
Can. J. Math. Vol. 46 (3), 1994 pp. 574-585 

ISOMETRIC CHARACTERIZATIONS OF tn
p SPACES 

RYSZARD KOMOROWSKI 

ABSTRACT. The paper establishes some characterizations of ln
p spaces in terms of 

p-summing or /^-nuclear norms of the identity operator on the given space E. 
In particular, for an ^-dimensional Banach space E and I < p < 2, E is isometric to 

tp if and only if np(E*) >nl/p and E* has cotype p' with the constant one. 
Furthermore, tn

p spaces are characterized by inequalities for p-summing norms of 
operators related to the John's ellipsoid of maximal volume contained in the unit ball 
ofE. 

Introduction. In this paper we establish characterizations of spaces £JJ in terms of 
ideal norms of certain natural operators related to an ^-dimensional Banach space E. 
Some characterizations are given by conditions on p-summing and p'-nuclear norms of 
the identity operator on E, combined with the assumption on the cotype of the space. 
Other involve operators related to the John's ellipsoid of maximal volume contained in 
the unit ball of E. These characterizations generalize several known results for £^ and 
U[ ([2], [3], [4], [7]). We also study similar problems also in the more concrete setting of 
subspaces of Lp-spaces. 

Let us describe the content of the paper in more detail. Sections 1 and 2 contain no­
tations and preliminaries on /7-summing norms. In particular we observe, in Proposi­
tion 2.1, an upper estimate of the p-summing norm of an operator by the p-th moment of 
a related vector valued Gaussian random variable. This estimate appears several times 
in further arguments. 

In Section 3 we prove that if 1 <p<2 and E is an ^-dimensional Banach space such 
that 7Tp(id: E —> E) >nxlp, then there exist e\,...,enmE such that for every sequence 
of scalars a\,...,an one has 

il n il f n i\ XIP' 
max a,- < 

i=l , . . . ,n i=\ 

(Here 1 jp + 1 /pf = 1.) It turns out that the vectors e\,..., en are the contact points of 
the unit ball BE of E with the John's ellipsoid of maximal volume contained in BE. 

Section 4 is devoted to study of p-summing norms of operators related to the ellipsoid 
of maximal volume. It is shown that some inequalities for these norms characterize ln. 
Finally in Section 5 we present some consequences of our results for subspaces of Lp. 
We also prove that if 2 < p < oo, then an ^-dimensional subspace of Lp with the 
maximal Euclidean distance is isometric to tn

p. This complements a result obtained in 
[ l ] for l <p<2. 
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1. Notation. Let (£, || • ||) be a finite dimensional Banach space over either R or C 
and let 11 • 112 denote the Euclidean norm on E induced by the ellipsoid of maximal volume 
contained in the unit ball of E. Let (•, •) denote the induced inner product, let || • ||* be 
the norm on £, dual to the original norm || • ||, and let IIE'- (E, || • H2) —» (E,\\ • ||) and 
hi — (Î2E)~1 be the formal identity operators. 

Let 1 < p < co and let X and Y be Banach spaces. For an operator S: X —» Y set 
KP(S) — inf c where the infimum is taken over all constants c such that 

(l.i) ( E M ) ' 7 ' ^ sup tei<^^>r),/" 
v j J x*ex* v j J 

V\\<\ 
for all finite sequences (XJ) in X\ if no such c exists then irp{S) = 00. If ixp{S) < 00 then 
S is said to be p-summing and TTP(S) is called the p-summing norm of S. 

For a real valued random variable £ on a probability space (£2, P) we denote by E£ the 
expected value of £. 

Finally, let 7 i , . . . , ln denote real or complex Gaussian random variables on (Q, P). 
Fors > 1 set A, = ( E | 7 I | 0 1 / J . For any orthonormal basis (et) in #}> le t ^ denote the 
l\ -valued random variable defined by 

(L2) X = £%•*«. 
i=\ 

Notice that the distribution of X does not depend on a choice of the basis (et). 

2. Preliminaries on p-summing norms. We start by stating a simple observation 
which will be often used throughout the paper. It follows direction from the definition 
(1.1) of the p-summing norms (cf. e.g., [9]). 

PROPOSITION 2.1. Let 1 < p < 00 and let T be an operator between two Banach 
spaces X and Y. 

(i) Suppose that there are functionals x\, x\,..., G X such that 

IW<EK*; .*>I" forallx&X. 
j 

Then7rp(T)<(Zj\\x]\\p)l/p-
(ii) Let £ be a random variable on a probability space (QP) with values in 

(X*,(j(x*,xj) and suppose that \\TX\\P < E\{^x)\p for all x G X. Then TTP(T) < 

m\\p)i/p. 
Recall that X is the ^-valued random variable defined in (1.2). It is easy to calculate 

that 

(2.1) |W|2 = A-l(E\(X,x)\s?/s fors > 1. 

Now, let us give some simple conclusions from Proposition 2.1 which we will need 
further. 
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PROPOSITION 2.2. The following equalities are true. 
d) irp(i±q^q) = A^(E\\x\\p

2y/p, 
(ii) 7Tp(id: I», -+ ln

p) = nlIPfor \<p<2, 
(Hi) Tr^id: q -* ln

p) = nxIPfor 1 </? < oo, 
(iv) 7y(id: in

p -+ ln
2) = nl/p'for 1 <p < 2, 

(v) 7r>(id: tn
p, -> O - rc^/or 1 <p < oo. 

Equality (i) was proved in a slightly different formulation by D. J. H. Garling [5] (cf. 
also, [9], p. 60). 

Other equalities are well-known to specialists. For sake of the completeness we give 
a sketch of the proof. 

PROOF, (i) The upper estimate follows from (2.1) and Proposition 2.1 (ii). For the 
lower estimate observe that 

(EIIXII^^CEIIXII^. sup (E\(X\X)\P)1'P. 
IM|2=i 

(iv) For x G tn
v one has 

|id(*)||2 = ( E i l ^ ^ l 2 ) ' 2 

VÊ7=(±I,...,±I) Z J 

<[ E ^K^r') 
Vc7=(±i,...,±i) z J 

Again, by Proposition 2.1(i) we obtain 

V( id:£p-W2)<fl E MÙ'" =*W-
V z ë7=(±l ±1) J 

\/p' 

c7=(±l,...,±l) 

Conversely, 

(ZNIS) = "1//? SUP (ElMI ' ) 
vi=i y HylL=iv/=i ) 

We omit the proof of (ii), (iii) and (v). • 
As an interesting consequence we get an isometric characterization of l\ as follows. 

COROLLARY 2.3. Let 1 < p < oo. An n-dimensional Banach space E is isometric 
to 12 if and only if 

Trp((i2Ey) = *pW:tn2-^en
2)-

PROOF. By (2.1) and Proposition 2.l(ii) we obtain 

^{(i2Er)<A;i{E\\xr)1/". 
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Since ||x|| < ||JC||2 for every x G E, by Proposition 2.2(i) we get 

A^EIIXIIO^A^IIXII^ 
= 7 r / 7 ( i d : ^ - , ^ ) - 7 T / ? ( ( / 2 £ ) * ) . 

Combining the two estimates we have ||X(o;)|| = ||X(o;)||2 almost everywhere. Hence, 
by the continuity, ||X(u;)|| = ||X(o;)||2 for every LU € Q completing the proof. • 

REMARK. For an «-dimensional Banach space Eone has iT2 (fetf)*) < y/n\\ {ÎIET || = 
y/n. Corollary 2.3 says in particular that if the 2-summing norm of the operator {ÎIET is 
maximal, then E is isometric to U[. 

3. Characterizations of £p in terms of ideal norms of the identity operator. In 
this section we present characterizations of £p in terms of ^'-summing and p-nuclear 
norms of the identity operator on the space. 

We refer the reader to [9] for the standard definition of the /?'-nuclear norm. 
The definition of type/? and cotype q constants, T'p and C'q, respectively, used here, 

differ from the usual ones by replacing the L2-Rademacher averages by the Lp- and Lq-
averages respectively (cf. e.g. [9] p. 14). The main result of the section states: 

THEOREM 3.1. Let E be an n-dimensional Banach space. Let 1 < p < 2. The fol­
lowing are equivalent: 

(i) vp(E)>n{IP, 
(ii) There exist vectors e\,..., en G E such that for every choice ofscalars a\,...,an 

one has 
i l n il r n >\1/P' 

£«*.- <(Eklp) . max 10/| < 
i=\,...,n i = l \ = 1 

(Hi) vAE) <nxlp'. 
Furthermore, E is isometric to tn, if and only ifE satisfies one of the above conditions, 

andC'pl(E)= 1. 

For/7 = 1, implication (i) => (ii) was proved in [2] and [4]; implication (iii) => (ii) is 
the isometric version of a classical P\ problem, proved by Nachbin [7]. 

The proof of the theorem is based on several results of independent interest. Proposi­
tion 3.2 below is crucial for further investigation. It involves the operator iE2 associated 
to the ellipsoid of maximal volume. The case p — 1 was proved in [3] (cf. also, [9], 
p. 266). 

PROPOSITION 3.2. Let 1 < p < 2 and E be an n-dimensional Banach space such 
that 

KP(iE2)>nllp. 

Then there exists an orthonormal basis (^/)Li in (E,\\ • H2) such that \\ej\\ = ||^||* = 
\\ej\\i = lfarj= l,...,rc. 

We only give a sketch of the proof of Proposition 3.2 since it is similar to the one in 
the case p = 1. 
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PROOF OF PROPOSITION 3.2. By the well-known John's result (cf., e.g., [91, p. 118), 
there exist a positive integer N, vectors x\,...,nu 'm E and positive scalars c\,..., c# 
such that \\xj\\ = ||jt/||* = 1 (j = 1,...,A0, T,jL\Cj — n and x — E/L i Q (-*,-*/)-*/ for 
xeE. 

We need the following lemma. 

LEMMA 3.3. Assume that x\,... ,x^andc\,... ,c# are as above. LetM C {1 , . . . ,N} 
be a subset such that E/GM cj — m> for some positive integer, and that 

{xs,Xj) = 0 forx fi M, j G M. 

Let EM — span^OyeAf and let P: (E, || • H2) —> (E, || • H2) be the orthogonal projection onto 
FM- If^piPiEi) > mx'p, then there is a subset J C M with \J\ = m such that (XJ,XJ) — 0 
for i ^ j , ij G J. 

Obviously, Proposition 3.2 follows from Lemma 3.3 applied for M — { 1 , . . . , N} and 
m — n. 

PROOF OF LEMMA 3.3. Proceeding by induction, assume that m > 1 and that the 
lemma is true for m — 1. Pick a vector y G FM such that a = E/GM CJ| (y, Xj)\2 is maximal 
subject to E/GAf Cj\(y,Xj)\p = 1. 

Since 113̂  11 ? < EJLj q\(y,Xj)\p\\y\\l~~p we get a < 1. On the other hand, for every x G E, 

\\Px\\2 < a{l2(Y,jeMCj\(x,Xj)\p){lp which gives 

KjeM 
mxlp <Trp(PiE2)<al'2(Y,Cj)'"'=axl2mxlp and a=L 

Next, since ( E 7 G M 9 I ( ^ ^ ) | 2 ) 1 / 2 = (ZjeM \{y,Xj)\p)l,p and \(y,xj)\ < 1 it follows that 
there exists a subset K C M such that 

1/ \| — J * fors G if 
10^71 - j o forse(l,...,N)\K. 

Let /co £ ^- Then for every k G ^ , x̂  = ê jĉ  with |e^| = 1 and therefore we may assume 
th&y = xko. 

Put M\ = M\K. Then (y,xt) = 0 for i G M\. In addition, (jCy,jfy) = 0 for s G Mi, 
k ^ Mi and E/GM, Q = m — 1. 

Finally, if g: (£, || H2) —* (£, || H2) is the orthogonal projection onto FM] = 
spanfoO/GAf, then 

Indeed, for every x G £ one has 

Mp 

and 

7Tp(Pï£2) < (TTP((P - G f e f + ^ ( G t o r 
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The last inequality can be checked using definition (1.1). By applying Proposi­
tion 2.1(i) we obtain the required inequality. 

The inductive hypothesis applied to the subset M\ and the projection Q yields that 
there is a subset Jo C M\ with |7o| = m — \ such that (xj,xt) = <%, ij G Jo. Then 
JQ U {ko} obviously satisfies the condition of Lemma 3.3. • 

In order to prove the next proposition we require the following lemma. 

LEMMA 3.4. Let 1 < p < q < oo and let (E, || • \\) be a normed space. Then for 
every choice of vectors x\,... ,xn EX the following inequality holds 

(3.1) M« n x i q , n J. « jmx 

EIMI") <(«EIM" + /3E^ ) 
\P\l/P 

where a = 2p/q l and (5 — 1 — a. 

PROOF. The lemma is obvious for n — 1. Proceeding by induction, assume that the 
lemma is true for n — 1. Without loss of generality, we may assume that 1 < p < q < oo, 
E"=2 \\xi\\q — 1 a nd 0 < ||*i || £ • • • £ IWI- I* is easY to see that to prove (3.1) it is 
enough to check the following stronger inequality: 

/ n x\/q f n | 

0.2) (Elk.il') < «Elkil'+/?| 1*11 
*=2 

p \ UP 

Next, let us introduce the following notation: 

(w)s = sign(vv) • \w\s for s > 1, w G IR; 

A = ÊIWI"; 
i=2 

/=2 

Ihll = re [0,1]. 

Observe that in the above terms the following formulas are true: 

dx 
dtW p{wf~x and w(wf~l = \w\p. 

Finally, we can rewrite the inequality (3.2) in the following way: 

(3.3) 0 </(*) = a(f +A) + [3\t-a\p -(tq + \f/q where t G [0,1]. 

To prove (3.3) observe that/(0) > 0 (by inductive hypothesis) and 

/ ( l ) = a(\ + A) + (3\ 1 - a\p - (1 + \flq >2a- 2p>q 

= 2 - 2 ^ _ 1 - 2 ^ * = 0 

(since A > 1). 
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Now, let us suppose the contrary. There exists t £ (0,1) such that/'O) = 0 and 
/(*) < 0. Then 

0=p-l(t-a)'f'(t) 

= (t- a)[af-x + f3(t - df~x - tq'x(tq + I f A*"1] 

= a(t - a)f'x - a(f+A) +f(t) + (f + \flq - tq~x(t - a)(tq + If/*-1 

< -a(af-x + A) + (f + l f / ^ n + tq-xa] 

< (f + l ^ - ^ - a ^ - 1 - A + 1 + ^ _ 1 a] (since (** + If/*-1 < a) 

<(? +\flq-xa(?-1 -f~x). 

To summarize, 0 < (f + Xflq~xa{f~x - f~x) which gives f*-1 > ^ _ 1 and/? > <?. This 
is contradictory to the assumption and completes the proof of the lemma. • 

PROPOSITION 3.5. Let (£, \\ • \\) be an n-dimensional Banach space and 1 < p < 
q < oo. Suppose that there exists vectors e\,...,en <G E and e\,...,e*n G ET such that 
(e*,ei) — 8ij and \\et\\ = \\e*\\ = I fori = 1,.. . ,n. Consider on E the tn

q norm, say || • ||̂ , 
induced by the basis (e/)"=1. Let iEq denote the formal identity operator from (£, || • \\) to 

w,\\-\\q). 
If 7Tp(iEq) >nxlp, then for every ai,...,an E C one has 

n x 1 In il n 

/ = 1 J H / = l 

PROOF. We will suppose that g < oo. In the case q = oo the proof is similar. First, 
we will show that 

( n
 \UP

 n 

(3.4) Kp(TiEq) = J2 \ai\P where T = ]T aÂ ® et. 

(3.5) 7TP(7ÎB,) < ( é [a/I") ' ". 

UP 
I • 

v i = l ' i = l 

Fix* e £. Then | | 7 ÎB^ | | , < (E?=1 |a,| ' , |(x,<)|' ,)1/p and so, 

UP 

V / = l 7 

To see opposite inequality, choose g / E C ( / = l , . . . , n ) such that 

max |a;| - (|a/|p + \gi\p)X/p. 

Define an operator 
n 

S: £ —> £, 5 = J ] g,-e* 0 e,-. 
/=i 

Then for every i G f J one has 

(3.6) m a x H I H I , < (\\Tx\\? + \\Sx\\?)x^. 
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Next, using definition (1.1) and (3.6) we obtain 

max \ai\7Tp(iEq) < (ifp(TiEq) + np
p{SiEq))

 P-

Hence, from (3.5) and above it follows 

nl/pmax \at\ < max \ai\itp(iEq) < [rf(TiEq) + ̂ p{SiEq)] 

)i/p 

i/p 

< E\"i\p + E\gi\p 

Li=l i=\ 

n'lo max laA 

and (3.4) holds as required. 
Finally, using Lemma 3.4, one has 

Tx\U=(f\(Tx,e*)\'>)Ul' 

<(a±\(Tx,e*W + d±(Tx,e*)\P)1/P 

/ n | i n \\P\1/P 

= (a^:\ai\»(x,e*)\'' +p\(x,YJaie*)\) . 

Hence, the condition (3.4) and Proposition 2.1(i) give 

\\P\UP 
(aEk-r + HlE^I ) P>^p(TiEq)= te|fl«f) 

UP 

which completes the proof. • 
Now we are able to prove Theorem 3.1. 

PROOF OF THEOREM 3.1. The fact that (i) implies (ii) follows from Proposition 3.5 
for q = 2, Proposition 3.2 and the inequality 

Next, condition (ii) implies that the following factorization holds 

Vx ° ° A P V2 

with i/pt(E) < || Vi || ||A|| || Vill < nl/p. Finally, (iii) implies (i) since 

n = trace(id:E—>E)< 7rp(E)i/p>(E). 

Before we pass to the second part of the theorem, observe that 

(3.7) Cp,(E)=l iff rp(ET)=l. 
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This can be checked directly for two vectors, and by induction for more vectors. Suppose 

that 7TP(E) > nllp\ so, 7rp(iE2) > nllp. Using Proposition 2.1(ii) and (2.1) we obtain 

n , / p<7rp(i£2)<A-1(E| |X| | ;) , /" 

=AAE£\P*tn Pdt)l/P 

v i=\ J 

Therefore, A'x 0\X\\P
P)X Ip = nxlp = A-{(E\\X\\p)x/p. Since ||x||^ < \\x\\, for every x G E 

we conclude that || • \\p = || • ||* as in the proof of Corollary 2.3. • 

4. The ellipsoid of maximal volume and other characterizations of tn spaces. I n 

this section we give some characterizations of ln
p space in terms of /^-summing norms of 

an operator associated with the ellipsoid of maximal volume contained in the unit ball of 

E. 

Before we start, let us introduce some new notation. Let iEoo: (£, || • ||) —> (£, || • ||oo) 

denote the formal identity operator where the norm || - ||oo is given by a fixed Auerbach 

system on E. Similarly, we define /#*oo- (E*, || • ||*) —> (E, \\ • ||oo). Finally, let 

ÎE*2 = (ÎIET and i2E* = ( te)*. 

THEOREM 4.1. Let E be an n-dimensional linear space. Then for 1 < p < 2 the 

following are equivalent, 

(i) ET is isometric to ln, 

(ii) 7Tp(iE2) ^ nx'p and 7Tp>(iE*2) ^ nx'p, 
(Hi) 7Tp(iE2) > nxlp and7rp(i2E*) < nxlp, 

Moreover, for 1 < p < oo condition (i) is equivalent to 

(iv) TTpfeoo) > nxlp andixp>(iE*oo) > nxlp'. 

PROOF. By Proposition 2.2 we see that the condition (i) implies (ii), (iii) and (iv). 

First, suppose that 

7Tp( /£2)>n I / P . 

By Proposition 3.2 and Proposition 3.5, we conclude that 

(4.1) ||;t|| < \\x\\pl îovx G E. 

Now, let us suppose that 

np>(iE*2)>nx/p'. 

Applying (4.1) and Proposition 2.1(H) to (2.1) for s = p' it follows that 

« 1 / P '<V0E«2)<V( E II X II P ' ) 1 / ; / 

<A-,1(E||X|K)l/"' = n1/"'. 
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Hence, || • \\pi = || • ||. Next, let us suppose that (iii) holds. Again, by (2.1) for s = p, 
we obtain 

(4.2) »1 /"<M'£2)<Ap-1(E| |X| |01 / p . 

Using the Pietsch Factorization Theorem [8] (cf. also, [9], p. 47) one can find a probability 
measure /i on Sîp1 = {•* : IWh = 1} such that 

||x1|* < nlf"(j \{y,x*Wd„(y))XlP for** G £*. 

By (4.2) and the above inequality one has 

nl'P <A;l(E\\X\\Ol/p < nl%l{EJsn] \{y,X)\p d^))''* = nxlp. 

Therefore, E||X||? = E||X||£ and || • ||* = || • \\p, as before. 
Finally, using Proposition 3.5 for q = oo we conclude from (iv) that 

| |**||p<||jt*||* forx* GE* 

and 

IMI// < ||*|| forx G E. 

This implies that E is isometric to lp< completing the proof. • 

5. Finite dimensional subspaces of Lp. In the last section of the paper we apply 
Theorem 3.1 to subspaces of Lp. We also get a characterization of «-dimensional sub-
spaces of Lp with the maximal Euclidean distance. 

COROLLARY 5.1. Let E be an n-dimensional subspace ofLp(Çl, /z). Then E is isomet­
ric to £n

p if and only ifitp'(E) > nllp' for 2 < p < oo or irp(E*) >nxlpfor\<p< 2. 

The corollary follows immediately from Theorem 3.1 and the fact that Tp(Lp(£l, /i)) = 
1. 

PROPOSITION 5.2. Fix n and 2 < p < oo. Then any n-dimensional subspace E of 
Lp(£l, n) whose Euclidean distance is maximal, i.e., d(E, £") = nl<2~l/p, is isometric to 

V 

For 1 < p < 2, an analogous result was proved in [1]. 
The proof of Proposition 5.2 is based on well-known result of D.R. Lewis [6] which 

states: 

PROPOSITION 5.3. Fix n and 1 < p < oo. Then for any n-dimensional subspace E 
ofLp(£l, ji) there exists fu . . . ,/w £ E such that 

(5.1) jMjFp-2d^ = èij, where F = ( g [fi\2)l/\ 
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PROOF OF PROPOSITION 5.2. Fix an arbitrary ^-dimensional subspace of E of 

Lp(Q,/i). Denote d(E, #>) by dE. First we follow Lewis' argument from [6]. Observe 
that (5.1) implies 

(5.2) / | E ^ | 2 ^ " 2 ^ = èkl2 . 

(5.3) IFII -nxlp 

Define an operator T: E —> L2(£2, n) by Tf — fF 2 , for/ G £. Using Holder's inequality 
it is easy to see that 

\\mi<\wP\\F\v. 
Thus by (5.3), II7|| <TIXI2-{IP. 

On the other hand, by (5.2) and Cauchy-Schwarz inequality we get, for every h = 

| 2 | n 1/7—2 

(5.4) 

d/ji 

2 

\h\\"P= /£««/)£««/ / 

< EW2 /£«</; 
V=l y J 'i=l ' 
/ n „\W2 r rl n I2 „ lW2 i2 

< 1, and so, 

dE<nl'2~1^ 

Thus ||T"11 

(5.5) 

Now, we proceed by induction in n. Assume that the proposition is valid for (n — 1)-
dimensional subspaces. 

Let£ C Lp(Çl,n), dimE = n, dE = rc1/2"1^. Then \\T~X\\ = 1. Fix h G £such that 
\\h\\p — \\Th\\2 — 1 and h = E"=1 ciifi for some scalars at,... ,an where f \ , . . . ,/„ are as 
in Proposition 5.4. Since all the inequalities in (5.5) become equalities, it follows that 
\h\ = F a.e. in the support A of h. 

Moreover, there exists a functional <f> such that/ = <j>ai a.e. 
Since the/ ' s are linearly independent, we conclude that there exists i'o £ { 1 , . . . , n} 

such that at = 5#0. Without loss of generality assume that io = 1. Therefore, \h\ — | / | 
a.e. and/2 = h = * • * = fn — 0 a.e. on A. Next, observe that for any/ G £, the restriction 
/ • XA of/ to A belongs to the one-dimensional subspace [h] of LP(Q /x) generated by /z. 

Summarizing, E — [h] 0 P E\ where 

Ex = | / G £ : / M = 0a.e. on A}. 

It is not difficult to show that 

<fe<(l+4f- ,/')1/2_1/p. 
By (5.5) for the space E\ and above we obtain that dE] = (n — l)1/2"1/^. 
Finally, using the inductive hypothesis, we conclude the proof. 
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