ISOMETRIC CHARACTERIZATIONS OF ℓ_p^n SPACES

RYSZARD KOMOROWSKI

ABSTRACT. The paper establishes some characterizations of ℓ_p^n spaces in terms of *p*-summing or *p*-nuclear norms of the identity operator on the given space *E*.

In particular, for an *n*-dimensional Banach space *E* and $1 \le p < 2$, *E* is isometric to ℓ_p^n if and only if $\pi_p(E^*) \ge n^{1/p}$ and E^* has cotype p' with the constant one.

Furthermore, ℓ_p^n spaces are characterized by inequalities for *p*-summing norms of operators related to the John's ellipsoid of maximal volume contained in the unit ball of *E*.

Introduction. In this paper we establish characterizations of spaces ℓ_p^n in terms of ideal norms of certain natural operators related to an *n*-dimensional Banach space *E*. Some characterizations are given by conditions on *p*-summing and *p'*-nuclear norms of the identity operator on *E*, combined with the assumption on the cotype of the space. Other involve operators related to the John's ellipsoid of maximal volume contained in the unit ball of *E*. These characterizations generalize several known results for ℓ_{∞}^n and ℓ_1^n ([2], [3], [4], [7]). We also study similar problems also in the more concrete setting of subspaces of L_p -spaces.

Let us describe the content of the paper in more detail. Sections 1 and 2 contain notations and preliminaries on p-summing norms. In particular we observe, in Proposition 2.1, an upper estimate of the p-summing norm of an operator by the p-th moment of a related vector valued Gaussian random variable. This estimate appears several times in further arguments.

In Section 3 we prove that if $1 \le p < 2$ and *E* is an *n*-dimensional Banach space such that $\pi_p(\text{id}: E \to E) \ge n^{1/p}$, then there exist e_1, \ldots, e_n in *E* such that for every sequence of scalars a_1, \ldots, a_n one has

$$\max_{i=1,\dots,n} |a_i| \le \left\| \sum_{i=1}^n a_i e_i \right\| \le \left(\sum_{i=1}^n |a_i|^{p'} \right)^{1/p'}.$$

(Here 1/p + 1/p' = 1.) It turns out that the vectors e_1, \ldots, e_n are the contact points of the unit ball B_E of E with the John's ellipsoid of maximal volume contained in B_E .

Section 4 is devoted to study of *p*-summing norms of operators related to the ellipsoid of maximal volume. It is shown that some inequalities for these norms characterize ℓ_p^n . Finally in Section 5 we present some consequences of our results for subspaces of L_p . We also prove that if 2 , then an*n* $-dimensional subspace of <math>L_p$ with the maximal Euclidean distance is isometric to ℓ_p^n . This complements a result obtained in [1] for 1 .

Received by the editors February 11, 1991.

AMS subject classification: 46B04, 46B15.

[©] Canadian Mathematical Society 1994.

The paper is a part of the author's Ph. D. thesis being prepared under the supervision of Dr. N. Tomczak-Jaegermann. The author wishes to thank her for her helpful advice.

1. Notation. Let $(E, \|\cdot\|)$ be a finite dimensional Banach space over either \mathbb{R} or \mathbb{C} and let $\|\cdot\|_2$ denote the Euclidean norm on *E* induced by the ellipsoid of maximal volume contained in the unit ball of *E*. Let $\langle \cdot, \cdot \rangle$ denote the induced inner product, let $\|\cdot\|_*$ be the norm on *E*, dual to the original norm $\|\cdot\|$, and let i_{2E} : $(E, \|\cdot\|_2) \to (E, \|\cdot\|)$ and $i_{E2} = (i_{2E})^{-1}$ be the formal identity operators.

Let $1 \le p < \infty$ and let X and Y be Banach spaces. For an operator $S: X \to Y$ set $\pi_p(S) = \inf c$ where the infimum is taken over all constants c such that

(1.1)
$$\left(\sum_{j} \|Sx_{i}\|^{p}\right)^{1/p} \leq c \sup_{\substack{x^{*} \in X^{*} \\ \|x^{*}\| \leq 1}} \left(\sum_{j} |\langle x_{j}, x^{*} \rangle|^{p}\right)^{1/p}$$

for all finite sequences (x_j) in X; if no such c exists then $\pi_p(S) = \infty$. If $\pi_p(S) < \infty$ then S is said to be *p*-summing and $\pi_p(S)$ is called the *p*-summing norm of S.

For a real valued random variable ξ on a probability space (Ω, P) we denote by $\mathbb{E}\xi$ the expected value of ξ .

Finally, let $\gamma_1, \ldots, \gamma_n$ denote real or complex Gaussian random variables on (Ω, P) . For $s \ge 1$ set $A_s = (\mathbb{E}|\gamma_1|^s)^{1/s}$. For any orthonormal basis (e_i) in ℓ_2^n , let \mathbb{X} denote the ℓ_2^n -valued random variable defined by

(1.2)
$$\mathbb{X} = \sum_{i=1}^{n} \gamma_i e_i$$

Notice that the distribution of X does not depend on a choice of the basis (e_i).

2. **Preliminaries on** *p*-summing norms. We start by stating a simple observation which will be often used throughout the paper. It follows direction from the definition (1.1) of the *p*-summing norms (*cf. e.g.*, [9]).

PROPOSITION 2.1. Let $1 \le p < \infty$ and let T be an operator between two Banach spaces X and Y.

(i) Suppose that there are functionals $x_1^*, x_2^*, \ldots, \in X$ such that

$$||Tx||^p \leq \sum_j |\langle x_j^*, x \rangle|^p \quad for all \ x \in X.$$

Then $\pi_p(T) \leq (\sum_j ||x_i^*||^p)^{1/p}$.

(ii) Let ξ be a random variable on a probability space (Ω, P) with values in $(X^*, \sigma(x^*, x))$ and suppose that $||Tx||^p \leq \mathbb{E}|\langle \xi, x \rangle|^p$ for all $x \in X$. Then $\pi_p(T) \leq (\mathbb{E}||\xi||^p)^{1/p}$.

Recall that X is the ℓ_2^n -valued random variable defined in (1.2). It is easy to calculate that

(2.1)
$$||x||_2 = A_s^{-1} (\mathbb{E}|\langle X, x \rangle|^s)^{1/s} \text{ for } s \ge 1.$$

Now, let us give some simple conclusions from Proposition 2.1 which we will need further.

RYSZARD KOMOROWSKI

PROPOSITION 2.2. The following equalities are true.

- (i) $\pi_p(\operatorname{id}: \ell_2^n \to \ell_2^n) = A_p^{-1}(\mathbb{E} \|X\|_2^p)^{1/p},$ (ii) $\pi_p(\operatorname{id}: \ell_{p'}^n \to \ell_p^n) = n^{1/p} \text{ for } 1 \le p \le 2,$
- (*iii*) $\pi_p(\text{id: } \ell_2^n \to \ell_p^n) = n^{1/p} \text{ for } 1 \le p \le \infty,$
- (iv) $\pi_{p'}(\operatorname{id}: \ell_p^n \to \ell_2^n) = n^{1/p'} \text{ for } 1 \le p \le 2,$ (v) $\pi_p(\operatorname{id}: \ell_{p'}^n \to \ell_{\infty}^n) = n^{1/p} \text{ for } 1 \le p \le \infty.$

Equality (i) was proved in a slightly different formulation by D. J. H. Garling [5] (cf. also, [9], p. 60).

Other equalities are well-known to specialists. For sake of the completeness we give a sketch of the proof.

PROOF. (i) The upper estimate follows from (2.1) and Proposition 2.1(ii). For the lower estimate observe that

$$(\mathbb{E}||\mathbb{X}||_{2}^{p})^{1/p} = A_{p}^{-1}(\mathbb{E}||\mathbb{X}||_{2}^{p})^{1/p} \cdot \sup_{\|x^{*}\|_{2}=1} (\mathbb{E}|\langle x^{*}, \mathbb{X} \rangle|^{p})^{1/p}.$$

(iv) For $x \in \ell_p^n$ one has

$$\|\operatorname{id}(x)\|_{2} = \left(\sum_{\overline{\epsilon_{i}}=(\pm 1,...,\pm 1)\atop n \text{ times}} \frac{1}{2^{n}} |\langle x, \overline{\epsilon_{i}} \rangle|^{2}\right)^{1/2}$$
$$\leq \left(\sum_{\overline{\epsilon_{i}}=(\pm 1,...,\pm 1)} \frac{1}{2^{n}} |\langle x, \overline{\epsilon_{i}} \rangle|^{p'}\right)^{1/p'}.$$

Again, by Proposition 2.1(i) we obtain

$$\pi_{p'}(\mathrm{id}:\ell_p \to \ell_2) \leq \left(\frac{1}{2^n} \sum_{\overline{\epsilon_i} = (\pm 1, \dots, \pm 1)} \left\|\overline{\epsilon_i}\right\|_{p'}^{p'}\right)^{1/p'} = n^{1/p'}.$$

Conversely,

$$\left(\sum_{i=1}^{n} ||e_i||_2^{p'}\right)^{1/p'} = n^{1/p'} \sup_{||y||_{p'}=1} \left(\sum_{i=1}^{n} |\langle y, e_i \rangle|^{p'}\right)^{1/p'}.$$

We omit the proof of (ii), (iii) and (v).

As an interesting consequence we get an isometric characterization of ℓ_2^n as follows.

COROLLARY 2.3. Let $1 \le p < \infty$. An n-dimensional Banach space E is isometric to ℓ_2^n if and only if

$$\pi_p((i_{2E})^*) = \pi_p(\mathrm{id}: \ell_2^n \to \ell_2^n).$$

PROOF. By (2.1) and Proposition 2.1(ii) we obtain

$$\pi_p((i_{2E})^*) \leq A_p^{-1}(\mathbb{E}||\mathbb{X}||^p)^{1/p}.$$

Since $||x|| \le ||x||_2$ for every $x \in E$, by Proposition 2.2(i) we get

$$A_p^{-1}(\mathbb{E}||\mathbb{X}||^p)^{1/p} \le A_p^{-1}(E||\mathbb{X}||_2^p)^{1/p} = \pi_p(\mathrm{id}: \ell_2^n \to \ell_2^n) = \pi_p((i_{2E})^*)$$

Combining the two estimates we have $\|X(\omega)\| = \|X(\omega)\|_2$ almost everywhere. Hence, by the continuity, $\|X(\omega)\| = \|X(\omega)\|_2$ for every $\omega \in \Omega$ completing the proof.

REMARK. For an *n*-dimensional Banach space *E* one has $\pi_2((i_{2E})^*) \leq \sqrt{n} ||(i_{2E})^*|| = \sqrt{n}$. Corollary 2.3 says in particular that if the 2-summing norm of the operator $(i_{2E})^*$ is maximal, then *E* is isometric to ℓ_2^n .

3. Characterizations of ℓ_p^n in terms of ideal norms of the identity operator. In this section we present characterizations of ℓ_p^n in terms of p'-summing and p-nuclear norms of the identity operator on the space.

We refer the reader to [9] for the standard definition of the p'-nuclear norm.

The definition of type p and cotype q constants, T'_p and C'_q , respectively, used here, differ from the usual ones by replacing the L_2 -Rademacher averages by the L_p - and L_q -averages respectively (*cf. e.g.* [9] p. 14). The main result of the section states:

THEOREM 3.1. Let E be an n-dimensional Banach space. Let $1 \le p < 2$. The following are equivalent:

- (*i*) $\pi_p(E) \ge n^{1/p}$,
- (ii) There exist vectors $e_1, \ldots, e_n \in E$ such that for every choice of scalars a_1, \ldots, a_n one has

$$\max_{i=1,\dots,n} |a_i| \le \left\|\sum_{i=1}^n a_i e_i\right\| \le \left(\sum_{i=1}^n |a_i|^{p'}\right)^{1/p'}$$

(*iii*) $\nu_{p'}(E) \leq n^{1/p'}$.

Furthermore, E is isometric to $\ell_{p'}^n$ if and only if E satisfies one of the above conditions, and $C'_{p'}(E) = 1$.

For p = 1, implication (i) \Rightarrow (ii) was proved in [2] and [4]; implication (iii) \Rightarrow (ii) is the isometric version of a classical P_{λ} problem, proved by Nachbin [7].

The proof of the theorem is based on several results of independent interest. Proposition 3.2 below is crucial for further investigation. It involves the operator i_{E2} associated to the ellipsoid of maximal volume. The case p = 1 was proved in [3] (*cf.* also, [9], p. 266).

PROPOSITION 3.2. Let $1 \le p < 2$ and E be an n-dimensional Banach space such that

$$\pi_p(i_{E2}) \ge n^{1/p}.$$

Then there exists an orthonormal basis $(e_j)_{j=1}^n$ in $(E, \|\cdot\|_2)$ such that $\|e_j\| = \|e_j\|_* = \|e_j\|_2 = 1$ for j = 1, ..., n.

We only give a sketch of the proof of Proposition 3.2 since it is similar to the one in the case p = 1.

PROOF OF PROPOSITION 3.2. By the well-known John's result (*cf.*, *e.g.*, [9], p. 118), there exist a positive integer *N*, vectors x_1, \ldots, n_N in *E* and positive scalars c_1, \ldots, c_N such that $||x_j|| = ||x_j||_* = 1$ ($j = 1, \ldots, N$), $\sum_{j=1}^N c_j = n$ and $x = \sum_{i=1}^N c_i \langle x, x_j \rangle x_j$ for $x \in E$.

We need the following lemma.

LEMMA 3.3. Assume that x_1, \ldots, x_N and c_1, \ldots, c_N are as above. Let $M \subset \{1, \ldots, N\}$ be a subset such that $\sum_{i \in M} c_i = m$, for some positive integer, and that

$$\langle x_s, x_i \rangle = 0$$
 for $x \notin M, j \in M$.

Let $F_M = \operatorname{span}(x_j)_{j \in M}$ and let $P: (E, \|\cdot\|_2) \to (E, \|\cdot\|_2)$ be the orthogonal projection onto F_M . If $\pi_p(Pi_{E2}) \ge m^{1/p}$, then there is a subset $J \subset M$ with |J| = m such that $\langle x_i, x_j \rangle = 0$ for $i \ne j, i, j \in J$.

Obviously, Proposition 3.2 follows from Lemma 3.3 applied for $M = \{1, ..., N\}$ and m = n.

PROOF OF LEMMA 3.3. Proceeding by induction, assume that m > 1 and that the lemma is true for m - 1. Pick a vector $y \in F_M$ such that $a = \sum_{j \in M} c_j |\langle y, x_j \rangle|^2$ is maximal subject to $\sum_{j \in M} c_j |\langle y, x_j \rangle|^p = 1$.

Since $\|y\|_2^2 \leq \sum_{j=1}^N c_j |\langle y, x_j \rangle|^p \|y\|_2^{2-p}$ we get $a \leq 1$. On the other hand, for every $x \in E$, $\|Px\|_2 \leq a^{1/2} (\sum_{j \in M} c_j |\langle x, x_j \rangle|^p)^{1/p}$ which gives

$$m^{1/p} \le \pi_p(Pi_{E2}) \le a^{1/2} \Big(\sum_{j \in M} c_j\Big)^{1/p} = a^{1/2} m^{1/p}$$
 and $a = 1$.

Next, since $(\sum_{j \in M} c_j |\langle y, x_j \rangle|^2)^{1/2} = (\sum_{j \in M} |\langle y, x_j \rangle|^p)^{1/p}$ and $|\langle y, x_j \rangle| \le 1$ it follows that there exists a subset $K \subset M$ such that

$$|\langle y, x_j \rangle| = \begin{cases} 1 & \text{for } s \in K \\ 0 & \text{for } s \in (1, \dots, N) \setminus K. \end{cases}$$

Let $k_0 \in K$. Then for every $k \in K$, $x_k = \epsilon_k x_{k_0}$ with $|\epsilon_k| = 1$ and therefore we may assume that $y = x_{k_0}$.

Put $M_1 = M \setminus K$. Then $\langle y, x_i \rangle = 0$ for $i \in M_1$. In addition, $\langle x_s, x_k \rangle = 0$ for $s \in M_1$, $k \notin M_1$ and $\sum_{i \in M_1} c_i = m - 1$.

Finally, if $Q: (E, || ||_2) \rightarrow (E, || ||_2)$ is the orthogonal projection onto $F_{M_1} = \operatorname{span}(x_i)_{i \in M_1}$ then

$$\pi_p(Qi_{E2}) \ge (m-1)^{1/p}.$$

Indeed, for every $x \in E$ one has

$$\|(P-Q)x\|_2 \leq \left(\sum_{j\in K} c_j |\langle x, x_j \rangle|^p\right)^{1/p}$$

and

$$\pi_p(Pi_{E2}) \leq \left(\pi_p \left((P-Q)i_{E2}\right)^p + \pi_p (Qi_{E2})^p\right)^{1/p}.$$

The last inequality can be checked using definition (1.1). By applying Proposition 2.1(i) we obtain the required inequality.

The inductive hypothesis applied to the subset M_1 and the projection Q yields that there is a subset $J_0 \subset M_1$ with $|J_0| = m - 1$ such that $\langle x_j, x_i \rangle = \delta_{ij}$, $i, j \in J_0$. Then $J_0 \cup \{k_0\}$ obviously satisfies the condition of Lemma 3.3.

In order to prove the next proposition we require the following lemma.

LEMMA 3.4. Let $1 \le p \le q \le \infty$ and let $(E, \|\cdot\|)$ be a normed space. Then for every choice of vectors $x_1, \ldots, x_n \in X$ the following inequality holds

(3.1)
$$\left(\sum_{i=1}^{n} \|x_i\|^q\right)^{1/q} \le \left(\alpha \sum_{i=1}^{n} \|x_i\|^p + \beta \left\|\sum_{i=1}^{n} x_i\right\|^p\right)^{1/p},$$

where $\alpha = 2^{p/q-1}$ and $\beta = 1 - \alpha$.

PROOF. The lemma is obvious for n = 1. Proceeding by induction, assume that the lemma is true for n-1. Without loss of generality, we may assume that $1 , <math>\sum_{i=2}^{n} ||x_i||^q = 1$ and $0 < ||x_1|| \le \cdots \le ||x_n||$. It is easy to see that to prove (3.1) it is enough to check the following stronger inequality:

(3.2)
$$\left(\sum_{i=1}^{n} \|x_i\|^q\right)^{1/q} \le \left(\alpha \sum_{i=1}^{n} \|x_i\|^p + \beta \left\|\|x_1\| - \left\|\sum_{i=2}^{n} x_i\|\right\|^p\right)^{1/p}.$$

Next, let us introduce the following notation:

$$(w)^{s} = \operatorname{sign}(w) \cdot |w|^{s} \text{ for } s > 1, \ w \in \mathbb{R};$$

 $A = \sum_{i=2}^{n} ||x_{i}||^{p};$
 $a = \left\|\sum_{i=2}^{n} x_{i}\right\|;$
 $||x_{1}|| = t \in [0, 1].$

Observe that in the above terms the following formulas are true:

$$\frac{d}{dt}|w|^p = p(w)^{p-1}$$
 and $w(w)^{p-1} = |w|^p$.

Finally, we can rewrite the inequality (3.2) in the following way:

(3.3)
$$0 \le f(t) = \alpha(t^p + A) + \beta |t - a|^p - (t^q + 1)^{p/q} \text{ where } t \in [0, 1].$$

To prove (3.3) observe that $f(0) \ge 0$ (by inductive hypothesis) and

$$f(1) = \alpha(1+A) + \beta |1-a|^p - (1+1)^{p/q} \ge 2\alpha - 2^{p/q}$$
$$= 2 \cdot 2^{p/q-1} - 2^{p/q} = 0$$

(since $A \ge 1$).

Now, let us suppose the contrary. There exists $t \in (0, 1)$ such that f'(t) = 0 and f(t) < 0. Then

$$\begin{aligned} 0 &= p^{-1}(t-a) \cdot f'(t) \\ &= (t-a)[\alpha t^{p-1} + \beta(t-a)^{p-1} - t^{q-1}(t^q+1)^{p/q-1}] \\ &= \alpha(t-a)t^{p-1} - \alpha(t^p+A) + f(t) + (t^q+1)^{p/q} - t^{q-1}(t-a)(t^q+1)^{p/q-1} \\ &< -\alpha(at^{p-1}+A) + (t^q+1)^{p/q-1}[1+t^{q-1}a] \\ &\leq (t^q+1)^{p/q-1}[-at^{p-1} - A + 1 + t^{q-1}a] \quad (\text{since } (t^q+1)^{p/q-1} < \alpha) \\ &\leq (t^q+1)^{p/q-1}a(t^{q-1} - t^{p-1}). \end{aligned}$$

To summarize, $0 < (t^q + 1)^{p/q-1}a(t^{q-1} - t^{p-1})$ which gives $t^{q-1} > t^{p-1}$ and p > q. This is contradictory to the assumption and completes the proof of the lemma.

PROPOSITION 3.5. Let $(E, \|\cdot\|)$ be an n-dimensional Banach space and $1 \le p < q \le \infty$. Suppose that there exists vectors $e_1, \ldots, e_n \in E$ and $e_1^*, \ldots, e_n^* \in E^*$ such that $\langle e_j^*, e_i \rangle = \delta_{ij}$ and $\|e_i\| = \|e_i^*\| = 1$ for $i = 1, \ldots, n$. Consider on E the ℓ_q^n norm, say $\|\cdot\|_q$, induced by the basis $(e_i)_{i=1}^n$. Let i_{Eq} denote the formal identity operator from $(E, \|\cdot\|)$ to $(E, \|\cdot\|_q)$.

If $\pi_p(i_{Eq}) \ge n^{1/p}$, then for every $a_1, \ldots, a_n \in \mathbb{C}$ one has

$$\left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p} \le \left\|\sum_{i=1}^{n} a_i e_i^*\right\|_*$$

PROOF. We will suppose that $q < \infty$. In the case $q = \infty$ the proof is similar. First, we will show that

(3.4)
$$\pi_p(Ti_{Eq}) = \left(\sum_{i=1}^n |a_i|^p\right)^{1/p} \text{ where } T = \sum_{i=1}^n a_i e_i^* \otimes e_i.$$

Fix $x \in E$. Then $||Ti_{Eq}x||_q \leq (\sum_{i=1}^n |a_i|^p |\langle x, e_i^* \rangle|^p)^{1/p}$ and so,

(3.5)
$$\pi_p(Ti_{Eq}) \le \left(\sum_{i=1}^n |a_i|^p\right)^{1/p}.$$

To see opposite inequality, choose $g_i \in \mathbb{C}$ (i = 1, ..., n) such that

$$\max |a_i| = (|a_i|^p + |g_i|^p)^{1/p}.$$

Define an operator

$$S: E \to E, \quad S = \sum_{i=1}^n g_i e_i^* \otimes e_i.$$

Then for every $x \in \ell_q^n$ one has

(3.6)
$$\max |a_i| ||x||_q \le (||Tx||_q^p + ||Sx||_q^p)^{1/p}.$$

Next, using definition (1.1) and (3.6) we obtain

$$\max |a_i| \pi_p(i_{Eq}) \le \left(\pi_p^p(T_{i_{Eq}}) + \pi_p^p(S_{i_{Eq}})\right)^{1/p}.$$

Hence, from (3.5) and above it follows

$$n^{1/p} \max |a_i| \le \max |a_i| \pi_p(i_{Eq}) \le [\pi_p^p(T_{i_{Eq}}) + \pi_p^p(S_{i_{Eq}})]^{1/p}$$
$$\le \left[\sum_{i=1}^n |a_i|^p + \sum_{i=1}^n |g_i|^p\right]^{1/p} = n^{1/p} \max |a_i|$$

and (3.4) holds as required.

Finally, using Lemma 3.4, one has

$$\begin{aligned} \|Tx\|_{q} &= \left(\sum_{i=1}^{n} |\langle Tx, e_{i}^{*}\rangle|^{q}\right)^{1/q} \\ &\leq \left(\alpha \sum_{i=1}^{n} |\langle Tx, e_{i}^{*}\rangle|^{p} + \beta \Big| \sum_{i=1}^{n} \langle Tx, e_{i}^{*}\rangle\Big|^{p}\right)^{1/p} \\ &= \left(\alpha \sum_{i=1}^{n} |a_{i}|^{p} \langle x, e_{i}^{*}\rangle|^{p} + \beta \Big| \left\langle x, \sum_{i=1}^{n} a_{i}e_{i}^{*}\right\rangle\Big|^{p}\right)^{1/p}. \end{aligned}$$

Hence, the condition (3.4) and Proposition 2.1(i) give

$$\left(\alpha \sum_{i=1}^{n} |a_i|^p + \beta \left\| \sum_{i=1}^{n} a_i e_i^* \right\|_*^p \right)^{1/p} \ge \pi_p(T_{iEq}) = \left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p}$$

which completes the proof.

Now we are able to prove Theorem 3.1.

PROOF OF THEOREM 3.1. The fact that (i) implies (ii) follows from Proposition 3.5 for q = 2, Proposition 3.2 and the inequality

$$\pi_p(i_{E2}) \ge \pi_p(E) \ge n^{1/p}.$$

Next, condition (ii) implies that the following factorization holds

$$E \xrightarrow[V_1]{} \ell_{\infty}^n \xrightarrow{} \delta^n_{p'} \xrightarrow{} V_2 E$$

with $\nu_{p'}(E) \le ||V_1|| ||\Delta|| ||V_2|| \le n^{1/p}$. Finally, (iii) implies (i) since

$$n = \operatorname{trace}(\operatorname{id}: E \to E) \leq \pi_p(E)\nu_{p'}(E).$$

Before we pass to the second part of the theorem, observe that

(3.7)
$$C'_{p'}(E) = 1$$
 iff $T'_{p}(E^{*}) = 1$.

This can be checked directly for two vectors, and by induction for more vectors. Suppose that $\pi_p(E) \ge n^{1/p}$; so, $\pi_p(i_{E2}) \ge n^{1/p}$. Using Proposition 2.1(ii) and (2.1) we obtain

$$n^{1/p} \leq \pi_p(i_{E2}) \leq A_p^{-1}(\mathbb{E} ||\mathbb{X}||_*^p)^{1/p}$$

= $A_p^{-1} \Big(\mathbb{E} \int_0^1 \left\| \sum_{i=1}^n r_i(t) \gamma_i e_i \right\|_*^p dt \Big)^{1/p}$
 $\leq A_p^{-1} \Big(\mathbb{E} \sum_{i=1}^n |\gamma_i|^p ||e_i||_*^p \Big)^{1/p} = n^{1/p}.$

Therefore, $A_p^{-1}(\mathbb{E}||\mathbb{X}||_p^p)^{1/p} = n^{1/p} = A_p^{-1}(\mathbb{E}||\mathbb{X}||_*^p)^{1/p}$. Since $||x||_p \le ||x||_*$ for every $x \in E$ we conclude that $||\cdot||_p = ||\cdot||_*$ as in the proof of Corollary 2.3.

4. The ellipsoid of maximal volume and other characterizations of ℓ_p^n spaces. In this section we give some characterizations of ℓ_p^n space in terms of *p*-summing norms of an operator associated with the ellipsoid of maximal volume contained in the unit ball of *E*.

Before we start, let us introduce some new notation. Let $i_{E\infty}$: $(E, \|\cdot\|) \to (E, \|\cdot\|_{\infty})$ denote the formal identity operator where the norm $\|\cdot\|_{\infty}$ is given by a fixed Auerbach system on *E*. Similarly, we define $i_{E^*\infty}$: $(E^*, \|\cdot\|_*) \to (E, \|\cdot\|_{\infty})$. Finally, let

$$i_{E^*2} = (i_{2E})^*$$
 and $i_{2E^*} = (i_{E2})^*$.

THEOREM 4.1. Let E be an n-dimensional linear space. Then for $1 \le p < 2$ the following are equivalent.

- (i) E^* is isometric to ℓ_p^n ,
- (ii) $\pi_p(i_{E2}) \ge n^{1/p}$ and $\pi_{p'}(i_{E^*2}) \ge n^{1/p'}$,
- (*iii*) $\pi_p(i_{E2}) \ge n^{1/p}$ and $\pi_p(i_{2E^*}) \le n^{1/p}$,
- Moreover, for $1 \le p < \infty$ condition (i) is equivalent to (iv) $\pi_p(i_{E\infty}) \ge n^{1/p}$ and $\pi_{p'}(i_{E^*\infty}) \ge n^{1/p'}$.

PROOF. By Proposition 2.2 we see that the condition (i) implies (ii), (iii) and (iv). First, suppose that

$$\pi_p(i_{E2}) \ge n^{1/p}.$$

By Proposition 3.2 and Proposition 3.5, we conclude that

(4.1) $||x|| \le ||x||_{p'}$ for $x \in E$.

Now, let us suppose that

$$\pi_{p'}(i_{E^*2}) \ge n^{1/p'}.$$

Applying (4.1) and Proposition 2.1(ii) to (2.1) for s = p' it follows that

$$n^{1/p'} \leq \pi_{p'}(i_{E^*2}) \leq A_{p'}^{-1}(\mathbb{E}||\mathbb{X}||^{p'})^{1/p} \\ \leq A_{p'}^{-1}(\mathbb{E}||\mathbb{X}||^{p'}_{p'})^{1/p'} = n^{1/p'}.$$

Hence, $\|\cdot\|_{p'} = \|\cdot\|$. Next, let us suppose that (iii) holds. Again, by (2.1) for s = p, we obtain

(4.2)
$$n^{1/p} \le \pi_p(i_{E2}) \le A_p^{-1}(\mathbb{E} \| \mathbb{X} \|_*^p)^{1/p}.$$

Using the Pietsch Factorization Theorem [8] (*cf.* also, [9], p. 47) one can find a probability measure μ on $S_2^{n-1} = \{x : ||x||_2 = 1\}$ such that

$$||x^*||_* \le n^{1/p} \Big(\int_{S_2^{n-1}} |\langle y, x^* \rangle|^p \, d\mu(y) \Big)^{1/p} \quad \text{for } x^* \in E^*.$$

By (4.2) and the above inequality one has

$$n^{1/p} \leq A_p^{-1}(\mathbb{E}||\mathbb{X}||_*^p)^{1/p} \leq n^{1/p} A_p^{-1} \Big(\mathbb{E} \int_{S_2^{n-1}} |\langle y, \mathbb{X} \rangle|^p \, d\mu(y) \Big)^{1/p} = n^{1/p}.$$

Therefore, $\mathbb{E} \|X\|_*^p = \mathbb{E} \|X\|_p^p$ and $\|\cdot\|_* = \|\cdot\|_p$, as before.

Finally, using Proposition 3.5 for $q = \infty$ we conclude from (iv) that

$$||x^*||_p \le ||x^*||_*$$
 for $x^* \in E^*$

and

$$||x||_{p'} \le ||x||$$
 for $x \in E$.

This implies that *E* is isometric to $\ell_{p'}$ completing the proof.

5. Finite dimensional subspaces of L_p . In the last section of the paper we apply Theorem 3.1 to subspaces of L_p . We also get a characterization of *n*-dimensional subspaces of L_p with the maximal Euclidean distance.

COROLLARY 5.1. Let *E* be an *n*-dimensional subspace of $L_p(\Omega, \mu)$. Then *E* is isometric to ℓ_p^n if and only if $\pi_{p'}(E) \ge n^{1/p'}$ for $2 or <math>\pi_p(E^*) \ge n^{1/p}$ for $1 \le p < 2$.

The corollary follows immediately from Theorem 3.1 and the fact that $T'_p(L_p(\Omega, \mu)) = 1$.

PROPOSITION 5.2. Fix n and $2 . Then any n-dimensional subspace E of <math>L_p(\Omega, \mu)$ whose Euclidean distance is maximal, i.e., $d(E, \ell_2^n) = n^{1/2-1/p}$, is isometric to ℓ_p^n .

For 1 , an analogous result was proved in [1].

The proof of Proposition 5.2 is based on well-known result of D.R. Lewis [6] which states:

PROPOSITION 5.3. Fix n and $1 . Then for any n-dimensional subspace E of <math>L_p(\Omega, \mu)$ there exists $f_1, \ldots, f_n \in E$ such that

(5.1)
$$\int f_i \overline{f_j} F^{p-2} d\mu = \delta_{ij}, \quad \text{where } F = \left(\sum_{i=1}^n |f_i|^2\right)^{1/2}.$$

PROOF OF PROPOSITION 5.2. Fix an arbitrary *n*-dimensional subspace of *E* of $L_p(\Omega, \mu)$. Denote $d(E, \ell_2^n)$ by d_E . First we follow Lewis' argument from [6]. Observe that (5.1) implies

(5.2)
$$\int \left| \sum_{i=1}^{n} a_{i} f_{i} \right|^{2} F^{p-2} d\mu = \sum_{i=1}^{n} |a_{i}|^{2},$$
(5.3)
$$\|F\|_{p} = n^{1/p}.$$

Define an operator $T: E \to L_2(\Omega, \mu)$ by $Tf = fF^{\frac{p-2}{2}}$, for $f \in E$. Using Hölder's inequality it is easy to see that

$$|Tf||_2^p \le ||f||_p^2 ||F||_p^{p-2}.$$

Thus by (5.3), $||T|| \le n^{1/2 - 1/p}$.

On the other hand, by (5.2) and Cauchy-Schwarz inequality we get, for every $h = \sum_{i=1}^{n} a_i f_i \in E$

(5.4)
$$\|h\|_{p}^{p} = \int \left|\sum_{i=1}^{n} a_{i}f_{i}\right|^{2} \left|\sum_{i=1}^{n} a_{i}f_{i}\right|^{p-2} d\mu$$
$$\leq \left(\sum_{i=1}^{n} |a_{i}|^{2}\right)^{\frac{p-2}{2}} \int \left|\sum_{i=1}^{n} a_{i}f_{i}\right|^{2} F^{p-2} d\mu$$
$$= \left(\sum_{i=1}^{n} |a_{i}|^{2}\right)^{p/2} = \left[\int \left|\sum_{i=1}^{n} a_{i}f_{i}\right|^{2} F^{p-2} d\mu\right]^{p/2} = \|Th\|_{2}^{p}.$$

Thus $||T^{-1}|| \le 1$, and so,

(5.5)
$$d_E \le n^{1/2 - 1/p}$$
.

Now, we proceed by induction in *n*. Assume that the proposition is valid for (n - 1)-dimensional subspaces.

Let $E \subset L_p(\Omega, \mu)$, dim E = n, $d_E = n^{1/2-1/p}$. Then $||T^{-1}|| = 1$. Fix $h \in E$ such that $||h||_p = ||Th||_2 = 1$ and $h = \sum_{i=1}^n a_i f_i$ for some scalars a_i, \ldots, a_n where f_1, \ldots, f_n are as in Proposition 5.4. Since all the inequalities in (5.5) become equalities, it follows that |h| = F a.e. in the support A of h.

Moreover, there exists a functional ϕ such that $f_i = \phi a_i$ a.e.

Since the f_i 's are linearly independent, we conclude that there exists $i_0 \in \{1, ..., n\}$ such that $a_i = \delta_{ii_0}$. Without loss of generality assume that $i_0 = 1$. Therefore, $|h| = |f_i|$ a.e. and $f_2 = f_3 = \cdots = f_n = 0$ a.e. on *A*. Next, observe that for any $f \in E$, the restriction $f \cdot \chi_A$ of *f* to *A* belongs to the one-dimensional subspace [h] of $L_p(\Omega, \mu)$ generated by *h*. Summarizing, $E = [h] \oplus_p E_1$ where

$$E_1 = \{ f \in E : f(w) = 0 \text{ a.e. on } A \}.$$

It is not difficult to show that

$$d_E \leq (1 + d_{E_1}^{\frac{1}{1/2 - 1/p}})^{1/2 - 1/p}$$

By (5.5) for the space E_1 and above we obtain that $d_{E_1} = (n-1)^{1/2-1/p}$. Finally, using the inductive hypothesis, we conclude the proof.

REFERENCES

- 1. J. Bourgain and L. Tzafriri, Invertibility of 'large' submatrices with applications to the geometry of Banach spaces and harmonic analysis, Israel J. Math. 57(1987), 137–224.
- J. P. Deschaseaux, Une caractérisation de certains espaces vectoriel normés de dimension finie par leur constante de Macphail, C. R. Acad. Sci. Paris (A/B) 276(1973), 1349–1351.
- **3.** T. Figiel and W. B. Johnson, Large subspaces of ℓ_{∞}^n and estimates of the Gordon-Lewis constant, Israel J. Math. **37**(1980), 92–112.
- **4.** D. J. H. Garling, *Operators with large trace and characterization of* ℓ_{∞}^{n} , Proc. Cambridge Philos. Soc. **76**(1974), 413–414.
- 5. _____, Absolutely p-summing operators in Hilbert spaces, Studia Math. 38(1970), 319–321.
- **6.** D. R. Lewis, *Finite dimensional subspaces of* L_p , Studia. Math. **63**(1978), 207–212.
- 7. L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc. **68**(1950), 28–46.
- 8. A. Pietsch, Operator Ideals, VEB Deutscher Verlag, Berlin, North-Holland, Amsterdam, 1978.
- 9. N. Tomczak-Jaegermann, Banach-Mazur distance and finite dimensional operator ideals, Pitman Monographs and Surveys in Pure and App. Math. Longman Sci. & Tech. Harlow & J. Wiley, New York, 1989.

Department of Mathematics The University of Alberta Edmonton, Alberta T6G 2G1