
closure relation in N/S O2n via partitions [3, 6.2] shows that On 1 O(β), that is,
On cannot meet u′. Hence, c cannot lie in u′ and thereby On is lonely whenever
n > 6. �

To complete the so2n-case, we have only to prove the following assertion.

Lemma 7.12. The intermediate orbit O5 in so10 is lonely.

Proof. Let c ∈ I(b)O5 . Repeating the argument of Proposition 7.11, we conclude that
either c = cDy(O5) or c ⊂ u′. For n = 5, the partition for the dense S O10-orbit in u′

is (5, 3, 1, 1) and the partition for O5 is (5, 2, 2, 1). Hence, O5 does meet u′. Here
dim u′ = 15 and dDy(O5) = 13. Therefore, dim c > 13 and one verifies directly that
all B-stable subspaces of u′ of dimensions 13 and 14 are associated with some other
orbits. �

Proposition 7.13. The intermediate orbits in En (n = 6, 7, 8) are lonely.

Proof. The sequence E5 = D5,E6,E7,E8 can be regarded as an ‘exceptional series’,
via the natural inclusions of the Dynkin diagrams. We argue by induction on n, using
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Lemma 7.12 as the base. As in Theorem 7.8 or Proposition 7.11, in all three cases,
the uniqueness of induction from a rigid orbit allows us to reduce the problem to the
assertion that an ideal c ∈ I(b)Oimd(g) cannot belong to u′. The dense G-orbits O′ in
G · u′ are:

for E6 : O′ = E6(a3); for E7 : O′ = E6(a1); for E8 : O′ = E8(a4).

The explicit description of the closure relation [14, Tables] shows that, for n = 7
or 8, Oimd(g) does not belong to the closure of O′, which immediately discards
the possibility c ⊂ u′. The situation for E6 is similar to that for D5 (Lemma 7.12).
The orbit Oimd(E6) does belong to the closure of O′. But here dim u′ = 30 and
dDy(Oimd(E6)) = 29; hence, dim c > 29. Then an explicit verification shows that all
B-stable subspaces of u′ of codimension 1 are associated with some other orbits. �

Gathering together the previous results, we obtain the following classification.

Theorem 7.14. For any simple Lie algebra g, the orbit Opr is lonely. Furthermore:

� for An (n > 1), Bn (n > 3), and F4, the only lonely orbit is Opr;
� for Dn (n > 4), En (n = 6, 7, 8), and G2, the lonely orbits are Opr and Oimd;
� all extreme orbits Om(n) in Cn (n > 2) are lonely.

As a by-product of our classifications in Sections 6 and 7, we note the following
property.

Proposition 7.15. If O ∈ N/G and dmin(O) = dmax(O), then O is lonely.

Proof. Indeed, such an O is extreme. And, if O is not lonely, then either it is
Richardson and not even, where Lemma 7.4 applies, or O = Omin with g , sp2n, where
Lemma 7.3 applies. �

This means that the case in which I(b)O consists of several ideals of one and the
same dimension is impossible. It might be interesting to find an a priori explanation.

8. Some anomalies and problems

In this section, we compare the numbers dO and dmax(O) for different nilpotent
orbits. Clearly, if O1 ⊂ O2, then dO1 6 dO2 . Furthermore, if O1 , O2 and O2 is
Richardson, then dO1 6

1
2 dimO1 <

1
2 dimO2 = dO2 . This is a sort of natural behaviour

that one could expect a priori. However, passing to the numbers related to B-stable
nilpotent subspaces, we encounter strange anomalies. For, it can happen that, for one
of the two orbits, dmax(O) is considerably less that dO.

Example 8.1. We provide examples of two orbits O1 ⊂ O2 such that dmax(O1) >
dmax(O2). Using this, we also show that dmax(O2) < dO2 . We first describe a general
idea that allows us to detect such ‘bad’ pairs of nilpotent orbits. Suppose that
dimO2 − dimO1 = 2 and O1 is Richardson, whereas O2 is not. Then

dmax(O2) 6 1
2 dimO2 − 1 = 1

2 dimO1 = dmax(O1).
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Table 2. The Richardson orbits O1 in En related to Example 8.1.2.

Alg. O1 wDd of O1 dimO1 dmax(O1) dmax(O2) dO2

E6 A4 + A1
1–1–0

1

–1–1
62 31 29 31

E7 E7(a4)
2–0–0–2

0

–0–2
116 58 56 58

E8 E8(b4)
2–2–0–0–2

0

–0–2
230 115 113 115

In some cases, one can show that dmax(O2) is strictly less than 1
2 dimO2 − 1, which

leads to the ‘desired’ inequality dmax(O1) > dmax(O2). Moreover, since dmax(O1) 6
dO2 , this also implies that dmax(O2) < dO2 ; see (8.1.2) below. Even if dimO2 −

dimO1 > 4, but dmax(O2) is considerably less than 1
2 dimO2, one can still detect such

a phenomenon; see (8.1.1).
In the examples below, O2 is lonely, so that dmax(O2) = dmin(O2) is known.
(8.1.1) g = so8. Here the intermediate orbit O2 = Oimd corresponds to the partition

(3, 2, 2, 1), dimO2 = 16, and dmax(O2) = 5. The boundary O2 \ O2 has three irreducible
components of codimension 4. The dense orbits in these components are even and they
correspond to the partitions (3, 15) and (24). (There are two different orbits associated
with the very even partition (24).) If O1 is any of these three, then dimO1 = 12
and dmax(O1) = 12/2 = 6. Hence, 6 = dmax(O1) 6 dO2 6

1
2 dimO2 − 1 = 7. Then, by

Proposition 4.1, one actually obtains dO2 = max
O′⊂O2

dmax(O′) = 6 (it cannot be equal to 7,

since O2 is the only G-orbit of dimension > 14 in O2 and dmax(O2) = 5).
(8.1.2) g = En (n = 6, 7, 8) and O2 = Oimd. The information on O2 is presented in

Table 1. The boundary O2 \ O2 is irreducible and of codimension 2, and we take
O1 to be the dense orbit in the boundary. Then O1 appears to be Richardson, and
we present its relevant data in Table 2. Since O2 is not Richardson, we know that
dmax(O1) 6 dO2 6

1
2 dimO2 − 1 = dmax(O1). Therefore, we also obtain the precise value

of dO2 = dmax(O1).

(8.1.3) g = so2n (n > 5) and O2 = Oimd. The corresponding partition is (2n −
5, 2, 2, 1) and dmax(O2) = dDy(O2) = n2 − n − 7. For n > 5, the dense orbits in the
(reducible) boundary O2 \ O2 are O′1 = O(2n − 5, 15) and O′′1 = O(2n − 7, 3, 3, 1).
Both these orbits are even and their codimensions equal 4 and 2, respectively. The
situation with O′1 (respectively O′′1 ) is similar to that in (8.1.1) (respectively (8.1.2)).
In particular, dmax(O′′1 ) 6 dO2 6

1
2 dimO2 − 1 = dmax(O′′1 ). Hence,

n2 − n − 5 = dmax(O′′1 ) = dO2 = 1
2 dimO2 − 1.
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Remark 8.2.
(i) It is curious that, for all Richardson orbits of codimension 2 in Example 8.1 (that

is, O1 in Table 2 and O′′1 for so2n with n > 5), the semisimple part of a polarisation,
[l, l], is always of type A2 + 2A1.

(ii) In the above examples of orbits O2 = Oimd for En and so2n (n > 4), we know
the exact (different) values of dmax(O2) and dO2 . But the intermediate number d̄O2 is
unknown.

Some questions/open problems.

(1) The posets I(b)O, O ∈ N/G, may have many maximal and minimal elements.
However, in all examples known to us, the Hasse diagram of I(b)O appears to be
connected. Is it always the case?

(2) Is it true that all minimal elements of the poset I(b)O are of dimension dmin(O)?
(3) Is it true that d̄O = dO for all O ∈ N/G?
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