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Abstract. Let F be a field of characteristic p �= 2 and G a group without 2-
elements having an involution ∗. Extend the involution linearly to the group ring FG,
and let (FG)− denote the set of skew elements with respect to ∗. In this paper, we show
that if G is finite and (FG)− is Lie metabelian, then G is nilpotent. Based on this result,
we deduce that if G is torsion, p > 7 and (FG)− is Lie metabelian, then G must be
abelian. Exceptions are constructed for smaller values of p.

2010 Mathematics Subject Classification. 16S34, 16R50.

1. Introduction. Let FG be the group ring of a group G over a field F of
characteristic p �= 2. If G has an involution ∗, then we extend it linearly to obtain
an involution of FG, also denoted by ∗. We write (FG)− for the set of all skew elements
of FG, that is, those elements α satisfying α∗ = −α. It is easy to see that (FG)− is
the Lie sub-algebra of FG consisting of all linear combinations of terms of the form
g − g∗, with g ∈ G. A general problem in group rings is to decide the extent to which
the structure of (FG)− determines the structure of FG. If g∗ = g−1 for all g ∈ G, then
the induced involution is called the classical involution. During the last two decades,
a considerable amount of attention has been devoted to determining if Lie properties
satisfied by (FG)− are also satisfied by FG. Giambruno and Sehgal in [8] showed that if
G has no 2-elements and (FG)− is Lie nilpotent, so is FG. Lee [9] proved the analogous
result for the bounded Lie Engel property. Lie solvability was considered by Lee et al.
[11] with suitable restrictions upon G. More recently, a great deal of work has appeared
considering involutions other than the classical one. For example, the conditions under
which the skew elements commute were determined in Broche et al. [4]. Subsequently,
Giambruno et al. [7] determined the torsion groups without 2-elements such that
(FG)− is Lie nilpotent, and Catino et al. handled the bounded Lie Engel property
in [5]. We note that the situation with the skew elements is more involved than the
corresponding problem for the symmetric elements. Indeed, the absence of 2-elements
was not sufficient to force FG to have the same property in these papers; there were
exceptional cases.

This type of work has inspired similar investigations in other specific classes of
algebras with involution. For instance, Siciliano [17] has characterized restricted Lie
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algebras L over a field of characteristic p > 2 such that the set of skew elements of
the restricted enveloping algebra u(L) with respect to the principal involution is Lie
solvable, Lie nilpotent or bounded Lie Engel. In the same paper, the Lie structure of
the set of skew elements of the ordinary enveloping algebra U(L) is also discussed.

On any ring R, let [x, y] = xy − yx. We say that a subset S of R is Lie metabelian if
[[s1, s2], [s3, s4]] = 0 for all si ∈ S. Our purpose here is to examine the conditions under
which (FG)− is Lie metabelian, where G is a torsion group without 2-elements having
an arbitrary involution. The main part of the work involves proving the following.

THEOREM 1. Let F be a field of characteristic different from 2 and G a finite group
of odd order having an involution. Extend the involution linearly to FG. If (FG)− is Lie
metabelian, then G is nilpotent.

Levin and Rosenberger in [14] showed that if G is a finite group with no 2- or
3-elements, and FG has the classical involution, then G is abelian whenever (FG)− is
Lie metabelian. Using Theorem 1, we are able to extend their result. First, provided
p > 3, we can remove the restriction on 3-elements. Second, if p > 7, we can allow a
general involution on G.

THEOREM 2. Let F be a field of characteristic p /∈ {2, 3} and G a torsion group with
involution, having no elements of order 2. Extend the involution linearly to FG, and let
(FG)− be Lie metabelian. Then

1. if the involution on FG is classical, then G is abelian, and
2. if p /∈ {5, 7} as well, then G must be abelian regardless of the involution.

As we shall see, the restrictions upon the characteristic in Theorem 2 are necessary.
When p ∈ {5, 7}, the fact that (FG)− is Lie metabelian does not imply that FG is also
Lie metabelian for an arbitrary involution.

2. Preliminaries. Let us gather some necessary results. Let F be a field and R an
F-algebra. If S is any subset of R, let δ[0](S) be the subspace of R spanned by S, and
for all positive integers i, let δ[i](S) be the subspace of R spanned by the terms [s1, s2],
with si ∈ δ[i−1](S). We say that S is Lie solvable if there exists an i such that δ[i](S) = 0.
The smallest such i is called the Lie derived length of S. (Clearly, S is Lie metabelian
precisely when its Lie derived length is at most 2.)

In Catino et al. [6], the following two results were stated for the set of symmetric
elements, (FG)+ = {α ∈ FG : α∗ = α}. (These were originally proved in [11, 12] for the
classical involution, but the involution did not matter for the relevant portion of the
proof.) Since [(FG)+, (FG)+] ⊆ (FG)−, it is clear that if (FG)− is Lie solvable, so is
(FG)+. Thus, we have the following.

LEMMA 1. Let G be a finite group of odd order having an involution ∗. Let F be a
field of characteristic different from 2, and extend the involution linearly to FG. Suppose
that FG is semi-simple. If (FG)− is Lie solvable, then G is abelian.

LEMMA 2. Let G be a finite group of odd order having an involution ∗, and let F
be a field of characteristic p > 2. Extend the involution linearly to FG. If (FG)− is Lie
solvable, then the p-elements of G form a (normal) subgroup P, and G/P is abelian.

Not too much is known about Lie derived lengths in general. However, the next
two results will be useful. We write G′ for the derived subgroup of G. First, for the
classical involution there is the following.
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LEMMA 3. Let F be a field of characteristic p > 2 and G a nilpotent group with G′ a
cyclic p-group. With respect to the classical involution, the Lie derived length of (FG)− is
�log2(|G′| + 1)	.

Proof. See Balogh and Juhász [3]. �
On the other hand, a lower bound for the Lie derived length of (FG)+ is provided

for a non-abelian p-group G with an arbitrary involution.

LEMMA 4. Let F be a field of characteristic p > 2 and G a finite non-abelian p-group
with involution. Let FG have the induced involution. Then the Lie derived length of (FG)+

is at least �log2(p + 1)	.

Proof. See Balogh [2]. �
We also require the following two group-theoretic lemmas.

LEMMA 5. Let A be an abelian torsion group with no 2-elements, having an involution
∗. Then A = A1 × A2, where A1 is the set of symmetric elements of A and A2 = {a ∈ A :
a∗ = a−1}.

Proof. See [7, Lemma 2.7]. �
We will use the A1 and A2 notations without further mention.

LEMMA 6. Let G be a torsion group without 2-elements having an involution ∗ such
that G has a ∗-invariant abelian normal subgroup A. Then

1. if x ∈ G\A satisfies x∗ ∈ x−1A, then there exists e ∈ A1 such that (xe)∗ = (xe)−1,
and

2. if A is finite, x ∈ G satisfies x∗ ∈ xA, and o(x) is relatively prime to |A|, then there
exists e ∈ A1 such that (xe)∗ = xe.

Proof. The first part is [7, Lemma 2.8]. To obtain the second part, note that A � 〈x〉
is ∗-invariant, and apply Remark 3.1 and Lemma 2.8 in [7]. �

Recall that if R is an F-algebra, then the subset S of R is said to satisfy a polynomial
identity if there exists a non-zero polynomial f (x1, . . . , xn) in the free algebra on
non-commuting indeterminates F{x1, x2, . . .} such that f (s1, . . . , sn) = 0 for all si ∈ S.
Obviously, when (FG)− is Lie metabelian, it satisfies a polynomial identity. This allows
us to make use of the following classical result due to Amitsur [1].

LEMMA 7. Let F be a field and R an F-algebra with involution. If R− satisfies a
polynomial identity, so does R.

Proof. See [1]. �
Group rings satisfying a polynomial identity were classified by Isaacs and Passman.

Recall that G is p-abelian if G′ is a finite p-group, and that 0-abelian means abelian.

LEMMA 8. Let F be a field of characteristic p ≥ 0 and G a group. Then FG satisfies
a polynomial identity if and only if G has a p-abelian subgroup of finite index.

Proof. See [15, Corollaries 5.3.8 and 5.3.10]. �
Combining the last two lemmas, we observe that we can reduce our considerations

from torsion groups to locally finite groups.
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3. Proofs of the main results. In any group, let us write ab = bab−1 and (a, b) =
a−1b−1ab.

Proof of Theorem 1. If char F = 0, then Lemma 1 does the job, so let char F =
p > 2. Suppose that the theorem fails, and let G be a counterexample of the smallest
order. If the centre, ζ , is nontrivial then, since (F(G/ζ ))− is still Lie metabelian, we see
that G/ζ is nilpotent, and so is G. Thus, G is centreless. By Lemma 2, the p-elements of
G form a normal subgroup P, and G/P is abelian. If P is not abelian, then noting that
(F(G/P′))− is Lie metabelian, we see that G/P′ is nilpotent. By Hall’s criterion (see [16,
5.2.10]), G is nilpotent. Thus, P is abelian.

By the Schur–Zassenhaus theorem, G = P � X , for some p′-subgroup X . It
suffices to show that (a, x) = 1 for all a ∈ P, x ∈ X . By Lemma 5, P = P1 × P2

and G/P = (G/P)1 × (G/P)2. Write a = a1a2 with ai ∈ Pi, and Px = (Px1)(Px2), with
Pxi ∈ (G/P)i. We are done if we can show that each (ai, xj) = 1. By Lemma 6, there exist
ej ∈ P1 such that (x1e1)∗ = x1e1 and (x2e2)∗ = (x2e2)−1. Now each ai commutes with
xj if and only if it commutes with xjej. Thus, we replace xj with xjej and assume that
x∗

1 = x1, x∗
2 = x−1

2 . Write x1 = xm
1 xn

1, where xm
1 ∈ P and xn

1 is a p′-element. Then each
ai commutes with xm

1 . Thus, we replace x1 with xn
1 and assume that x1 is a p′-element,

and similarly for x2.
Suppose that (ai, xj) �= 1. By minimality of |G|, we have G = 〈ai, xj〉. Let xr

j be a
power of xj having prime order. Since G is centreless, we see that (ai, xr

j ) �= 1. Thus, by
minimality of |G|, we have G = 〈ai, xr

j 〉. We therefore replace xj with xr
j and assume

that xj has prime order q. By the same argument, we may assume that o(ai) = p.
We have four cases to consider. But one of them is essentially done. Indeed, to

prove that (a2, x2) = 1, we look to that same case in [6]. Naturally, terms of the form
g + g∗ must be replaced with g − g∗. This results in some sign changes, but the group
elements remain the same, and we can follow the argument verbatim.

Next, let us show that (a1, x2) = 1. Let a = a1, x = x2, b = ax, c = bx and d = cx.
We have

0 = [[ax − x−1a, x − x−1], [a2x − x−1a2, x − x−1]]

= [ax2 + x−1ax−1 − xax − x−2a, a2x2 + x−1a2x−1 − xa2x − x−2a2].

This expression consists of sums and differences of terms in Px4, P and Px−4. As x has
odd order, these cosets are distinct. Thus, looking only at the terms in Px4, we obtain

ax2a2x2 + xax2a2x + a2x3ax + xa2xax2 = ax3a2x + xaxa2x2 + a2x2ax2 + xa2x2ax.

Suppose, first of all, that each term on the left-hand side of our equation agrees
with a term on the right-hand side. If ax2a2x2 = ax3a2x, then (a2, x) = 1, hence (a, x) =
1, as a has odd order. If ax2a2x2 = xaxa2x2, then (a, x) = 1. If ax2a2x2 = a2x2ax2,
then (x2, a) = 1, and again (a, x) = 1. Thus, we can only have ax2a2x2 = xa2x2ax.
Similarly, we can rule out all possibilities except for xax2a2x = a2x2ax2. But now
note that xax2a2x = (ax2a2x2)x. Therefore, a2x2ax2 = (xa2x2ax)x = x2a2x2a. That is,
(x2, a2x2a) = 1, and hence (x, a2x2a) = 1. But then ax2a2x2 = xa2x2ax = a2x2ax2; that
is, (x2, a) = 1, and once again we are done.

The only other possibility is that p = 3 and three of the four terms on the left-hand
side of our equation agree. There are several cases to consider here. If b ∈ 〈a〉, then
G = 〈a〉 � 〈x〉. But if this occurs, then the number of Sylow q-subgroups is 1 + kq and
divides 3; therefore, it is 1, and G is nilpotent. Thus, the product 〈a〉 × 〈b〉 is direct. If

https://doi.org/10.1017/S0017089513000165 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000165


LIE METABELIAN SKEW ELEMENTS IN GROUP RINGS 191

c ∈ 〈a, b〉, then G = (〈a〉 × 〈b〉) � 〈x〉, and by a similar argument, G is nilpotent. Thus,
the product 〈a〉 × 〈b〉 × 〈c〉 is direct.

Now the terms on the left-hand side of our above equation are ac2x4, bd2x4, a2dx4

and b2cx4. As three of these agree, we must have either ac2 = a2d or bd2 = b2c. In
the first case, ax3 = d = a−1c−1, and a straightforward calculation reveals that ax8 = a.
But also axq = a, and therefore (a, x) = 1. In the second case, we have a subgroup
(〈b〉 × 〈c〉) � 〈x〉 and, as we have noted above, such a group is abelian. Thus, (b, x) = 1,
and therefore (a, x) = 1. This case is complete.

We have proved that x2 is central. Since G is centreless, ∗ acts trivially upon G/P.
Next, let us show that (a2, x1) = 1. Let a = a2, x = x1, b = ax and c = bx. First

of all, suppose that b ∈ 〈a〉. Then G = 〈a〉 � 〈x〉, and P = 〈a〉 = P2. In particular,
(ax)∗ = (ax)−1 as well. That is, x−1a−1x = xa−1x−1, hence (x2, a) = 1, and therefore
(a, x) = 1.

For our second case, assume that the product 〈a〉 × 〈b〉 is direct, but c ∈ 〈a, b〉.
Then G = (〈a〉 × 〈b〉) � 〈x〉. As we have noted above, if p = 3, then G is abelian, so
assume that p > 3. We have

0 = [[a − a−1, ax − xa−1], [a − a−1, xa − a−1x]]

= [a2x + a−1xa−1 − axa − xa−2, axa + a−2x − xa2 − a−1xa−1].

That is,

a2xaxa + a2xa−2x + a−1xa−3x + axaxa2 + xa−2xa2 + xa−3xa−1

+ axaxa−2 + a−2xaxa + a−2x2a−2 + xa4x + xaxa−1 + a−1xax

= a2x2a2 + a2xa−1xa−1 + a−1xa−1xa2 + axa−1x + xa−1xa + xa−4x

+ axa3x + +a−2xa2x + a−2xa−1xa−1 + xa3xa + xa2xa−2 + a−1xa−1xa−2.

Suppose, first of all, that every term on the left-hand side of our equation agrees
with a term on the right-hand side. Let us consider the possibilities for a2xa−2x.
If a2xa−2x = a2x2a2, then a−2x = xa2, hence (a2)x = a−2, and therefore (a2, x2) = 1.
That is, (a, x) = 1. Similarly, if a2xa−2x ∈ {a2xa−1xa−1, axa−1x, xa−4x, a−2xa2x}, then
(a, x) = 1. If a2xa−2x = axa3x, then axa−2 = xa3, so ax−1 = a5. As x has finite order, we
have ax ∈ 〈a〉 as well, which is not permitted. If a2xa−2x = xa2xa−2, then a2b−2x2 =
b2c−2x2. Thus, c2 = a−2b4. As our group has odd order, c = a−1b2. But this means
that ax = b and ax2 = a−1b2. An easy induction reveals that for all positive integers i,
axi = a1−ibi. In particular, axp = a. But axq = a as well, and therefore (a, x) = 1.

We are left with five possibilities for a2xa−2x. If, for instance, a2xa−2x =
a−1xa−1xa2, then a2b−2x2 = a−1b−1c2x2, hence c2 = a3b−1. Considering each of the
five possibilities in turn, and isolating a power of c, we obtain

a2xa−2x =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xa−1xa =⇒ c = a2b−1

a−1xa−1xa−2 =⇒ c2 = a−3b
a−1xa−1xa2 =⇒ c2 = a3b−1

a−2xa−1xa−1 =⇒ c = a−4b
xa3xa =⇒ c = a2b−5

.

On the other hand, let us consider the possibilities for xa−2xa2. Reasoning as
above, we see that if xa−2xa2 ∈ {a2x2a2, a−1xa−1xa2, xa−1xa, xa−4x, xa2xa−2}, then
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(a, x) = 1. If xa−2xa2 = a−2xa2x, then b−2c2x2 = a−2b2x2, hence c2 = a−2b4. As above,
we find that (a, x) = 1. If xa−2xa2 = xa3xa, then a−2xa = a3x, hence ax = a5 ∈ 〈a〉,
which is not allowed.

We are left with five possibilities for xa−2xa2, namely

xa−2xa2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a2xa−1xa−1 =⇒ c3 = a2b
a−1xa−1xa−2 =⇒ c4 = a−1b
axa3x =⇒ c2 = ab5

axa−1x =⇒ c2 = ab
a−2xa−1xa−1 =⇒ c3 = a−2b

.

Now we have 25 cases to consider, given by the five possibilities for a2xa−2x and
five for xa−2xa2. For instance, if c2 = a−3b and c3 = a2b, then a−9b3 = c6 = a4b2. That
is, a13b−1 = 1. Making use of the assumptions that p > 3, 〈a〉 × 〈b〉 is a direct product,
and c = a−1b2 is not permitted, calculations of the above type yield a contradiction in
every case. (It is, perhaps, worth mentioning that in the situation where c2 = a3b−1 and
c3 = a2b, we obtain c = (a2b)(a3b−1)−1 = a−1b2, which is not allowed.)

Thus, it is impossible for every term on the left-hand side of our equation to agree
with a term on the right-hand side. As there are only 12 terms on each side, we are
done if p ≥ 13. Suppose that p = 11. If 11 terms on the left-hand side agree, then at
least two of a2xa−2x, xa4x and a−1xa−3x must agree. But these are, respectively, equal
to a2b−2x2, b4x2 and a−1b−3x2. As the product 〈a〉 × 〈b〉 is direct, these elements are
pairwise distinct. Thus, the case p = 11 is done as well.

As we have ruled out the case p = 3 earlier, we may assume that p ∈ {5, 7}. Now
G = (〈a〉 × 〈b〉) � 〈x〉. The number of Sylow q-subgroups is 1 + kq and divides p2. As
we are assuming that k �= 0, we can only have q = 3. Let c = aibj. Then as cx = ax3 = a,
we have a = bi(aibj)j = aijbi+j2

. In particular, ij ≡ 1 (mod p) and i + j2 ≡ 0 (mod p).
Thus, we see that −j3 ≡ 1 (mod p). If p = 5, the only solution is j = i = −1. If p = 7,
we have three possibilities: j = i = −1; j = 5, i = 3 and j = 3, i = 5.

With this in mind, let us calculate the terms on the left-hand side of our equation,
multiplying on the right by x−2 for convenience. Assuming that i = j = −1, we get

a, a2b−2, a−1b−3, a−1b−1, a−2b−4, ab−2, a3b3, a−3, b2, b4, ab2 and a−1b.

We immediately see that there is no possibility of five or more terms agreeing.
Next, let p = 7, i = 3, j = 5. Then we have

a5b6, a2b5, a6b4, b4, a6b, a4b6, a2b5, ab6, a6b4, b4, a4b3 and a6b.

Again, we cannot have seven terms agreeing.
Finally, let p = 7, i = 5, j = 3. Then we get

b4, a2b5, a6b4, a4, a3b4, a2b, a5b2, a3b4, a2b, b4, a2b5 and a6b.

Once again, seven terms cannot agree, and this case is complete.
Let us assume, therefore, that the product 〈a〉 × 〈b〉 × 〈c〉 is direct. Then

0 = [[a − a−1, ax − xa−1], [a2 − a−2, a2x − xa−2]]

= [(a2 + a−1b−1 − ab − b−2)x, (a4 + a−2b−2 − a2b2 − b−4)x].
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Expanding and multiplying on the right by x−2, we see that the following expression is
equal to zero, namely

a2b4 + a2b−2c−2 + a−1b3 + a−1b−3c−2 + ab3c2 + abc−4 + c2 + b−2c−4

+ a4bc + a4c−2 + a−2b−1c + a−2b−2c−2 + a2b4 + a2bc−1 + b−2 + b−5c−1

− a2b2c2 − a2c−4 − a−1bc2 − a−1b−1c−4 − ab5 − ab−1c−2 − b2 − b−4c−2

− a4b2 − a4b−1c−1 − a−2 − a−2b−3c−1 − a2b3c − a2b2c−2 − b−3c − b−4c−2.

Since the product is direct, we observe that b2 cannot cancel with any other term. This
case is complete, and we conclude that (a2, x1) = 1.

We conclude that P2 is central and so, as G is centreless, P = P1.
Finally, we show that (a1, x1) = 1. Let a = a1 and x = x1. But since P = P1, we

have (ax)∗ = ax. That is, x−1ax = xax−1. Thus, (x2, a) = 1. Therefore, (x, a) = 1, and
the proof is complete. �

We can now use Theorem 1 to prove our main result.

Proof of Theorem 2. Suppose that (FG)− is Lie metabelian, where G is not abelian.
We know that (FG)− satisfies a polynomial identity. Hence, in view of Lemmas 7 and
8, G is locally finite. If g and h are non-commuting elements of G, then it suffices to
assume that G = 〈g, h, g∗, h∗〉. That is, we may take G to be finite. By Theorem 1, G is
nilpotent. If p = 0, then by Lemma 1, we are done, so let p be greater than 3. Then G
is the direct product of a p-group and a p′-group. By Lemma 1, the p′-group is abelian.
We may, therefore, assume that G is a p-group.

Now, since [(FG)+, (FG)+] ⊆ (FG)−, we see that (FG)+ has Lie derived length at
most 3. By Lemma 4, p ≤ 7, and the second part of the theorem is proved. Therefore,
let FG have the classical involution, and suppose that G is a counterexample of the
smallest order. If G′ is not central, then since (G′, G) � G′, we find that G/(G′, G) gives a
counterexample of smaller order. Therefore, G′ is central. Also, if |G′| > p, then taking
an element z of order p in G′, we note that G/〈z〉 gives a counterexample of smaller
order. Therefore, |G′| = p. Lemma 3 now completes the proof. �

Levin and Rosenberger in [13] showed that when p = 3, FG is Lie metabelian if and
only if G is nilpotent and |G′| = 1 or 3. Thus, we surely cannot allow p = 3 in Theorem 2.
Furthermore, we cannot extend Theorem 2 to an arbitrary involution when p ∈ {5, 7},
as the following proposition demonstrates. As a straightforward consequence, we see
that Lemma 3 does not extend to group rings endowed with the linear extension of an
arbitrary group involution.

For any group G, write �(G) for the augmentation ideal; that is, the set of all
elements of FG whose coefficients sum to zero.

PROPOSITION. Let F be a field of characteristic p ∈ {5, 7}. Then there exists a non-abelian
finite p-group G with involution ∗ such that under the induced involution, (FG)− is Lie
metabelian.

Proof. Suppose that G is a finite p-group with G′ = 〈z〉 of order p. Let ∗ be trivial
on G/G′. Then for any a, b, c, d ∈ G, we note that a − a∗ = a − azi, for some i, so this
is a(1 − zi) = aδ1, with δ1 ∈ �(G′) (which is central in FG), and similarly for b, c, d.
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That is,

[[a − a∗, b − b∗], [c − c∗, d − d∗]] = δ1δ2δ3δ4[[a, b], [c, d]],

for some δj ∈ �(G′). But now [a, b] = ab(1 − (b, a)) = abδ5 for some δ5 ∈ �(G′). Thus,
we have

[[a − a∗, b − b∗], [c − c∗, d − d∗]] = δ1δ2δ3δ4δ5δ6[ab, cd],

and similarly, this is

δ1δ2δ3δ4δ5δ6δ7abcd

for some δj ∈ �(G′). However, it is easy to verify (see, for instance, the proof of [10,
Lemma 1.1.1]) that �(G′)p = 0. Thus, (FG)− is Lie metabelian.

It remains to check that there exists a non-abelian finite p-group G such that G′

has order p, and G has an involution ∗ acting trivially upon G/G′. But let G be the non-
abelian group of order p3 having exponent p (the Heisenberg group). Choosing non-
commuting elements a and b, and writing z = (b, a), we know that the elements of G are
uniquely written as aibjzk, with 0 ≤ i, j, k < p. Define a map ∗ via (aibjzk)∗ = aibjzij−k.
We can see that

((aibjzk)∗)∗ = aibjzij−(ij−k) = aibjzk,

as required, and

(aibjzkalbmzn)∗ = (ai+lbj+mzk+n+jl)∗ = ai+lbj+mz(i+l)(j+m)−(k+n+jl),

whereas

(albmzn)∗(aibjzk)∗ = albmzlm−naibjzij−k = ai+lbj+mzim+lm−n+ij−k,

and these are equal. Thus, ∗ is an involution on G. As it is clearly trivial on G/G′, we
are done. �
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