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On the Prime Ideals in a Commutative Ring
David E. Dobbs

Abstract. If n and m are positive integers, necessary and sufficient conditions are given for the existence of a
finite commutative ring R with exactly n elements and exactly m prime ideals. Next, assuming the Axiom of
Choice, it is proved that if R is a commutative ring and T is a commutative R-algebra which is generated by a
set I, then each chain of prime ideals of T lying over the same prime ideal of R has at most 2|I| elements. A
polynomial ring example shows that the preceding result is best-possible.

1 Introduction

Throughout, all rings are commutative, with nonzero multiplicative identity element; and
all algebras are unital. Our concern in this note is the relationship between |R|, the (cardi-
nal) number of elements in a ring R, and | Spec(R)|, the number of prime ideals of R. The
answer for finite rings appears in Theorem 2.3 which, for any positive integers n and m,
gives a necessary and sufficient condition that there exist a ring R such that |R| = n and
| Spec(R)| = m. One consequence is that | Spec(R)| = o(|R|) as |R| → ∞. The situation is
far different for infinite rings. Indeed, as explained in Section 2, it follows from [3, Theo-
rem 2] that (assuming the Continuum Hypothesis) there exists a denumerable ring T with
a set S of pairwise incomparable prime ideals such that |S| = ℵ1; thus, in this example,
|T| < | Spec(T)|. While the pairwise incomparable structure of S arises because the incom-
parability property (denoted INC, as in [10, p. 28]) is satisfied by any integral ring extension
[10, Theorem 44], it should be noted that the structures studied in Theorem 2.3 also ex-
hibit INC because all finite rings have (Krull) dimension 0. Accordingly, it seems natural to
ask whether, if one restricts attention to “comparable” prime ideals, infinite rings support
a conclusion with some of the flavour of Theorem 2.3. An affirmative answer is given in
our main result, Theorem 2.6: if R is a ring and T is a commutative R-algebra which is
generated by a set I, then each chain of prime ideals of T lying over the same prime ideal
of R has cardinality at most 2|I|. (As usual, by a “chain” of prime ideals, we mean a set
of prime ideals which is totally ordered by inclusion.) As noted via Proposition 2.7 and
Remark 2.8(a), a polynomial ring example shows that Theorem 2.6 is best-possible.

The following comments about the literature help to place our results in perspective.
The work in [3] on pairwise incomparability within infinite fibers was motivated, to some
extent, by the role of INC in the work in [6] on finite integral extensions. Also, for singly-
generated algebra extensions, INC is equivalent to a weak form of integrality called “prim-
itivity”: see [2, Theorem]. Thus, our emphasis on possibly infinite chains in Theorem 2.6
may be viewed as an effort to accommodate the general case without assuming even “weak”
forms of integrality. Another motivation for studying possibly infinite chains is to ask if a
weak form of INC is valid for arbitrary ring extensions. In this regard, we note that an
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infinite-chain analogue of the classical going-up property GU was given recently for do-
mains in [9, Corollary]; and, for arbitrary (infinite) chains, analogues of the GU and GD
(going-down) properties appear in [4, Theorem and Remark] for the more general ring-
theoretic context. Given the classical importance of INC, GU and GD, we may thus view
Theorem 2.6 as a generalization of INC-theoretic studies in the spirit of the GU- and GD-
theoretic work in [9] and [4].

To ease the exposition, we place the technical details supporting the proof of Theo-
rem 2.6 into Lemma 2.5. The proofs of the latter result and of Proposition 2.7 use facts
about cardinal numbers and ordinal numbers which are recalled as needed. (Suitable refer-
ences for such foundational material are the Appendix of [11] and the last third of [8].) In
particular, we assume the Axiom of Choice in order to have the usual facts [8, pp. 96–98]
about the arithmetic of infinite cardinal numbers.

2 Results

We begin by counting the prime ideals of a finite ring R. It will be useful to note that, since
finite rings are artinian, it follows from standard structure theory [12, Theorem 3, p. 205;
Remark 1, p. 208] that any such R is uniquely expressible as an internal direct product of
finitely many finite local rings.

Proposition 2.1 Let R be a finite ring, of cardinality n := |R|. Express R as the internal direct
product

∏
{R j : 1 ≤ j ≤ m} of finitely many local rings Rj . Then:

(a) The number of prime ideals of R is | Spec(R)| = m ≤ log2(n). Moreover, m = log2(n) if
and only if R j

∼= Z/2Z for each j.
(b) Each nonempty chain of prime ideals in R has cardinality 1.

Proof Any artinian ring has Krull dimension 0 (cf. [12, Theorem 2, p. 203]). This fact
gives (b) immediately and also ensures that each of the rings R j has a unique prime ideal.
Since

Spec(R) = Spec
(∏
{R j : 1 ≤ j ≤ m}

)
= ·
⋃
{Spec(R j) : 1 ≤ j ≤ m},

we therefore have that

| Spec(R)| = | ·
⋃
{Spec(R j) : 1 ≤ j ≤ m}| =

∑
| Spec(R j)| =

∑
1 = m.

Moreover, n = |R| =
∏
{|R j | : 1 ≤ j ≤ m} ≥ 2m; that is, m ≤ log2(n). Equality holds if

and only if |R j | = 2 for each j; that is, if and only if R j
∼= Z/2Z for each j. Thus, (a) has

been established, and the proof is complete.

Before giving our realization result for finite rings in Theorem 2.3, we include a known
fact and sketch its proof (for lack of a suitable reference).

Lemma 2.2 Any finite local ring has prime-power cardinality.
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Proof Let R be a finite local ring, of cardinality |R|. Since R is module-finite, and hence
integral, over its prime subring A, it follows via GU and INC [10, Theorem 44] (and the
hypothesis that R is local) that A is local. Therefore, we may identify A = Z/pkZ, for
some prime number p and some positive integer k. Hence, by Lagrange’s Theorem, |R| =
[R : A]|A| = [R : A]pk. It suffices to show that |R/A| = [R : A] is an integral power of p.

Suppose not. Then, by Sylow’s Theorem, the additive group R/A has a Sylow-q sub-
group, say Q, for some prime number q �= p. As Q is solvable, Q has an element of order
q. If ξ + A is such an element, then ξ ∈ R \ A and qξ ∈ A. Now, since q and p are distinct
prime numbers, αq + βpk = 1 for some integers α, β. Hence, ξ = αqξ + βpkξ. However,
pkξ = 0 since A being the prime subring of R implies that R has characteristic pk. Thus,
ξ = αqξ ∈ A, the desired contradiction, to complete the proof.

Theorem 2.3 Let n =
∏
{qei

i : 1 ≤ i ≤ s} be the prime-power decomposition of a positive
integer n ≥ 2, and let m be a positive integer. Then there exists a ring R such that |R| = n and
| Spec(R)| = m if and only if s ≤ m ≤

∑
ei .

Proof Suppose that a ring R satisfies |R| = n and | Spec(R)| = m. By Proposition 2.1(a),
R =

∏
{R j : 1 ≤ j ≤ m} for finitely many local rings R j . For each j, Lemma 2.2

gives that |R j | = p
f j

j , for some prime number p j and some positive integer f j . Hence,∏
{qei

i : 1 ≤ i ≤ s} = n = |R| =
∏
{|R j | : 1 ≤ j ≤ m} =

∏
{p

f j

j : 1 ≤ j ≤ m}. Relabel
the rings R j so that p1, . . . , pd are all the distinct elements in the list p1, . . . , pm. For each
k = 1, . . . , d, let

gk =
∑
{ f j : 1 ≤ j ≤ m and p j = pk}.

Observe that
∑
{gk : 1 ≤ k ≤ d} =

∑
{ f j : 1 ≤ j ≤ m} and that the above equality of

products may be rewritten as

∏
{qei

i : 1 ≤ i ≤ s} =
∏
{pgk

k : 1 ≤ k ≤ d}.

By unique factorization, s = d and, after relabeling the rings R1, . . . ,Rd, we have that
qi = pi and ei = gi for each i = 1, . . . , s. It follows that

s = d ≤ m ≤
∑
{ f j : 1 ≤ j ≤ m} =

∑
{gk : 1 ≤ k ≤ d} =

∑
{ei : 1 ≤ i ≤ s}.

This completes the proof of the “only if” assertion.
Conversely, suppose that s ≤ m ≤

∑
ei . We shall produce a ring R =

∏
{Ri j : 1 ≤ i ≤

s, 1 ≤ j ≤ ki} such that |R| = n and | Spec(R)| = m. For this, Proposition 2.1(a) shows
that it suffices to let

Ri j := Z/q
ei j

i Z,

where the positive integers ki , ei j are chosen so as to satisfy

∑
{ei j : 1 ≤ j ≤ ki} = ei for 1 ≤ i ≤ s and

∑
{ki : 1 ≤ i ≤ s} = m.

It remains only to prove that such a choice is possible. We do this by “induction” on m,
subject to the condition that s ≤ m ≤

∑
ei . If m = s, this is done easily: for each i, take
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ki = 1 and ei1 = ei . For the “induction step”, suppose that s ≤ m− 1 < m ≤
∑

ei and that
positive integers k∗i , e∗i j exist such that

∑
{e∗i j : 1 ≤ j ≤ k∗i } = ei for 1 ≤ i ≤ s and

∑
{k∗i : 1 ≤ i ≤ s} = m− 1.

Observe that k∗i ≤ ei for each i. If k∗i = ei for each i, then

m ≤
∑

ei =
∑

k∗i = m− 1,

a contradiction. Hence, k∗λ < eλ for some λ, and so e∗λµ > 1 for some µ. To produce
the integers ki , ei j , make only the following changes to the data k∗i , e∗i j : replace k∗λ with
kλ := k∗λ + 1 and replace e∗λµ with two entries, namely e∗λµ − 1 and 1. Evidently,

∑
{ei j : 1 ≤ j ≤ ki} =

∑
{e∗i j : 1 ≤ j ≤ k∗i } = ei for 1 ≤ i ≤ s and

∑
{ki : 1 ≤ i ≤ s} =

∑
{k∗i : 1 ≤ i ≤ s} + 1 = m,

as desired. This completes the “induction step” and the proof of the “if” assertion.

Remark 2.4

(a) Theorem 2.3 leads to another proof of the inequality m ≤ log2(n) in Proposition 2.1.
Indeed, given R as in Theorem 2.3, we have that

n =
∏

qei
i ≥
∏

2ei = 2
∑

ei ≥ 2m.

(b) Another feature of the above inequality deserves to be stressed, namely that

| Spec(R)| = o(|R|) as |R| → ∞; i.e., lim
|R|→∞

| Spec(R)|
|R| = 0. By the above results, this

assertion reduces to the fact that lim
n→∞

log2(n)
n = 0. However, as we recall below, infinite

rings R need not satisfy | Spec(R)| < |R|.

The limit result established above is somewhat reminiscent of the Prime Number The-
orem: if π(x) denotes the number of positive prime numbers which are less than or equal
to a given real number x, then π(x)/

(
x/ ln(x)

)
→ 1 as x→∞. In particular, π(x) = o(x).

However, an exact analogy fails, since | Spec(R)|/
(
|R|/ ln(|R|)

)
= m/

(
n/ ln(n)

)
→ 0 as

|R| → ∞. Indeed, it suffices to observe that m ≤
∑

ei ≤ log2(n), so that m/
(
n/ ln(n)

)
≤(

ln(n)
)2
/(n ln 2), and the assertion follows from a standard limit theorem and L’Hôpital’s

rule. Moreover, the diversity of behaviour permitted by the bounds in Theorem 2.3 yields
that as |R| → ∞, lim inf | Spec(R)|/ log2(|R|) = 0 and lim sup | Spec(R)|/ log2(|R|) = 1.
Indeed, for the assertion about lim inf, it suffices to consider, for each positive prime p ≥ 2,
the field with p elements; and for the lim sup assertion, it suffices to consider, for each in-
tegral power of 2, n = 2m ≥ 2, a ring which is the product of m copies of Z/2Z.

We turn now to the analogous questions for infinite rings. The situation here is more
complex than for finite rings. For instance, any infinite cardinal number is realized as
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|K|, for a suitable field K, although | Spec(K)| = 1. More importantly, in contrast with
the behaviour noted above for finite rings, an infinite ring T may satisfy |T| < | Spec(T)|.
Indeed, [3, Theorem 2] leads to an example of a denumerable ring T for which | Spec(T)| =
2|T|. In this example, T arises as a countably generated integral extension of a denumerable
ring R; thus (assuming the Continuum Hypothesis), 2|T| = ℵ1. Moreover, by the proof of
[3, Theorem 2], it can be arranged that T has denumerably many fibers, each of cardinality
ℵ1, above R. Thus, since integral extensions satisfy INC, it can be arranged that Spec(T)
has infinitely many subsets each of which consists of pairwise incomparable elements and
each of which has cardinality greater than |T|.

We next give a technical result which will reduce the proof of our main result, The-
orem 2.6, to standard techniques. Notice that Lemma 2.5 may be viewed as the trans-
finite counterpart of the result [10, p. 109] that if K is any field, then the polynomial ring
K[X1, . . . ,Xn] has (Krull) dimension n.

Lemma 2.5 Let K be a field, let I be an infinite set, let {Xi : i ∈ I} be a set of algebraically
independent indeterminates over K, and put T := K[{Xi : i ∈ I}]. Then any chain of prime
ideals of T has cardinality at most 2|I|.

Proof Let S denote the collection of finite subsets of {Xi : i ∈ I}. It will be useful to
note, using basic facts about cardinal numbers, that |S| = |I| and (ℵ0)|I| = 2|I|. For
s ∈ S, let K[s] := K[{Xi : i ∈ s}]. Note that S is partially ordered via inclusion and that
{K[s] : s ∈ S} is a directed system.

Since T is then the direct limit of the polynomial rings K[s] as s runs over S, it follows
(cf. [7, Proposition 6.1.2, p. 128]) that each prime ideal P of T is the direct limit (in fact,
directed union, indexed by s ∈ S) of P ∩ K[s]. Now, consider any chain C = {P j : j ∈ J}
of prime ideals of T. For each j ∈ J and s ∈ S, put P js := P j ∩ K[s]. By the above remark,
if j ∈ J, then P j = dir lim P js =

⋃
P js. Moreover, for each s ∈ S, C induces the chain

Cs := {P js : j ∈ J} of prime ideals of K[s], and |Cs| ≤ dim(K[s]) + 1 = |s|+ 1 < ℵ0. By the
above remark, |C| is the number of ways of choosing a “compatible family” of prime ideals
from

⋃
{Cs : s ∈ S}. Hence,

|C| ≤
∏
{|Cs| : s ∈ S} ≤ (ℵ0)|S| = (ℵ0)|I| = 2|I|,

as asserted.

Theorem 2.6 Let R be a ring and let T be a ring which is generated as an R-algebra by a set I.
Then each chain of prime ideals in T which lie over the same prime ideal of R has at most 2|I|

elements.

Proof Since T is an R-algebra, there is a (unital) ring-homomorphism f : R → T. By
replacing R with f (R), we may assume without loss of generality that R is a subring of
T (as the generating set I remains unchanged). Now, consider any chain {Qα} of prime
ideals of T such that there exists a prime ideal P of R such that Qα ∩ R = P for each α.
By [10, Theorem 9], Q :=

⋂
Qα is a prime ideal of T, and without loss of generality, we

may suppose that Q is a member of the given chain. (Notice that P = Q ∩ R.) By passing
from R ⊂ T to the canonical inclusion R/P ⊂ T/Q, we may suppose that R and T are
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integral domains and that the prime ideal {0} = Q is the smallest member of the given
chain in Spec(T). (In this reduction, I is replaced by the set of mod-Q cosets represented
by the elements of the original set I; in particular, I is replaced by a set which does not have
greater cardinality than that of I.) Next, we may replace R ⊂ T with the canonical inclusion
RR\{0} ⊂ TR\{0}. Observe that K := RR\{0} is a field. (Also, I remains unchanged and the
chain {Qα} induces, and is replaced by, a chain {QαTR\{0}} of the same cardinality.) Now,
if T = K[{ui : i ∈ I}], let {Xi : i ∈ I} be a set of algebraically independent indeterminates
over K, and let g : K[{Xi : i ∈ I}] → T be the K-algebra homomorphism sending Xi to
ui for each i ∈ I. Since g is surjective, it follows from a standard homomorphism theorem
that {g−1(Qα)} is a chain of prime ideals of K[{Xi : i ∈ I}] which has the same cardinality
as {Qα}. We thus have our final reduction: R ⊂ T may be replaced by K ⊂ K[{Xi : i ∈ I}],
where K is a field. If I is finite, say {1, 2, . . . , n}, then

|{Qα}| ≤ dim(K[X1, . . . ,Xn]) + 1 = n + 1 ≤ 2n = 2|I|.

(The preceding assertion also holds trivially if I is empty, for then T = K is a field and we
may take n = 0.) Finally, if I is infinite, Lemma 2.5 yields that |{Qα}| ≤ 2|I|.

The next result, which is included for lack of a suitable reference, will be used in Re-
mark 2.8(a). The latter result shows that the upper bounds in the statements of Lemma 2.5
and Theorem 2.6 are best-possible. Proposition 2.7 and the present formulation of
Remark 2.8(a) for arbitrary infinite I are due to the referee. Our earlier version of
Remark 2.8(a) had treated only the case of denumerable I, following an example of Sylvia
and Roger Wiegand. We thank the referee and the Wiegands for kindly permitting us to
include their contributions to Proposition 2.7 and Remark 2.8(a).

Proposition 2.7 Let I be an infinite set. Then there is a chain of subsets of I having cardinal-
ity 2|I|.

Proof Let α = |I|. Then we can view α as an ordinal number with the property that each
ordinal number less than α has strictly smaller cardinality. (In fact, if we use the formal
approach of Kelley, any ordinal number γ may be identified with the set of all ordinal
numbers less than γ [11, Theorem 119].) Thus, α is a well-ordered set whose members are
the ordinal numbers less than α and such that for each β < α (i.e., β ∈ α), we have that
the cardinality of the set β is strictly less than (the cardinality of) α. Now, let A denote the
set αα of all functions from α into α. Observe that |A| = |I||I| = 2|I|. Furthermore, A can
be totally ordered via the lexicographic ordering: for distinct f , g ∈ A, we declare f < g if
f (β) < g(β), where β ∈ α is the smallest ordinal for which f (β) �= g(β).

Next, let B denote the set of “eventually constant” functions in A; that is, B = { f ∈
A : there exists γ ∈ α such that f (δ1) = f (δ2) whenever δ1, δ2 > γ in α}. Since for any
such γ, the cardinality of γ is less than that of α, it follows easily from the Generalized
Continuum Hypothesis that |B| = |I|, whence |B| < 2|I| = |A|.

Now, let A1 denote the set of all functions in A which are not “eventually zero”; that
is, A1 := { f ∈ A : there does not exist γ ∈ α such that f (δ) = 0 for all δ > γ in α}.
Reasoning as above via the Generalized Continuum Hypothesis, we see that the number of
functions in A which are “eventually zero” is |I|, and so, in view of the earlier calculation of
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|A|, we conclude that |A1| = 2|I|. We claim that B is “dense” in A1, in the following sense:
for each f < g in A1, there exists h ∈ B such that f < h < g. Indeed, if β is minimal
such that f (β) < g(β), then it suffices to define h ∈ αα by h(δ) := g(δ) for all δ ≤ β and
h(ξ) := 0 if ξ > β. (Our later need for this property explains why we introduced A1, for if
we knew only that g ∈ A, then the above method would yield only that f < h ≤ g.)

For each f ∈ A1, put B f := {k ∈ B : k < f }. Clearly, C := {B f : f ∈ A1} is a chain of
subsets of B. In fact, by the “density” established above, if f < g in A1, then B f is a proper
subset of Bg ; thus, the cardinality of C is |A1| = 2|I|. Since |B| = |I|, we can use a bijection
B→ I to “translate” C into a chain of subsets of I having cardinality 2|I|, as desired.

Remark 2.8 (a) To show that Lemma 2.5 and Theorem 2.6 are best-possible, let R be
any field K, let I be an infinite set, let {Xi : i ∈ I} be a set of algebraically independent
indeterminates over K, and let T := K[{Xi : i ∈ I}]. We claim that some chain of prime
ideals of T has cardinality 2|I|.

To prove the claim, let ( J,≤) be a well-ordered set of cardinality 2|I|. By Proposition 2.7,
there exists a chain {s j : j ∈ J} of subsets of I, with s j a proper subset of sk whenever j < k
in J. For each j ∈ J, let A j be the ideal of T which is generated by {Xi : i ∈ s j}. An easy
degree argument shows that A j is a proper subset of Ak whenever j < k in J. Thus, {A j} is
a chain of prime ideals of T having cardinality | J| = 2|I|, completing the proof of the claim.

(b) The proof of Lemma 2.5 used a result concerning compatible families of prime ideals
in a directed system [7, Proposition 6.1.2, p. 128]. This result from [7] has often been cited
or reestablished (cf. [1, Exercice 11, p. VIII.82], [5, Lemma 2.1]). In applying such results
to Krull dimension, one should note that all infinite Krull dimensions are viewed as the
same, namely ∞. An uncritical use of such results in which “∞” is replaced by various
infinite cardinal numbers would lead to an absurdity in the proof of Lemma 2.5, in case I
is denumerable, namely that dim(K[X1, . . . ,Xn, . . . ]) ≤ sup{dim(K[X1, . . . ,Xn]) : n ∈
P} = sup{n : n ∈ P} = ℵ0, rather than∞ (where P denotes the set of positive integers).
If one fails to recognize that the classical theory of Krull dimension does not distinguish
infinite values, one might well then be tempted to conclude that any chain of prime ideals
of K[X1, . . . ,Xn, . . . ] has cardinality at most (ℵ0) + 1 = ℵ0. The example in (a) and
Theorem 2.6 combine to show that such a conclusion is wrong: for denumerable I, the
correct upper bound is 2ℵ0 .
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