ISOMETRIC CHARACTERIZATIONS OF ℓ_{p}^{n} SPACES

RYSZARD KOMOROWSKI

Abstract

The paper establishes some characterizations of ℓ_{p}^{n} spaces in terms of p-summing or p-nuclear norms of the identity operator on the given space E.

In particular, for an n-dimensional Banach space E and $1 \leq p<2, E$ is isometric to ℓ_{p}^{n} if and only if $\pi_{p}\left(E^{*}\right) \geq n^{1 / p}$ and E^{*} has cotype p^{\prime} with the constant one.

Furthermore, ℓ_{p}^{n} spaces are characterized by inequalities for p-summing norms of operators related to the John's ellipsoid of maximal volume contained in the unit ball of E.

Introduction. In this paper we establish characterizations of spaces ℓ_{p}^{n} in terms of ideal norms of certain natural operators related to an n-dimensional Banach space E. Some characterizations are given by conditions on p-summing and p^{\prime}-nuclear norms of the identity operator on E, combined with the assumption on the cotype of the space. Other involve operators related to the John's ellipsoid of maximal volume contained in the unit ball of E. These characterizations generalize several known results for ℓ_{∞}^{n} and ℓ_{1}^{n} ([2], [3], [4], [7]). We also study similar problems also in the more concrete setting of subspaces of L_{p}-spaces.

Let us describe the content of the paper in more detail. Sections 1 and 2 contain notations and preliminaries on p-summing norms. In particular we observe, in Proposition 2.1, an upper estimate of the p-summing norm of an operator by the p-th moment of a related vector valued Gaussian random variable. This estimate appears several times in further arguments.

In Section 3 we prove that if $1 \leq p<2$ and E is an n-dimensional Banach space such that $\pi_{p}(\mathrm{id}: E \rightarrow E) \geq n^{1 / p}$, then there exist e_{1}, \ldots, e_{n} in E such that for every sequence of scalars a_{1}, \ldots, a_{n} one has

$$
\max _{i=1, \ldots, n}\left|a_{i}\right| \leq\left\|\sum_{i=1}^{n} a_{i} e_{i}\right\| \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p^{\prime}}\right)^{1 / p^{\prime}}
$$

(Here $1 / p+1 / p^{\prime}=1$.) It turns out that the vectors e_{1}, \ldots, e_{n} are the contact points of the unit ball B_{E} of E with the John's ellipsoid of maximal volume contained in B_{E}.

Section 4 is devoted to study of p-summing norms of operators related to the ellipsoid of maximal volume. It is shown that some inequalities for these norms characterize ℓ_{p}^{n}. Finally in Section 5 we present some consequences of our results for subspaces of L_{p}. We also prove that if $2<p<\infty$, then an n-dimensional subspace of L_{p} with the maximal Euclidean distance is isometric to ℓ_{p}^{n}. This complements a result obtained in [1] for $1<p<2$.

[^0]The paper is a part of the author's Ph . D . thesis being prepared under the supervision of Dr. N. Tomczak-Jaegermann. The author wishes to thank her for her helpful advice.

1. Notation. Let $(E,\|\cdot\|)$ be a finite dimensional Banach space over either \mathbb{R} or \mathbb{C} and let $\|\cdot\|_{2}$ denote the Euclidean norm on E induced by the ellipsoid of maximal volume contained in the unit ball of E. Let $\langle\cdot, \cdot\rangle$ denote the induced inner product, let $\|\cdot\|_{*}$ be the norm on E, dual to the original norm $\|\cdot\|$, and let $i_{2 E}:\left(E,\|\cdot\|_{2}\right) \rightarrow(E,\|\cdot\|)$ and $i_{E 2}=\left(i_{2 E}\right)^{-1}$ be the formal identity operators.

Let $1 \leq p<\infty$ and let X and Y be Banach spaces. For an operator $S: X \rightarrow Y$ set $\pi_{p}(S)=\inf c$ where the infimum is taken over all constants c such that

$$
\begin{equation*}
\left(\sum_{j}\left\|S x_{i}\right\|^{p}\right)^{1 / p} \leq c \sup _{\substack{x^{*} * X^{*} \\\left\|x^{*}\right\| \leq 1}}\left(\sum_{j}\left|\left\langle x_{j}, x^{*}\right\rangle\right|^{p}\right)^{1 / p} \tag{1.1}
\end{equation*}
$$

for all finite sequences $\left(x_{j}\right)$ in X; if no such c exists then $\pi_{p}(S)=\infty$. If $\pi_{p}(S)<\infty$ then S is said to be p-summing and $\pi_{p}(S)$ is called the p-summing norm of S.

For a real valued random variable ξ on a probability space (Ω, P) we denote by $\mathbb{E} \xi$ the expected value of ξ.

Finally, let $\gamma_{1}, \ldots, \gamma_{n}$ denote real or complex Gaussian random variables on (Ω, P). For $s \geq 1$ set $A_{s}=\left(\mathbb{E}\left|\gamma_{1}\right|^{s}\right)^{1 / s}$. For any orthonormal basis $\left(e_{i}\right)$ in ℓ_{2}^{n}, let \mathbb{X} denote the ℓ_{2}^{n}-valued random variable defined by

$$
\begin{equation*}
\mathbb{X}=\sum_{i=1}^{n} \gamma_{i} e_{i} \tag{1.2}
\end{equation*}
$$

Notice that the distribution of \mathbb{X} does not depend on a choice of the basis $\left(e_{i}\right)$.
2. Preliminaries on p-summing norms. We start by stating a simple observation which will be often used throughout the paper. It follows direction from the definition (1.1) of the p-summing norms (cf. e.g., [9]).

Proposition 2.1. Let $1 \leq p<\infty$ and let T be an operator between two Banach spaces X and Y.
(i) Suppose that there are functionals $x_{1}^{*}, x_{2}^{*}, \ldots, \in X$ such that

$$
\|T x\|^{p} \leq \sum_{j}\left|\left\langle x_{j}^{*}, x\right\rangle\right|^{p} \quad \text { for all } x \in X .
$$

Then $\pi_{p}(T) \leq\left(\sum_{j}\left\|x_{j}^{*}\right\|^{p}\right)^{1 / p}$.
(ii) Let ξ be a random variable on a probability space (Ω, P) with values in $\left(X^{*}, \sigma\left(x^{*}, x\right)\right)$ and suppose that $\|T x\|^{p} \leq \mathbb{E}|\langle\xi, x\rangle|^{p}$ for all $x \in X$. Then $\pi_{p}(T) \leq$ $\left(\mathbb{E}\|\xi\|^{p}\right)^{1 / p}$.
Recall that \mathbb{X} is the ℓ_{2}^{n}-valued random variable defined in (1.2). It is easy to calculate that

$$
\begin{equation*}
\|x\|_{2}=A_{s}^{-1}\left(\mathbb{E}|\langle\mathbb{X}, x\rangle|^{s}\right)^{1 / s} \quad \text { for } s \geq 1 . \tag{2.1}
\end{equation*}
$$

Now, let us give some simple conclusions from Proposition 2.1 which we will need further.

PROPOSITION 2.2. The following equalities are true.
(i) $\pi_{p}\left(\mathrm{id}: \ell_{2}^{n} \rightarrow \ell_{2}^{n}\right)=A_{p}^{-1}\left(\mathbb{E}\|\mathbb{X}\|_{2}^{p}\right)^{1 / p}$,
(ii) $\pi_{p}\left(\mathrm{id}: \ell_{p^{\prime}}^{n} \rightarrow \ell_{p}^{n}\right)=n^{1 / p}$ for $1 \leq p \leq 2$,
(iii) π_{p} (id: $\left.\ell_{2}^{n} \rightarrow \ell_{p}^{n}\right)=n^{1 / p}$ for $1 \leq p \leq \infty$,
(iv) $\pi_{p^{\prime}}\left(\mathrm{id}: \ell_{p}^{n} \rightarrow \ell_{2}^{n}\right)=n^{1 / p^{\prime}}$ for $1 \leq p \leq 2$,
(v) π_{p} (id: $\left.\ell_{p^{\prime}}^{n} \rightarrow \ell_{\infty}^{n}\right)=n^{1 / p}$ for $1 \leq p \leq \infty$.

Equality (i) was proved in a slightly different formulation by D. J. H. Garling [5] (cf. also, [9], p. 60).

Other equalities are well-known to specialists. For sake of the completeness we give a sketch of the proof.

Proof. (i) The upper estimate follows from (2.1) and Proposition 2.1(ii). For the lower estimate observe that

$$
\left(\mathbb{E}\|\mathbb{X}\|_{2}^{p}\right)^{1 / p}=A_{p}^{-1}\left(\mathbb{E}\|\mathbb{X}\|_{2}^{p}\right)^{1 / p} \cdot \sup _{\left\|x^{*}\right\|_{2}=1}\left(\mathbb{E}\left|\left\langle x^{*}, \mathbb{X}\right\rangle\right|^{p}\right)^{1 / p}
$$

(iv) For $x \in \ell_{p}^{n}$ one has

$$
\begin{aligned}
\|\operatorname{id}(x)\|_{2} & =(\underbrace{}_{\left.\bar{\epsilon}_{i}=\sum_{n \text { times }}^{\sum_{11, \ldots, \pm 1)}} \frac{1}{2^{n}}\left|\left\langle x, \bar{\epsilon}_{i}\right\rangle\right|^{2}\right)^{1 / 2}} \\
& \leq\left(\sum_{\bar{\epsilon}_{i}=(\pm 1, \ldots, \pm 1)} \frac{1}{2^{n}}\left|\left\langle x, \overline{\epsilon_{i}}\right\rangle\right|^{\prime^{\prime}}\right)^{1 / p^{\prime}} .
\end{aligned}
$$

Again, by Proposition 2.1(i) we obtain

$$
\pi_{p^{\prime}}\left(\mathrm{id}: \ell_{p} \rightarrow \ell_{2}\right) \leq\left(\frac{1}{2^{n}} \sum_{\bar{\epsilon}_{i}=(\pm 1, \ldots, \pm 1)}\left\|\bar{\epsilon}_{i}\right\|_{p^{\prime}}^{\|^{\prime}}\right)^{1 / p^{\prime}}=n^{1 / p^{\prime}}
$$

Conversely,

$$
\left(\sum_{i=1}^{n}\left\|e_{i}\right\|_{2}^{p^{\prime}}\right)^{1 / p^{\prime}}=n^{1 / p^{\prime}} \sup _{\|y\|_{p^{\prime}}=1}\left(\sum_{i=1}^{n}\left|\left\langle y, e_{i}\right\rangle\right|^{p^{\prime}}\right)^{1 / p^{\prime}} .
$$

We omit the proof of (ii), (iii) and (v).
As an interesting consequence we get an isometric characterization of ℓ_{2}^{n} as follows.
Corollary 2.3. Let $1 \leq p<\infty$. An n-dimensional Banach space E is isometric to ℓ_{2}^{n} if and only if

$$
\pi_{p}\left(\left(i_{2 E}\right)^{*}\right)=\pi_{p}\left(\mathrm{id}: \ell_{2}^{n} \rightarrow \ell_{2}^{n}\right) .
$$

Proof. By (2.1) and Proposition 2.1(ii) we obtain

$$
\pi_{p}\left(\left(i_{2 E}\right)^{*}\right) \leq A_{p}^{-1}\left(\mathbb{E}\|\mathbb{X}\|^{p}\right)^{1 / p}
$$

Since $\|x\| \leq\|x\|_{2}$ for every $x \in E$, by Proposition 2.2(i) we get

$$
\begin{aligned}
A_{p}^{-1}\left(\mathbb{E}\|\mathbb{X}\|^{p}\right)^{1 / p} & \leq A_{p}^{-1}\left(E\|\mathbb{X}\|_{2}^{p}\right)^{1 / p} \\
& =\pi_{p}\left(\mathrm{id}: \ell_{2}^{n} \rightarrow \ell_{2}^{n}\right)=\pi_{p}\left(\left(i_{2 E}\right)^{*}\right)
\end{aligned}
$$

Combining the two estimates we have $\|\mathbb{X}(\omega)\|=\|\mathbb{X}(\omega)\|_{2}$ almost everywhere. Hence, by the continuity, $\|\mathbb{X}(\omega)\|=\|\mathbb{X}(\omega)\|_{2}$ for every $\omega \in \Omega$ completing the proof.

REMARK. For an n-dimensional Banach space E one has $\pi_{2}\left(\left(i_{2 E}\right)^{*}\right) \leq \sqrt{n}\left\|\left(i_{2 E}\right)^{*}\right\|=$ \sqrt{n}. Corollary 2.3 says in particular that if the 2 -summing norm of the operator $\left(i_{2 E}\right)^{*}$ is maximal, then E is isometric to ℓ_{2}^{n}.
3. Characterizations of ℓ_{p}^{n} in terms of ideal norms of the identity operator. In this section we present characterizations of ℓ_{p}^{n} in terms of p^{\prime}-summing and p-nuclear norms of the identity operator on the space.

We refer the reader to [9] for the standard definition of the p^{\prime}-nuclear norm.
The definition of type p and cotype q constants, T_{p}^{\prime} and C_{q}^{\prime}, respectively, used here, differ from the usual ones by replacing the L_{2}-Rademacher averages by the L_{p} - and $L_{q^{-}}$ averages respectively (cf. e.g. [9] p. 14). The main result of the section states:

Theorem 3.1. Let E be an n-dimensional Banach space. Let $1 \leq p<2$. The following are equivalent:
(i) $\pi_{p}(E) \geq n^{1 / p}$,
(ii) There exist vectors $e_{1}, \ldots, e_{n} \in E$ such that for every choice of scalars a_{1}, \ldots, a_{n} one has

$$
\max _{i=1, \ldots, n}\left|a_{i}\right| \leq\left\|\sum_{i=1}^{n} a_{i} e_{i}\right\| \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p^{\prime}}\right)^{1 / p^{\prime}}
$$

(iii) $\nu_{p^{\prime}}(E) \leq n^{1 / p^{\prime}}$.

Furthermore, E is isometric to $\ell_{p^{\prime}}^{n}$ if and only if E satisfies one of the above conditions, and $C_{p^{\prime}}^{\prime}(E)=1$.

For $p=1$, implication (i) \Rightarrow (ii) was proved in [2] and [4]; implication (iii) \Rightarrow (ii) is the isometric version of a classical P_{λ} problem, proved by Nachbin [7].

The proof of the theorem is based on several results of independent interest. Proposition 3.2 below is crucial for further investigation. It involves the operator $i_{E 2}$ associated to the ellipsoid of maximal volume. The case $p=1$ was proved in [3] (cf. also, [9], p. 266).

Proposition 3.2. Let $1 \leq p<2$ and E be an n-dimensional Banach space such that

$$
\pi_{p}\left(i_{E 2}\right) \geq n^{1 / p}
$$

Then there exists an orthonormal basis $\left(e_{j}\right)_{j=1}^{n}$ in $\left(E,\|\cdot\|_{2}\right)$ such that $\left\|e_{j}\right\|=\left\|e_{j}\right\|_{*}=$ $\left\|e_{j}\right\|_{2}=1$ for $j=1, \ldots, n$.

We only give a sketch of the proof of Proposition 3.2 since it is similar to the one in the case $p=1$.

Proof of Proposition 3.2. By the well-known John's result (cf., e.g., [9], p. 118), there exist a positive integer N, vectors x_{1}, \ldots, n_{N} in E and positive scalars c_{1}, \ldots, c_{N} such that $\left\|x_{j}\right\|=\left\|x_{j}\right\|_{*}=1(j=1, \ldots, N), \sum_{j=1}^{N} c_{j}=n$ and $x=\sum_{i=1}^{N} c_{i}\left\langle x, x_{j}\right\rangle x_{j}$ for $x \in E$.

We need the following lemma.
LEmma 3.3. Assume that x_{1}, \ldots, x_{N} and c_{1}, \ldots, c_{N} are as above. Let $M \subset\{1, \ldots, N\}$ be a subset such that $\sum_{j \in M} c_{j}=m$, for some positive integer, and that

$$
\left\langle x_{s}, x_{j}\right\rangle=0 \quad \text { for } x \notin M, j \in M .
$$

Let $F_{M}=\operatorname{span}\left(x_{j}\right)_{j \in M}$ and let $P:\left(E,\|\cdot\|_{2}\right) \rightarrow\left(E,\|\cdot\|_{2}\right)$ be the orthogonal projection onto F_{M}. If $\pi_{p}\left(P i_{E 2}\right) \geq m^{1 / p}$, then there is a subset $J \subset M$ with $|J|=m$ such that $\left\langle x_{i}, x_{j}\right\rangle=0$ for $i \neq j, i, j \in J$.

Obviously, Proposition 3.2 follows from Lemma 3.3 applied for $M=\{1, \ldots, N\}$ and $m=n$.

Proof of Lemma 3.3. Proceeding by induction, assume that $m>1$ and that the lemma is true for $m-1$. Pick a vector $y \in F_{M}$ such that $a=\sum_{j \in M} c_{j}\left|\left\langle y, x_{j}\right\rangle\right|^{2}$ is maximal subject to $\sum_{j \in M} c_{j}\left|\left\langle y, x_{j}\right\rangle\right|^{p}=1$.

Since $\|y\|_{2}^{2} \leq \sum_{j=1}^{N} c_{j}\left|\left\langle y, x_{j}\right\rangle\right|^{p}\|y\|_{2}^{2-p}$ we get $a \leq 1$. On the other hand, for every $x \in E$, $\|P x\|_{2} \leq a^{1 / 2}\left(\sum_{j \in M} c_{j}\left|\left\langle x, x_{j}\right\rangle\right|^{p}\right)^{1 / p}$ which gives

$$
m^{1 / p} \leq \pi_{p}\left(P i_{E 2}\right) \leq a^{1 / 2}\left(\sum_{j \in M} c_{j}\right)^{1 / p}=a^{1 / 2} m^{1 / p} \quad \text { and } \quad a=1 .
$$

Next, since $\left(\sum_{j \in M} c_{j}\left|\left\langle y, x_{j}\right\rangle\right|^{2}\right)^{1 / 2}=\left(\sum_{j \in M}\left|\left\langle y, x_{j}\right\rangle\right|^{p}\right)^{1 / p}$ and $\left|\left\langle y, x_{j}\right\rangle\right| \leq 1$ it follows that there exists a subset $K \subset M$ such that

$$
\left|\left\langle y, x_{j}\right\rangle\right|= \begin{cases}1 & \text { for } s \in K \\ 0 & \text { for } s \in(1, \ldots, N) \backslash K .\end{cases}
$$

Let $k_{0} \in K$. Then for every $k \in K, x_{k}=\epsilon_{k} x_{k_{0}}$ with $\left|\epsilon_{k}\right|=1$ and therefore we may assume that $y=x_{k_{0}}$.

Put $M_{1}=M \backslash K$. Then $\left\langle y, x_{i}\right\rangle=0$ for $i \in M_{1}$. In addition, $\left\langle x_{s}, x_{k}\right\rangle=0$ for $s \in M_{1}$, $k \notin M_{1}$ and $\sum_{i \in M_{1}} c_{i}=m-1$.

Finally, if $Q:\left(E,\| \|_{2}\right) \rightarrow\left(E,\| \|_{2}\right)$ is the orthogonal projection onto $F_{M_{1}}=$ $\operatorname{span}\left(x_{i}\right)_{i \in M_{1}}$ then

$$
\pi_{p}\left(Q i_{E 2}\right) \geq(m-1)^{1 / p}
$$

Indeed, for every $x \in E$ one has

$$
\|(P-Q) x\|_{2} \leq\left(\sum_{j \in K} c_{j}\left|\left\langle x, x_{j}\right\rangle\right|^{p}\right)^{1 / p}
$$

and

$$
\pi_{p}\left(P i_{E 2}\right) \leq\left(\pi_{p}\left((P-Q) i_{E 2}\right)^{p}+\pi_{p}\left(Q i_{E 2}\right)^{p}\right)^{1 / p}
$$

The last inequality can be checked using definition (1.1). By applying Proposition 2.1 (i) we obtain the required inequality.

The inductive hypothesis applied to the subset M_{1} and the projection Q yields that there is a subset $J_{0} \subset M_{1}$ with $\left|J_{0}\right|=m-1$ such that $\left\langle x_{j}, x_{i}\right\rangle=\delta_{i j}, i, j \in J_{0}$. Then $J_{0} \cup\left\{k_{0}\right\}$ obviously satisfies the condition of Lemma 3.3.

In order to prove the next proposition we require the following lemma.
Lemma 3.4. Let $1 \leq p \leq q \leq \infty$ and let $(E,\|\cdot\|)$ be a normed space. Then for every choice of vectors $x_{1}, \ldots, x_{n} \in X$ the following inequality holds

$$
\begin{equation*}
\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{q}\right)^{1 / q} \leq\left(\alpha \sum_{i=1}^{n}\left\|x_{i}\right\|^{p}+\beta\left\|\sum_{i=1}^{n} x_{i}\right\|^{p}\right)^{1 / p}, \tag{3.1}
\end{equation*}
$$

where $\alpha=2^{p / q-1}$ and $\beta=1-\alpha$.
Proof. The lemma is obvious for $n=1$. Proceeding by induction, assume that the lemma is true for $n-1$. Without loss of generality, we may assume that $1<p<q<\infty$, $\sum_{i=2}^{n}\left\|x_{i}\right\|^{q}=1$ and $0<\left\|x_{1}\right\| \leq \cdots \leq\left\|x_{n}\right\|$. It is easy to see that to prove (3.1) it is enough to check the following stronger inequality:

$$
\begin{equation*}
\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{q}\right)^{1 / q} \leq\left(\alpha \sum_{i=1}^{n}\left\|x_{i}\right\|^{p}+\beta \mid\left\|x_{1}\right\|-\left\|\sum_{i=2}^{n} x_{i}\right\|^{p}\right)^{1 / p} \tag{3.2}
\end{equation*}
$$

Next, let us introduce the following notation:

$$
\begin{gathered}
(w)^{s}=\operatorname{sign}(w) \cdot|w|^{s} \quad \text { for } s>1, w \in \mathbb{R} ; \\
A=\sum_{i=2}^{n}\left\|x_{i}\right\|^{p} ; \\
a=\left\|\sum_{i=2}^{n} x_{i}\right\| ; \\
\left\|x_{1}\right\|=t \in[0,1] .
\end{gathered}
$$

Observe that in the above terms the following formulas are true:

$$
\frac{d}{d t}|w|^{p}=p(w)^{p-1} \quad \text { and } \quad w(w)^{p-1}=|w|^{p} .
$$

Finally, we can rewrite the inequality (3.2) in the following way:

$$
\begin{equation*}
0 \leq f(t)=\alpha\left(t^{p}+A\right)+\beta|t-a|^{p}-\left(t^{q}+1\right)^{p / q} \quad \text { where } t \in[0,1] . \tag{3.3}
\end{equation*}
$$

To prove (3.3) observe that $f(0) \geq 0$ (by inductive hypothesis) and

$$
\begin{aligned}
f(1) & =\alpha(1+A)+\beta|1-a|^{p}-(1+1)^{p / q} \geq 2 \alpha-2^{p / q} \\
& =2 \cdot 2^{p / q-1}-2^{p / q}=0
\end{aligned}
$$

(since $A \geq 1$).

Now, let us suppose the contrary. There exists $t \in(0,1)$ such that $f^{\prime}(t)=0$ and $f(t)<0$. Then

$$
\begin{aligned}
0 & =p^{-1}(t-a) \cdot f^{\prime}(t) \\
& =(t-a)\left[\alpha t^{p-1}+\beta(t-a)^{p-1}-t^{q-1}\left(t^{q}+1\right)^{p / q-1}\right] \\
& =\alpha(t-a) t^{p-1}-\alpha\left(t^{p}+A\right)+f(t)+\left(t^{q}+1\right)^{p / q}-t^{q-1}(t-a)\left(t^{q}+1\right)^{p / q-1} \\
& <-\alpha\left(a t^{p-1}+A\right)+\left(t^{q}+1\right)^{p / q-1}\left[1+t^{q-1} a\right] \\
& \leq\left(t^{q}+1\right)^{p / q-1}\left[-a t^{p-1}-A+1+t^{q-1} a\right] \quad\left(\text { since }\left(t^{q}+1\right)^{p / q-1}<\alpha\right) \\
& \leq\left(t^{q}+1\right)^{p / q-1} a\left(t^{q-1}-t^{p-1}\right) .
\end{aligned}
$$

To summarize, $0<\left(t^{q}+1\right)^{p / q-1} a\left(t^{q-1}-t^{p-1}\right)$ which gives $t^{q-1}>t^{p-1}$ and $p>q$. This is contradictory to the assumption and completes the proof of the lemma.

Proposition 3.5. Let $(E,\|\cdot\|)$ be an n-dimensional Banach space and $1 \leq p<$ $q \leq \infty$. Suppose that there exists vectors $e_{1}, \ldots, e_{n} \in E$ and $e_{1}^{*}, \ldots, e_{n}^{*} \in E^{*}$ such that $\left\langle e_{j}^{*}, e_{i}\right\rangle=\delta_{i j}$ and $\left\|e_{i}\right\|=\left\|e_{i}^{*}\right\|=1$ for $i=1, \ldots$, n. Consider on E the ℓ_{q}^{n} norm, say $\|\cdot\|_{q}$, induced by the basis $\left(e_{i}\right)_{i=1}^{n}$. Let $i_{E q}$ denote the formal identity operator from $(E,\|\cdot\|)$ to $\left(E,\|\cdot\|_{q}\right)$.

If $\pi_{p}\left(i_{E q}\right) \geq n^{1 / p}$, then for every $a_{1}, \ldots, a_{n} \in \mathbb{C}$ one has

$$
\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p} \leq\left\|\sum_{i=1}^{n} a_{i} e_{i}^{*}\right\|_{*}
$$

Proof. We will suppose that $q<\infty$. In the case $q=\infty$ the proof is similar. First, we will show that

$$
\begin{equation*}
\pi_{p}\left(T i_{E q}\right)=\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p} \text { where } T=\sum_{i=1}^{n} a_{i} e_{i}^{*} \otimes e_{i} . \tag{3.4}
\end{equation*}
$$

Fix $x \in E$. Then $\left\|T i_{E q} x\right\|_{q} \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\left|\left\langle x, e_{i}^{*}\right\rangle\right|^{p}\right)^{1 / p}$ and so,

$$
\begin{equation*}
\pi_{p}\left(T_{i_{E q}}\right) \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p} . \tag{3.5}
\end{equation*}
$$

To see opposite inequality, choose $g_{i} \in \mathbb{C}(i=1, \ldots, n)$ such that

$$
\max \left|a_{i}\right|=\left(\left|a_{i}\right|^{p}+\left|g_{i}\right|^{p}\right)^{1 / p} .
$$

Define an operator

$$
S: E \rightarrow E, \quad S=\sum_{i=1}^{n} g_{i} e_{i}^{*} \otimes e_{i} .
$$

Then for every $x \in \ell_{q}^{n}$ one has

$$
\begin{equation*}
\max \left|a_{i}\right|\|x\|_{q} \leq\left(\|T x\|_{q}^{p}+\|S x\|_{q}^{p}\right)^{1 / p} \tag{3.6}
\end{equation*}
$$

Next, using definition (1.1) and (3.6) we obtain

$$
\max \left|a_{i}\right| \pi_{p}\left(i_{E q}\right) \leq\left(\pi_{p}^{p}\left(T_{E q}\right)+\pi_{p}^{p}\left(S i_{E q}\right)\right)^{1 / p}
$$

Hence, from (3.5) and above it follows

$$
\begin{aligned}
n^{1 / p} \max \left|a_{i}\right| & \leq \max \left|a_{i}\right| \pi_{p}\left(i_{E q}\right) \leq\left[\pi_{p}^{p}\left(T i_{E q}\right)+\pi_{p}^{p}\left(S i_{E q}\right)\right]^{1 / p} \\
& \leq\left[\sum_{i=1}^{n}\left|a_{i}\right|^{p}+\sum_{i=1}^{n}\left|g_{i}\right|^{p}\right]^{1 / p}=n^{1 / p} \max \left|a_{i}\right|
\end{aligned}
$$

and (3.4) holds as required.
Finally, using Lemma 3.4, one has

$$
\begin{aligned}
\|T x\|_{q} & =\left(\sum_{i=1}^{n}\left|\left\langle T x, e_{i}^{*}\right\rangle\right|^{q}\right)^{1 / q} \\
& \leq\left(\alpha \sum_{i=1}^{n}\left|\left\langle T x, e_{i}^{*}\right\rangle\right|^{p}+\beta\left|\sum_{i=1}^{n}\left\langle T x, e_{i}^{*}\right\rangle\right|^{p}\right)^{1 / p} \\
& =\left(\left.\alpha \sum_{i=1}^{n}\left|a_{i}\right|^{p}\left\langle x, e_{i}^{*}\right\rangle\right|^{p}+\beta\left|\left\langle x, \sum_{i=1}^{n} a_{i} e_{i}^{*}\right\rangle\right|^{p}\right)^{1 / p} .
\end{aligned}
$$

Hence, the condition (3.4) and Proposition 2.1(i) give

$$
\left(\alpha \sum_{i=1}^{n}\left|a_{i}\right|^{p}+\beta\left\|\sum_{i=1}^{n} a_{i} e_{i}^{*}\right\|_{*}^{p}\right)^{1 / p} \geq \pi_{p}\left(T i_{E q}\right)=\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}
$$

which completes the proof.
Now we are able to prove Theorem 3.1.
Proof of Theorem 3.1. The fact that (i) implies (ii) follows from Proposition 3.5 for $q=2$, Proposition 3.2 and the inequality

$$
\pi_{p}\left(i_{E 2}\right) \geq \pi_{p}(E) \geq n^{1 / p}
$$

Next, condition (ii) implies that the following factorization holds

$$
E \underset{v_{1}}{\longrightarrow} \ell_{\infty}^{n} \underset{\Delta}{\longrightarrow} \ell_{p^{\prime}}^{n} \underset{v_{2}}{\longrightarrow} E
$$

with $\nu_{p^{\prime}}(E) \leq\left\|V_{1}\right\|\|\Delta\|\left\|V_{2}\right\| \leq n^{1 / p}$. Finally, (iii) implies (i) since

$$
n=\operatorname{trace}(\mathrm{id}: E \rightarrow E) \leq \pi_{p}(E) \nu_{p^{\prime}}(E)
$$

Before we pass to the second part of the theorem, observe that

$$
\begin{equation*}
C_{p^{\prime}}^{\prime}(E)=1 \quad \text { iff } \quad T_{p}^{\prime}\left(E^{*}\right)=1 \tag{3.7}
\end{equation*}
$$

This can be checked directly for two vectors, and by induction for more vectors. Suppose that $\pi_{p}(E) \geq n^{1 / p}$; so, $\pi_{p}\left(i_{E 2}\right) \geq n^{1 / p}$. Using Proposition 2.1(ii) and (2.1) we obtain

$$
\begin{aligned}
n^{1 / p} & \leq \pi_{p}\left(i_{E 2}\right) \leq A_{p}^{-1}\left(\mathbb{E}\|\mathbb{X}\|_{*}^{p}\right)^{1 / p} \\
& =A_{p}^{-1}\left(\mathbb{E} \int_{0}^{1}\left\|\sum_{i=1}^{n} r_{i}(t) \gamma_{i} e_{i}\right\|_{*}^{p} d t\right)^{1 / p} \\
& \leq A_{p}^{-1}\left(\mathbb{E} \sum_{i=1}^{n}\left|\gamma_{i}\right|^{p}\left\|e_{i}\right\|_{*}^{p}\right)^{1 / p}=n^{1 / p} .
\end{aligned}
$$

Therefore, $A_{p}^{-1}\left(\mathbb{E}\|\mathbb{X}\|_{p}^{p}\right)^{1 / p}=n^{1 / p}=A_{p}^{-1}\left(\mathbb{E}\|\mathbb{X}\|_{*}^{p}\right)^{1 / p}$. Since $\|x\|_{p} \leq\|x\|_{*}$ for every $x \in E$ we conclude that $\|\cdot\|_{p}=\|\cdot\|_{*}$ as in the proof of Corollary 2.3.
4. The ellipsoid of maximal volume and other characterizations of ℓ_{p}^{n} spaces. In this section we give some characterizations of ℓ_{p}^{n} space in terms of p-summing norms of an operator associated with the ellipsoid of maximal volume contained in the unit ball of E.

Before we start, let us introduce some new notation. Let $i_{E \infty}:(E,\|\cdot\|) \rightarrow\left(E,\|\cdot\|_{\infty}\right)$ denote the formal identity operator where the norm $\|\cdot\|_{\infty}$ is given by a fixed Auerbach system on E. Similarly, we define $i_{E^{*} \infty}:\left(E^{*},\|\cdot\|_{*}\right) \rightarrow\left(E,\|\cdot\|_{\infty}\right)$. Finally, let

$$
i_{E^{*} 2}=\left(i_{2 E}\right)^{*} \quad \text { and } \quad i_{2 E^{*}}=\left(i_{E 2}\right)^{*} .
$$

Theorem 4.1. Let E be an n-dimensional linear space. Then for $1 \leq p<2$ the following are equivalent.
(i) E^{*} is isometric to ℓ_{p}^{n},
(ii) $\pi_{p}\left(i_{E 2}\right) \geq n^{1 / p}$ and $\pi_{p^{\prime}}\left(i_{E^{*} 2}\right) \geq n^{1 / p^{\prime}}$,
(iii) $\pi_{p}\left(i_{E 2}\right) \geq n^{1 / p}$ and $\pi_{p}\left(i_{2 E^{*}}\right) \leq n^{1 / p}$,

Moreover, for $1 \leq p<\infty$ condition (i) is equivalent to
(iv) $\pi_{p}\left(i_{E \infty}\right) \geq n^{1 / p}$ and $\pi_{p^{\prime}}\left(i_{E^{*} \infty}\right) \geq n^{1 / p^{\prime}}$.

Proof. By Proposition 2.2 we see that the condition (i) implies (ii), (iii) and (iv). First, suppose that

$$
\pi_{p}\left(i_{E 2}\right) \geq n^{1 / p}
$$

By Proposition 3.2 and Proposition 3.5, we conclude that

$$
\begin{equation*}
\|x\| \leq\|x\|_{p^{\prime}} \quad \text { for } x \in E \tag{4.1}
\end{equation*}
$$

Now, let us suppose that

$$
\pi_{p^{\prime}}\left(i_{E^{*} 2}\right) \geq n^{1 / p^{\prime}}
$$

Applying (4.1) and Proposition 2.1(ii) to (2.1) for $s=p^{\prime}$ it follows that

$$
\begin{aligned}
n^{1 / p^{\prime}} & \leq \pi_{p^{\prime}}\left(i_{E^{\star 2} 2}\right) \leq A_{p^{\prime}}^{-1}\left(\mathbb{E}\|\mathbb{X}\|^{p^{\prime}}\right)^{1 / p^{\prime}} \\
& \leq A_{p^{\prime}}^{-1}\left(\mathbb{E}\|\mathbb{X}\|_{p^{\prime}}^{p^{\prime}}\right)^{1 / p^{\prime}}=n^{1 / p^{\prime}}
\end{aligned}
$$

Hence, $\|\cdot\|_{p^{\prime}}=\|\cdot\|$. Next, let us suppose that (iii) holds. Again, by (2.1) for $s=p$, we obtain

$$
\begin{equation*}
n^{1 / p} \leq \pi_{p}\left(i_{E 2}\right) \leq A_{p}^{-1}\left(\mathbb{E}\|\mathbb{X}\|_{*}^{p}\right)^{1 / p} \tag{4.2}
\end{equation*}
$$

Using the Pietsch Factorization Theorem [8] (cf. also, [9], p. 47) one can find a probability measure μ on $S_{2}^{n-1}=\left\{x:\|x\|_{2}=1\right\}$ such that

$$
\left\|x^{*}\right\|_{*} \leq n^{1 / p}\left(\int_{S_{2}^{n-1}}\left|\left\langle y, x^{*}\right\rangle\right|^{p} d \mu(y)\right)^{1 / p} \quad \text { for } x^{*} \in E^{*}
$$

By (4.2) and the above inequality one has

$$
n^{1 / p} \leq A_{p}^{-1}\left(\mathbb{E}\|\mathbb{X}\|_{*}^{p}\right)^{1 / p} \leq n^{1 / p} A_{p}^{-1}\left(\mathbb{E} \int_{S_{2}^{n-1}}|\langle y, \mathbb{X}\rangle|^{p} d \mu(y)\right)^{1 / p}=n^{1 / p}
$$

Therefore, $\mathbb{E}\|\mathbb{X}\|_{*}^{p}=\mathbb{E}\|\mathbb{X}\|_{p}^{p}$ and $\|\cdot\|_{*}=\|\cdot\|_{p}$, as before.
Finally, using Proposition 3.5 for $q=\infty$ we conclude from (iv) that

$$
\left\|x^{*}\right\|_{p} \leq\left\|x^{*}\right\|_{*} \quad \text { for } x^{*} \in E^{*}
$$

and

$$
\|x\|_{p^{\prime}} \leq\|x\| \quad \text { for } x \in E .
$$

This implies that E is isometric to $\ell_{p^{\prime}}$ completing the proof.
5. Finite dimensional subspaces of L_{p}. In the last section of the paper we apply Theorem 3.1 to subspaces of L_{p}. We also get a characterization of n-dimensional subspaces of L_{p} with the maximal Euclidean distance.

Corollary 5.1. Let E be an n-dimensional subspace of $L_{p}(\Omega, \mu)$. Then E is isometric to ℓ_{p}^{n} if and only if $\pi_{p^{\prime}}(E) \geq n^{1 / p^{\prime}}$ for $2<p<\infty$ or $\pi_{p}\left(E^{*}\right) \geq n^{1 / p}$ for $1 \leq p<2$.

The corollary follows immediately from Theorem 3.1 and the fact that $T_{p}^{\prime}\left(L_{p}(\Omega, \mu)\right)=$ 1.

Proposition 5.2. Fix n and $2<p<\infty$. Then any n-dimensional subspace E of $L_{p}(\Omega, \mu)$ whose Euclidean distance is maximal, i.e., $d\left(E, \ell_{2}^{n}\right)=n^{1 / 2-1 / p}$, is isometric to ℓ_{p}^{n}.

For $1<p<2$, an analogous result was proved in [1].
The proof of Proposition 5.2 is based on well-known result of D.R. Lewis [6] which states:

Proposition 5.3. Fix n and $1<p<\infty$. Then for any n-dimensional subspace E of $L_{p}(\Omega, \mu)$ there exists $f_{1}, \ldots, f_{n} \in E$ such that

$$
\begin{equation*}
\int f_{i} \bar{f}_{j} F^{p-2} d \mu=\delta_{i j}, \quad \text { where } F=\left(\sum_{i=1}^{n}\left|f_{i}\right|^{2}\right)^{1 / 2} \tag{5.1}
\end{equation*}
$$

Proof of Proposition 5.2. Fix an arbitrary n-dimensional subspace of E of $L_{p}(\Omega, \mu)$. Denote $d\left(E, \ell_{2}^{n}\right)$ by d_{E}. First we follow Lewis' argument from [6]. Observe that (5.1) implies

$$
\begin{gather*}
\int\left|\sum_{i=1}^{n} a_{i} f_{i}\right|^{2} F^{p-2} d \mu=\sum_{i=1}^{n}\left|a_{i}\right|^{2}, \tag{5.2}\\
\|F\|_{p}=n^{1 / p} . \tag{5.3}
\end{gather*}
$$

Define an operator $T: E \rightarrow L_{2}(\Omega, \mu)$ by $T f=f F^{\frac{p-2}{2}}$, for $f \in E$. Using Hölder's inequality it is easy to see that

$$
\|T f\|_{2}^{p} \leq\|f\|_{p}^{2}\|F\|_{p}^{p-2} .
$$

Thus by (5.3), $\|T\| \leq n^{1 / 2-1 / p}$.
On the other hand, by (5.2) and Cauchy-Schwarz inequality we get, for every $h=$ $\sum_{i=1}^{n} a_{i} f_{i} \in E$

$$
\begin{align*}
\|h\|_{p}^{p} & =\int\left|\sum_{i=1}^{n} a_{i} f_{i}\right|^{2}\left|\cdot \sum_{i=1}^{n} a_{i} f_{i}\right|^{p-2} d \mu \\
& \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right)^{\frac{p-2}{2}} \int\left|\sum_{i=1}^{n} a_{i} f_{i}\right|^{2} F^{p-2} d \mu \tag{5.4}\\
& =\left(\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right)^{p / 2}=\left[\int\left|\sum_{i=1}^{n} a_{i} f_{i}\right|^{2} F^{p-2} d \mu\right]^{p / 2}=\|T h\|_{2}^{p} .
\end{align*}
$$

Thus $\left\|T^{-1}\right\| \leq 1$, and so,

$$
\begin{equation*}
d_{E} \leq n^{1 / 2-1 / p} \tag{5.5}
\end{equation*}
$$

Now, we proceed by induction in n. Assume that the proposition is valid for $(n-1)$ dimensional subspaces.

Let $E \subset L_{p}(\Omega, \mu), \operatorname{dim} E=n, d_{E}=n^{1 / 2-1 / p}$. Then $\left\|T^{-1}\right\|=1$. Fix $h \in E$ such that $\|h\|_{p}=\|T h\|_{2}=1$ and $h=\sum_{i=1}^{n} a_{i} f_{i}$ for some scalars a_{i}, \ldots, a_{n} where f_{1}, \ldots, f_{n} are as in Proposition 5.4. Since all the inequalities in (5.5) become equalities, it follows that $|h|=F$ a.e. in the support A of h.

Moreover, there exists a functional ϕ such that $f_{i}=\phi a_{i}$ a.e.
Since the f_{i} 's are linearly independent, we conclude that there exists $i_{0} \in\{1, \ldots, n\}$ such that $a_{i}=\delta_{i i_{0}}$. Without loss of generality assume that $i_{0}=1$. Therefore, $|h|=\left|f_{i}\right|$ a.e. and $f_{2}=f_{3}=\cdots=f_{n}=0$ a.e. on A. Next, observe that for any $f \in E$, the restriction $f \cdot \chi_{A}$ of f to A belongs to the one-dimensional subspace [h] of $L_{p}(\Omega, \mu)$ generated by h.

Summarizing, $E=[h] \oplus_{p} E_{1}$ where

$$
E_{1}=\{f \in E: f(w)=0 \text { a.e. on } A\} .
$$

It is not difficult to show that

$$
d_{E} \leq\left(1+d_{E_{1}}^{\frac{1}{1 / 2-1 / p}}\right)^{1 / 2-1 / p}
$$

By (5.5) for the space E_{1} and above we obtain that $d_{E_{1}}=(n-1)^{1 / 2-1 / p}$. Finally, using the inductive hypothesis, we conclude the proof.

References

1. J. Bourgain and L. Tzafriri, Invertibility of 'large' submatrices with applications to the geometry of Banach spaces and harmonic analysis, Israel J. Math. 57(1987), 137-224.
2. J. P. Deschaseaux, Une caractérisation de certains espaces vectoriel normés de dimension finie par leur constante de Macphail, C. R. Acad. Sci. Paris (A/B) 276(1973), 1349-1351.
3. T. Figiel and W. B. Johnson, Large subspaces of ℓ_{∞}^{n} and estimates of the Gordon-Lewis constant, Israel J. Math. 37(1980), 92-112.
4. D. J. H. Garling, Operators with large trace and characterization of ℓ_{∞}^{n}, Proc. Cambridge Philos. Soc. 76(1974), 413-414.
5. \quad, Absolutely p-summing operators in Hilbert spaces, Studia Math. 38(1970), 319-321.
6. D. R. Lewis, Finite dimensional subspaces of L_{p}, Studia. Math. 63(1978), 207-212.
7. L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc. 68(1950), 28-46.
8. A. Pietsch, Operator Ideals, VEB Deutscher Verlag, Berlin, North-Holland, Amsterdam, 1978.
9. N. Tomczak-Jaegermann, Banach-Mazur distance and finite dimensional operator ideals, Pitman Monographs and Surveys in Pure and App. Math. Longman Sci. \& Tech. Harlow \& J. Wiley, New York, 1989.

Department of Mathematics
The University of Alberta
Edmonton, Alberta
T6G 2GI

[^0]: Received by the editors February 11, 1991.
 AMS subject classification: 46B04, 46B15.
 (c) Canadian Mathematical Society 1994.

