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Abstract

Extremal partitions of domains into configurations of certain topological form are studied. The extremal
value of the weighted sum of reduced moduli of circular domains and digons is obtained. These results
are applied to some problems about distortion under bounded conformal maps of the unit disk with two
preassigned values.
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1. Introduction

We start with the problem of extremal partition associated with certain quadratic
differentials in the unit disk. These differentials are allowed to have poles of second
order. The problem of rinding the extremal value of a weighted sum of the reduced
moduli of simply connected domains of the partition is studied in Section 2. We also
are concerned with the reducednnoduli of digons. Then we apply these results to the
problems about distortion under bounded conformal maps of the unit disk with two
preassigned values.

Denote by U(M) the disk {z : \z\ < M) in the complex plane C, t/(l) =: U. We
consider the class MM (<w) of all univalent holomorphic maps / : U —> U(M) (with
M > 1) normalized by conditions/(0) = 0and/(w) = OJ, where co e (0, 1). Among
complex analysts such a kind of normalization is known as the Montel normalization.
Denote by M{u>) := ^°°(u)). Krzyz, Zlotkiewicz and Libera contributed to the
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420 Alexander Vasil'ev [2]

studies of these functions [4-7,12]. In particular, Krzyz and Ziotkiewicz [7] have
found the Koebe set for the class JK(co), that is C\fe^ia)f(U)- Krzyz [4-6] has
defined the set of values of f(z), for z fixed in U, by the variational method. This
study was continued by Reade and Ziotkiewicz [12]. The bounded Montel function
has been studied by Libera and Ziotkiewicz [10], and by the author and Pronin [14—17].
In [10] the sharp estimates of |/ '(0)|, the upper bound of \f (z)\, and the non-sharp
boundary of the Koebe set was obtained. Then, we got the sharp form of the Koebe
set for this class [16], making use of the extremal length method.

We define two canonical functions that play the role of the Koebe function in the
class J?M(co)

= Mk~l IM (jj^) *O(Z)J , K2{z) = Mk.

where kg is the usual Koebe function ke(z) = z(l + ze'e) 2.
From [10] it follows that if/ € JtM{u>), then

( 1 ) < | / ( 0 ) | < .
(M — co)2 (M + co)2

The equality sign is attained by the function Kt for the right-hand inequality and by
the function K2 for the left-hand inequality. It is not difficult to obtain the analogous
estimates for \f'(co)\:

(M + a>)(l-a>) < < (M-co)(l+a>)
(M - co)(l + co) ~ J (M + co)(l - a>)'

with the same extremal functions. Thus, the range Wlf of the system of functional
(l/'(0)|, \f'(co)\) lies within the rectangle defined by the inequalities (1) and (2). In
the class M(co) this problem has been considered in [1]. Section 3, following the
preliminaries in Section 2, is devoted to description of the sharp boundary curve of
this range.

2. Extremal partition by circular domains and digons

2.1. Let D be a hyperbolic simply connected domain and zo 6 D. Denote by
m(D, zo) the usual reduced modulus of the domain D with respect to the point z0.
The domain D with its fixed point zo is called a circular domain. If R(D, zo) is the
conformal radius of D with respect to zo, then m(D, zo) = (l/27r) log R(D, zo) if
|zo| < oo and m(D, oo) = —(l/27r) log R(D, oo) otherwise. The reduced modulus
is changed under a conformal map / by the rule nt(f (D),f (zo)) = m(D,zo) +
(l/27r)log|/'(zb)|when|/(zb)| < oo. If/(z) = a_J(z - Zo)+ao+ai(z-Zo) + - • •,
then m(f (D), oo) = m(D, zo) - (l/2w) log |a_,|.
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2.2. We start with the problem of the extremal partition of the complex plane. Let
So = C \ {0, 1} be the punctured Riemann sphere. We consider on So a pair (y,, y2)
of curves, where yx = {w : \w\ = 1/e} and y2 = [w : \w\ — E}. Here e is sufficiently
small and such that 1 belongs to the doubly connected domain between y, and y2 on C.
Let 35 be the set of all pairs (Du D2) consisting of circular domains of homotopy type
(yi. Yi)- This means that the boundary dDj is freely homotopic to y, on So. Then the
problem of extremal partition of 50 reduces to the problem of finding the maximum
of the sum

(3) a2
1m(Dl,oo) + alm(D2,G),

where (Dx, D2) e 2). Without loss of generality assume a{ = 1, a2 = a, a € [0, oo)
and denote by M(or) the maximum of the sum in (3). From [3,8] it follows that there
is a unique pair (D*, D p which is extremal for this problem. D* and D\ are the
circular domains in the trajectory structure of the differential

Here A and c are some functions with respect to a. If a = 1, then the lengths
of trajectories from D* and D*2 are equal and c(l) = 1. In this case M(l) = 0,
D* = [z : \z\ > 1} and D2 = U. If a = 0 or a -» oo, then the domains D£ and D*
respectively degenerate and in both cases M(0) = M(oo) = (l/2?r) log4. In other
cases we have the following theorem.

THEOREM 2.1. Let 0 < a < oo, a ^ 1. 77zen

1 4a2ll - a l " / " ) - '

Moreover, for the differential Qiz)dz2, we calculate A — l/4n2 and c = a2.

PROOF. We consider the conformal map u = u(z) whose inverse is

1 — cos u
( l ) + 1(6)

(1 — C) — (1 + C)COSM

Consequently, we obtain the representation of the differential cp in terms of the param-
eter u in regular points

(7) Qiz)dz2 = QMdu2 = - MC"CJ\+G<*? 2 du2.
((1 — c) - (1 + c) cos u)2 cos2 u
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We study the trajectory structure of the above quadratic differential. The differential
Qx (u)du2 has zeros of order 4 at the points n + 2nk which are the images of c under
the map u(z). Then, M(0) = n/2 + kn and «(oo) = 9k — cos~'(l - c)/(l + c) are
the poles of the second order. The points w(l) = Ink are regular for this differential.

Let us consider a fixed branch of the function u(z) which maps C \ [c, 1] onto a
strip 0 < Re« < n. For a < 1, the circular domain D\ = «(Dp is bounded by
a critical trajectory of Q\{u)du2 that starts and ends at n, so that n/2 e D\, and
6>i & £>2" (0, e (0, n/2)). The circular domain D\ = u(D\) is bounded by the same
trajectory and the straight lines Re u = 0, n. For a > 1, the boundary of the domain
D" is the critical trajectory of Qt(u)du2 that starts and ends at n, so that 0( e D",
#i 6 (n/2, n). The circular domain D% = w(Dp is bounded by the same trajectory
and the straight lines Re u = 0, n.

Let £; (M), j = 0, 1 be univalent conformal maps from domains DJ onto the unit
disk U such that <i0r/2) = £2(0,) = 0 in the case a < 1 or ̂ (n/2) = £,(00 = 0 in
the case a > 1. These functions satisfy, in the domains D", the differential equations

(8) aj-^j^- = 2ns/-Qx(u)du, a, = l, a 2 = « ,

or in terms of the parameter z

Taking a limit in (9) either as z ->• oo (if7 = 1) or as z ->• 0 (if; = 2), we obtain
A = 1/47T2 and c = a2.

To calculate the reduced moduli we consider foremost the case a < 1. The part
[n/2 + S, n] of the orthogonal trajectory of the differential Q(u)du2 for a sufficiently
small S has a preimage [et, c] under the map M(Z). From (6) we derive

(10) 8 = l ^ e ,
2

The segment [n/2 + 8, n] has an image [s, 1] under the map £ = £2(«)-
Let z = /2(£) = A,f + A2f

2 + • • • be a function from U onto D*. Then the
conformal radius of D\ can be calculated as R(D\, 0) = 1/|A,|. Using (7) we have

/ n t , > a d ( l , r , / t a n ( M / 2 ) - t a n ( 0 , / 2 ) \ ]
(11) J — Q,(u) = ± I log ± I

2 d V t ( 0 / 2 ) 5 | \ t ( / 2 ) + t ( 0 / 2 ) / J

— — log ± —y-/-/

tan(0,/2) BL Vtandi^ + t a n ^ ^ / J

— sin uj '

where we choose after the logarithm (+) if (tan(«/2) - tan(0,/2))/(tan(M/2) +
tan(0!/2)) > 0 and (—) otherwise. Moreover, tan(#,/2) = -J~c — a. We fix a
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branch of the root in the left-hand side of (11) choosing (—) after the equality sign.
Integrating (8) along relevant segments (j = 2) we obtain

/tan(7r/4 + 3/2) + « \ / l c o s A = (l_±^\/a 8_

and finally using (10) we have

-c\l+a

As a < 1, the last equality is equivalent to (4) in the statement of the theorem.
Let us consider the case a > 1. For the segment [0, n/2 — 8] in a M-plane, there

is a preimage [eu 1] in a z-plane and, consequently, a preimage [E, 1] in a £-plane.
Integrating (8) along these segments we obtain

2

and finally, since 8 = (c — l)/2cet + O(e2), we obtain

4c

l - c \ a - l

Since a > 1, the last equality is equivalent to (4) in the statement of the theorem.
Now we prove (4). When a < 1 the segment [0, 6\ — 8] in the domain D" has a

preimage [1, 1/ej] in a z-plane and, consequently, a preimage [s, 1] in a £-plane. Let
z = /,(£) = B_i/£ + Bo + Bxi; -\ be a function from U onto D*. From (6) one
can derive

(12) 8 =8 yfc\el1 + c

Fixing the branch of the root inv(12) with (+) after the equality sign and integrating
(8) along the chosen segments we have

s —
l — a

and finally using (12) we obtain

1
|fl_,| l-a2\\+a,

Since a < 1, the last equality is equivalent to (4) in the statement of the theorem.
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Fora > 1, the segment [8+8, n] inaw-planehasapreimage[l/£i, c] inaz-plane,
and, consequently, a preimage [s, 1] in a £-plane. Integrating (8) along these segments
we obtain

1 4

IB-il OL2-

This is equivalent to (4) in the statement of the theorem. This completes the proof. •

Similar calculation can also be found in [1].
Now we consider another modulus problem which is connected with the previous

one. Let So = C \ {0, c, 1} be a punctured Riemanrrsphere, c e (0, 1). We consider
a pair of curves (yt, y2) on 50, where y\ = [w : \w\ = \/s] and y2 = [w : |tu| = e}.
Here e is sufficiently small and such that c and 1 belong to the doubly connected
domain between yx and y2 on C. Let 03 be the set of all pairs (Bu B2) consisting
of circular domains of homotopy type (y{, y2). Then the problem of the extremal
partition of 50 reduces to the problem of finding the maximum of the sum

(13) a]m{Buoo)+a2
2m{B2,Q),

as (Bu B2) e 23. Without loss of generality we assume again that a, = 1, a2 = a,
a e [0, oo). We denote by M(a, c) the maximum of the sum (13). For a < .y/c,
this problem is equivalent to the previous one and M(a, c) — M(a), a < 1. For
a > \l*fc, this problem is also equivalent to the previous one with a > 1 and

From [8] it follows that there is a unique pair (B*, B^) which is extremal for
this problem. B* and B^ are the circular domains in the trajectory structure of the
differential <t>(z)dz2 = -A(z- b)2dz2/z2(z - l)(z - c).

The following theorem is proved by analogy with the preceding one.

THEOREM 2.2. Let ^[c < a < l/y/c. Then

1 4(1 — /c) a~ '
(14) m W , o o ) = l o 8 ,

05)

Moreover, for the differential <t>(z)dz2, we calculate A — \/An2 and b = oty/c.

2.3. Let Uz = U \ {0, co], co 6 (0, 1) be the punctured unit disk. We consider the
system of curves (y,:, y2

:) on Uz, where y\ = {z : \z — co\ = e} and yf = [z : \z\ = £}.
Here e is sufficiently small and such that co + e < 1 and e < co/2. Let S)z be the set of
all pairs (Dj, D\) consisting of simply connected domains of homotopy type (y,z, y2).
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[7] Extremal partitions and distortion 425

Then the problem of extremal partition of Uz reduces to the problem of finding the
maximum of the sum m(D\, 0) + a2m(D\, co) as (Dz, D\) € S)J. This maximum is
denoted by Mz(a, co). Under the transformation

Z(z) = 1 -
co(l+z)2

z(l+co)2

two extremal domains (D\*, D\*) in the problem for Mz(a, co) are mapped onto
two extremal domains (Bx*, B2*) in the problem of finding M(a, c), where c =
(1 — co)2/(l + co)2. Taking into account the change of reduced moduli under the
conformal map Z(z), we deduce that for (1 — co)/(l + co) < a < (1 4- co)/(l — co),

(16) m(D\*,0) = — \ogco",
2n

m(Dz
2*,co) = ^-

2.TX
-co2).

Let Uw = U(M) \ {0, co} be the punctured disk of radius M. We consider on Uw the
system of curves (y,"\ y™), where y™ = {w : \w — a>\ = s} and y? = {w : \w\ = e}.
Here s is sufficiently small. Let S31" be the set of all pairs (Df, D") consisting
of simply connected domains of homotopy type (/,"", y2

u;). Then the problem of
extremal partition of Uw reduces to the problem of finding the maximum of the sum
m(D^,0)+a2m(D2

U),w)as(D^,£)^) e T)z. This maximum is denoted by Mw(a, co).
Theorem 2.1 and Theorem 2.2 and suitable conformal maps imply that

m(£>r,0) =

rl-a
CO

1 , M2co
— log
lit B (M

4(1 - a ) " -

M — co M + co
for < a < ;

M + co M — co
M — co

co)2 f or 0 < a <

_!_i M(J} 4 ( a ~ 1 ) t t " '

2Jr ° 8 (M - co)2 (a + !)«+'
fora >

M — co'

In 1Og M'+°
(M2 - &)2),

* - i

1
— log
In B

M~co ( l+a) ' / a + 1

a>(M-a>)4a2(a-l) l / a -

M — co M + co
for — < a < ;

M+co M — co
M — co

forO<a < — ;
co

M+co ( a+ l ) ' / a + 1

Here (*) denotes extremality of a domain.

fora >
M + co

M — co

2.4. We are concerned with a notion which appeared rather recently in [2,9,13]
and nowadays is used for extremal problems for conformal maps (see, for example,
[2,11,13,17]). It is called the reduced modulus of a digon. We define the reduced
moduli of digons following Emel'yanov [2], Kuz'mina [9], and Solynin [13].
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Let D be a hyperbolic simply connected domain from C with two finite fixed
boundary points a, b (maybe with the same support) on its boundary dD. We call
it a digon. Let S(a, e) be a connected component of D D [\z — a\ < e], such that
a € dS(a, s). We denote by De the domain D \ {S(a, £,) U S(b, s2)} for sufficiently
small Sj,j = 1, 2. Let M(De) be a modulus of the family of arcs in D£ joining the
boundary arcs of S(a, £i) and S(b, e2) that lie in the circumferences \z — a\ — e\ and
\z — b\ = e2 (we choose a single arc in each circle so that both arcs can be connected
in De). If the limit

m(D, a, b) = lim ( 7777-- H logeH loge2) ,

exists, where (pa = sup Aa and <pb = sup Ab are the inner angles and Aa and Afc are the
Stolz angles inscribed in D at a or b respectively, then it is called the reduced modulus
of a digon D. The existence of the limit is the local characteristic [13, Theorem 1.2]
of the domain D. Suppose that there exists a conformal map / (z) from the domain
S(a, £|) c D onto a circular sector, so that there exists the angular limit/ (a), which
is the vertex of this sector and with the angle cpa. If the function / has the angular
finite non-zero derivative f'(a), we say that the domain D is conformal at the point
a. If the digon D is conformal at the points a, b, then the limit in the definition of
m(D, a, b) exists (see [13, Theorem 1.3]).

Suppose that there exists a conformal m a p / (z) of the digon D (which is conformal
at a, b) onto a digon D', so that there exist the angular limits f (a), f (b) with the
inner angles ijja and \j/b at the vertices / (a) and / (b) which are also thought of as
the supremum over all Stolz angles inscribed in D' with the vertices u>i = f (a) or
w2 — f (b) respectively. If the function / has the angular finite non-zero derivatives
f'(a) and f'(b), then <pa = \j/a, <pb — rj/b, and the reduced modulus exists and is
changed by the rule

m(f (D)J(a)J(b)) = m(D, a, b) + -J- log \f'(a)\ + -J- log \f'(b)\.
to tyb

If we suppose, moreover, that / has the expansion

/ (z) = W] + (Z- a ) * . / * ( C | + c2(z - a ) + - - - )

about the point a, and the expansion

/ ( Z ) = w2 + (z - b^-id, +d2(z-a) + ---)

about the point b, then the reduced modulus of D is changed by the rule
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[9] Extremal partitions and distortion 427

where c\, d\ are some complex non-zero constants. Obviously, one can extend this
definition to the case of vertices with the infinite support.

Let us state now a problem about extremal partition of the disk U(M). Let 0, co
be punctures in U(M). We consider the family D> of digons D in U with the vertices
0, co € 3D. We suppose that the inner angles of D at these vertices are equal
to 2n. The minimum minDeD m(D, 0, co) is to be found. There is a unique digon
D* = U(M) \ {(—M, 0] U [co, M)} that gives this minimum. Its reduced modulus is
calculated by means of a suitable conformal map of D* onto the digon C \ [0, oo) of
modulus zero with respect to its vertices 0, oo. Thus we have

1 M2co2

m(D*,0,co) = — log
Z7T

3. Evaluation of the system of functionals (|/'(0)|, |/'(<w)|), / e

In this section we study the mutual change of |/'(0)l and \f'(co)\ over the class
/ € JiM{co). Denote by T+ the arc of y = max \f'{co)\ as / 6 J?M(co) and
|/ '(0)| = x, and by r~ the arc of y = min \f'(co)\ a s / e JtM{co) and | / ' (0) | = x.
We determine here VJlf by the moduli calculated in Section 2. Let us set the functions

g(z) = - Z—-2, «6[-2,2]
1 - uz + z2

and

THEOREM 3.1. The boundary curve F~ of the range DJlf of the system of function-
als (|/'(0)|, \f'(co)\) in the class jtfM{co) is given parameterically by (x(u), y(u)),
u e [-2, 2], where

M2(l -uco + co2) (1 -co2)(M2-Muco + co2)_ ( ) _
M2 Muc + co2' y ~M2 - Muco + co2' y ~ (M2 -co2)(l -uco + co2) '

as —2 < u < 2. The extremal function G(z, u) is unique for each u.

PROOF. Since

M2(l-co)2 M 2 ( l - uco + co2) M2(l+co)2

(M-co)2 ~ M2-Muco + co2- (M+co)2

for u e [—2, 2], we choose for a function / e ^M(co) the unique

M2(l -x) + co2(M2 -x)
u = u0 = Mco(M -x)
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so that x = | / ' (0) | = G'(0). Let us consider the digon U'z = U \ {(-1, 0] U [co, 1)}
with two vertices 0, co. Its reduced modulus is given as

1 CO2

m(U'0,co) = — logIn °\-co2

The digon / (U'z) with the vertices at 0, co has the reduced modulus

m{f ([/;), 0, co) = - L log -^—\f'{co)\x.
2n 1 — co2

It is admissible in the problem of minimum of the reduced modulus over all digons
from the family D>. The extremal reduced modulus is

1 M2co2

m(D*. 0,co) = — log — -,
2n M2 — co2

which is given by the digon obtained from U(M) \ {(—M, 0] U [co, M)]. Therefore,

M2(l -co2)
\f'(o)\ > (M2 - co2)x'

The uniqueness of the extremal configuration G(U'Z) leads to the uniqueness of the
extremal map. •

We define now the curve F+. For this we need the following technical lemma.

LEMMA 3.2. For (1 — co)/(l + co) < a < (1 + co)/(l - co), the function

x(a) = cxp(2jt(m(Df*, 0) - m{D\*, 0)))

is continuous and strictly decreases in a

from M2(l+co)2/(M +co)2 to M2{\ - co)2/(M - co)2.

Here the quantities ofm(D\"*, 0) and m(D\*, 0) are defined in Section 2.4.

PROOF. Fora € [(M-co)/(M+co), (M+co)/(M-co)], the value of x(a) = Ml~a

decreases in a. For a e [(1 — co)/{\ + co), (M — co)/(M + co)], we have the deriva-
tive

x'(a) I-a
- logx(a) (1 + a)co

This implies that x'(a) < 0. The case a e [(M + co)/(M - co), (1 + co)/(\ - co)] is
considered analogously. •
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[11] Extremal partitions and distortion 429

THEOREM 3.3. (i) The upper boundary curve F+ of the range VJlf of the system
offunctionals (|/'(0)l» |/'(o>)|) in the class ̂ (M(co) consists of points (x(a), y(ot)),
a € [(1 - co)/(l + co), (1 + co)/(l - co)], where

_ 4M2co1-" (1 - a)"- ' 4aj'-'/g(M + co) a2(l - g)'/»-'
^ (M + co)2 (1 + «)»+•' ^(M + co)2 (1 + «)»+•' ^ (1 - co2)(M - co) ( l + a ) I / o + I '

fora e [ ( l -co)/(\+co), (M - co)/(M + co)];

/or a e [(M - a>)/(M + OJ), (M +

4M2col-a (a - I)""1 _ 4col-l/a(M - co) a2(a - l ) l / a - '
(M -co)2(a+l)a+l' y (\ - co2)(M + co) (a + l) ' / a + 1

/ora
(ii) Eacft pom/ (x(a), y(a)) ofT+ is attained by the unique function F(z, a) satis-

fying the differential equation <p{z) dz2 = i/r (w) dw2, where

(z- d)2(z -d)2

d

such that \d\ = 1 and d is one of conjugated solutions of the equation

\-co _ co(l+d)2

"l+co ~ ~ d(l+co)2'
(w - c)(w - M2/c) J 2

dW

where c = c(a) is the unique solution in (co, M) of the equation

2 co{M + c)2

1 -a =
c(M + co)2

olution in (—

co(M - c)2

\ \ — co M — col
for a e\ , ;

[1 + co M +co]

c — c(a) is the unique solution in (—M, 0) of the equation

\ M +co 1 + col
for a € — , ;

\_M —co 1 — co]
I-a2 =

c(M -coy ' IM -co
(in - r)2(m - M2lr\2

;dw' ,w2(w — co)2(w — M2/co)2

where c = c(a) is such that \c\ — M and c is one of the solutions of the equation

I-co co(M + c)2 [M+co M+co
= 1 - - 7 T T — ^ for a 6+ co c(M + co)2 J \M -co' M -co
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The function F(z, or) maps the unit disk onto the disk U(M) minus a piecewise
analytic curve with two symmetric endpoints. The simply connected domain F(U,a)
has the reduced modulus x (a) with respect to the origin.

PROOF. Let / e JiM(co) be a function with a fixed value of | / ' (0) | = x. The
previous lemma asserts that there is a unique a such that x (a) = x. Let us consider
the functions /i(z) and/2(z) satisfying the equations

= 4jr V(z) dz\ (f^) = 4*f ( ) J

where the differentials <p(z)dz2 and \fr(w)dw2 are defined in the statement of the
theorem and or is chosen. Theorem 2.1-Theorem 2.2, the transformation Z(z) and
a suitable map from the surface Uw (see Section 2.3) yield that the superposition
/2"1 °/i(z) maps conformally the domain D\* onto the domain DJ"* and the form of
the differentials <p and T/T follows from that of the differentials Q and <J>. Continuing
this map analytically onto D2* we obtain the function F(z, or) that maps the unit disk
onto the domain which is admissible with respect to the differential \j/{w)dw2. This
function satisfies the equality F'(0, a) — x (a) and meets all conditions of the theorem.
Since the pair (DJ"*, D2*) is extremal in the family T)w we have the following chain
of inequalities

m{f (D1*), 0) + a2m(f(D?), co)

1 . . . a2

\ 0) + a2m(D™\ co)

= m{D\*, 0) + a2m{Dz
2\ co) + ^- logx(a) + =- log \f'(co)\

In In

1 a2

= m(D\\ 0) + a2m(Dz
2*, co) + — Iogjc(a) + — log \F'(co, a)\.

Z7T 2?T

Therefore, \f'(co)\ < \F'(co, a)\ = y(a). The uniqueness of the extremal configura-
tion implies the uniqueness of the extremal function. •

REMARK. The range 271/ of the system of functional (|/'(0)|, \f'(co)\) is invariant
under the transformation

co2) M2-(O2

y M2-co2 j

This can be seen changing or -»• I/a in Theorem 3.1 and Theorem 3.3.
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