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Abstract

A'mapping / : G ->• 5 from a left topological group G into a semigroup S is a local homomorphism if
for every x e G \ {e}, there is a neighborhood Ux of e such that f(xy) = f(x)f(y) for all y € Ux\ [e).
A local homomorphism / : G —>• 5 is onto if for every neighborhood U of e, / ({ / \ {e}) = 5. We show
that

(1) every countable regular left topological group containing a discrete subset with exactly one accu-
mulation point admits a local homomorphism onto N,
(2) it is consistent that every countable topological group containing a discrete subset with exactly one

accumulation point admits a local homomorphism onto any countable semigroup,
(3) it is consistent that every countable nondiscrete maximally almost periodic topological group admits

a local homomorphism onto the countably infinite right zero semigroup.

2000 Mathematics subject classification: primary 22A30, 54H11; secondary 54A35, 54G05.

1. Introduction

A group G endowed with a topology is left topological if for each a e G, the left shift
G 3 a i-» ax e G is continuous or equivalently, a homeomorphism.

Let G be a left topological group with identity e. A mapping f : G -*• S from G
into a semigroup S is a local homomorphism if for every x € G \ [e] there is a
neighborhood Ux of e such that f{xy) = f(x)f(y) for all y € Ux \ {e} [9]. A local
homomorphism / : G ->• S is o«ro if f(JU \ {e}) = S for every neighborhood U of e.
All topologies are assumed to be Hausdorff.

Local homomorphisms of G are important because they induce continuous homo-
morphisms of the ultrafilter semigroup Ult(G) of G. It consists of all nonprincipal
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136 Yevhen Zelenyuk [2]

ultrafilters on G converging to e and is a closed subsemigroup in the Stone-Cech
compactification fiGd of G as a discrete semigroup. (Given any discrete semigroup 5,
the operation can be extended to fiS by

pq = lim lim xy
x-+py->q

where x, y e 5, which makes /3S a compact right topological semigroup with 5
contained in its topological center. A semigroup T endowed with a topology is right
topological if for each p e T, the right shift T B X (-»• xp e T is continuous. The
topological center A(T) of a right topological semigroup T consists of all a € T
such that the left shift T a x »-• ax e T is continuous. An elementary introduction
to the semigroup £S can be found in [4]. For confirmation that Ult(G) is a closed
subsemigroup in flGd, see [4, Exercise 9.2.3].)

LEMMA 1.1. Let f : G —>• T be a local homomorphism from G into a compact
right topological semigroup T such that f(G) C A(T), let J : $Gd -> T be the
continuous extension of f, and let f* = /ITJIKGV ^nen f* '• Ult(G) -> T is a
continuous homomorphism. If, in addition, for every neighborhood U ofe, f(U\ {e})
is dense in T, then f* is onto.

PROOF. It suffices to check the first statement. We show more: for every p e fiGd

and q e Ult(G), one has J(pq) = J{p)7(q). Indeed,
f(pq) = /(lim limxy) = lim lim f(xy)

x-+py->q x-*py->q

= lim lim f(x)f(y) because / is a local homomorphism

= lim f(x)J(q) because f(x) e A(T)

= 7007(9). a
Thus if, for example, G admits a local homomorphism onto the countably infinite

right zero semigroup 5, then Ult(G) admits a continuous homomorphism onto 0S
which is also a right zero semigroup, and consequently Ult(G) is a disjoint union
of 2C closed right ideals. Recall that right (left) zero semigroups are defined by the
identity xy = y (xy = x).

Local homomorphisms are also interesting for their own sake.

LEMMA 1.2. Let f : G -*• S be a mapping such that f(U\ {e}) = S for every
neighborhood U ofe, and for every s e S, let As = f~x(s) \ [e]. (Equivalently, let
{As : s e S] be a partition of G \ {e} such that e e cl As for each s e S, and let
f :G -> S be such that f(x) = s ifx e As.)
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Then

(1) / is a local homomorphism if and only if for every s e S andx e G\{e] there
is a neighborhood Ux of e such that

X(UXHAS) a / W l .

In particular,
(2) ifS is a left zero semigroup then f is a local homomorphism if and only if As is

open for every s e S.
(3) if S is a right zero semigroup then f is a local homomorphism if and only if

As is is dense in G for every s e S, and moreover, for every x e G \ {e} there is a
neighborhood UxofeeG such that

PROOF. (1) TO see the necessity, let Ux be a neighborhood of e from the definition
of a local homomorphism and such that x~l £ Ux, and let y e Ux n As. Then xy J=- e
and f(xy) = f(x)f(y) = f(x)s, so xy e Af(x)s.

To see the sufficiency, let y € Ux\ {e}. Then y e Ux C\ As for some s e S, so
xy e x(Ux D As) c Af(x)s and hence f(xy) = f(x)s = f(x)f(y).

(2) By (1), / is a local homomorphism if and only if for every x e G\[e] there is
a neighborhood Ux of e such that x{LJx D As) c AfW for all s e 5, so if and only if
xUx c AfM.

(3) By (1), / i s a local homomorphism if and only if for every s e Sand* € G\{e),
there is a neighborhood Ux of e such that x(Ux f~l As) c (x(Ux \ [e])) n As. It is clear
that if x(Ux n As) = (x(Ux \ [e})) 0 As then / is a local homomorphism. Conversely,
we suppose that / is a local homomorphism and show that the equality holds. Let Ux

be a neighborhood of e from the definition of a local homomorphism, y e Ux\ {e}
and xy e As. Then f{y) = f(x)f(y) = f(xy) = s,soye A,. •

It follows from Lemma 1.2 that if G admits a local homomorphism onto the 2-
element left zero semigroup then G is not extremally disconnected (that is, the closures
of disjoint open subsets are disjoint), and if G admits a local homomorphism onto the
2-element left zero semigroup, then G is resolvable (that is, can be partitioned into
two dense subsets). It is a difficult open problem whether there is in ZFC a countable
nondiscrete extremally disconnected topological group (see [1]). If we proved that
it is consistent that every countable nondiscrete topological group admits a local
homomorphism onto the 2-element left zero semigroup, then the answer would be
negative. The corresponding question about irresolvable topological groups (see [2])
has already been solved: it is consistent that every countable nondiscrete topological
group is co-resolvable (that is, can be partitioned into co dense subsets) (see [6, 10]).
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(In [6] this result has been obtained for Abelian groups, not necessarily countable, and
in [10] it has been shown that every countable nondiscrete <w-irresolvable topological
group contains an open Boolean subgroup.) But the proof does not give any hint of
how to construct local homomorphisms onto right zero semigroups.

In this paper we show the following:

(1) Every countable regular left topological group containing a discrete subset with
exactly one accumulation point admits a local homomorphism onto N (Corollary 2.3).
(2) It is consistent that every countable topological group containing a discrete

subset with exactly one accumulation point admits a local homomorphism onto any
countable semigroup (Corollary 2.8).
(3) It is consistent that every countable nondiscrete maximally almost periodic

topological group admits a local homomorphism onto the countably infinite right zero
semigroup (Corollary 3.3).

Recall that a topological group is maximally almost periodic if it can be continuously
embedded into a compact topological group.

2. Producing local homomorphisms by discrete subsets

Consider the countably infinite Boolean group B = 0 ^ 2 endowed with the
topology induced by the product topology on fj^ Z2- Observe that each nonzero
element x e B has a unique canonical representation in the form x = x0 + • • • + xk,
where

(a) for every / < k, supp(x;) is a nonempty interval in a>,
(b) for every / < k — 1, max supp(;c,) + 2 < min supp(x/+i).

As usual, for any x = (an)n<ai e IBS, supp(jt) = {n < co : an ^ 0}. If supp(-c) is a
nonempty interval in co, we say that x is basic. It follows that any mapping from the set
of basic elements of B into a semigroup S can be extended to the mapping g : B -> S
by g{x) = g(x0) • • • g(xk), where x = x0 H 1- xk is the canonical representation.
We have that g(x + y) = g(x)g(y) whenever max supp(*) + 2 < min supp(j), so g
is a local homomorphism.

The following result is a strengthened version of [9, Theorem 2].

THEOREM 2.1. Let Gbea countable nondiscrete regular left topological group and
let D be a discrete subset of G such that e $. D and cl D \ D C {e}. Then there is a
continuous bijection h : G -*• B with h(e) = 0 such that

(1) h(xy) = h(x)h(y) whenever max supp(h(x)) + 2 < minsupp(/i(y)),
(2) for every x e D, h(x) is basic.

IfG is first countable then h can be chosen to be a homeomorphism.
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[5] Local homomorphisms of topological groups 139

PROOF. Let W be the set of words on the letters 0 and 1 with empty word 0. For

any w = a0 • • • an and v = b0 • • • bm, define w + v = c0 • • • ck by k — max{n, m) and

I at if / < n

bi otherwise

Notice that each nonempty w e W has a unique canonical representation in the form
w = w0 H \- wk, where

(a) for every I < k,wt = 0" V' with ih ji <.co and /; + jt > 0,
(b) for every / < k — 1, ji > 0,

(c) for every I <k — l,it + ji < ii+\.

The words of the form 0 ' l ; , where i, j < a> and j > 0, are called basic. The
words of the form 0', where i < co, are called zero. From now on, when we write
w — w0 + • • • + wk we mean that this is the canonical representation. For any w € W,

\w\ denotes the length of w.

Enumerate G \ {e} as {xn : n < co}. We shall assign to each w e W a point
x(w) € G and a clopen neighborhood X(w) of x(w) so that

(i) x(On) = eandX(0) = G,
(ii) X(ur0) n X(w~l) = 0 and X(iu^0) U X ( « r l ) = X(IU),

(iii) x(w) = x(w0) • • -x(wk) and X(w) = x(w0) • • -x(wk-i)X(wk), where
w = wo-\ \- wk,

(iv) xn e [x(w) :\w\=n + 1},

(v) X(w"0) D D C {x(w)} for all nonzero w.

Pick as X(0) a clopen neighborhood of e such that xQ £ X(0). PutX(l) = X\X(0)

and A:(0) = e and *(1) = x0.

Suppose that X(w) and J:(I/;) have been constructed for all w with \w\ < n such
that conditions (i)-(v) hold.

Notice that the subsets X(w) with \w\ — n form a partition of X. So, one of them,
say X(u),containsxn. LetM = w0H \-ur. ThenX(M) = x(ua) • • -x(ur-i)(X(ur))

and xn = x(u0) • • -x(ur^)yn for some yn € X(«r). If yn = x(ur), we choose
as X(0") a clopen neighborhood of e such that for each basic w with |w| = n,

X(w) \ x(w)X(0n+i) ^ 0, and following condition (v), for each nonzero w with
\w\ = n, x(w) • X((y+l) n D c {x(w)} . For each basic w, put x(w~0) = x(w),
X(w~0) = x(w)X(On)andX(w~l) = X(w)\X(w~0), and pick as.x(tu~l)any ele-
ment of X(io"l). lfyn ^x(ur), choose X(0") in addition such that yn <£x(ur)X((y)

and put x(u~\) = yn. For all nonbasic w with \w\ = n + 1, we define X(u>) and
by condition (iii).
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Then

x(w)=x(wo)---x(wk) € x(w0) • • • x(wk_i)X(wk) = X(w),

and if jcn £ {x(w) : \w\ = n) then

xn = x(u0) • • • x(ur-i)x(u~\) = x(u~l) e [x{w) : \w\ = n + 1}.

To check (ii), let M = n. Then

x(w~0) = x(wQ + • • • + wk + 0") = x(wo) • • • Jc(iut)Jc(O") = jc(tuo) • • •*(«>*)

•x(wk)X(0r) =

so
U X(u;~l) = x(w0) • • • J(u>t_i) [^(lufO) U

••x{wk_1)X(wk) = X(w),

Now, for every x e G, there is w e W with nonzero last letter such that x = x(w),
so [v 6 W : x = JC(U)} = {w~(y : n < to}. It follows that we can define h : X -> I
by putting

h(x(w)) = w= (a0,..., an, 0, 0, . . .)

for every w = a0 • • • an e W.
It is clear that ft is a bijection with h(e) = 0. Since, for every w = a0 • • an,X(w)

consists of all elements x e G such that

ft(jc)=(a0,. . . , « „ , . . . ) ,

is continuous. To check (1), let x = x{w) and let v = x(v) e X(0M+1). Then

h(x(w)x(v)) = h(x(w + v)) = TuTv = w + v = h{

To check (2), let x = x(w) e D with w = wo-\ \-wk. Then

x e x(wo)X(O^+l) and x(wo)X(O^+1) H O C

so x = x(w0). Hence /i(x) =WQ is basic.
If G is first countable, we can choose {X(0") : n < co) to be a neighborhood base

of e, and then /i will be a homeomorphism. •

COROLLARY 2.2. Let G be a countable regular left topological group and let D be
a discrete subset of G such that e $ D and cl D \ D C [e). Then every mapping
from D into a semigroup S can be extended to a local homomorphism f : G -*• S.
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PROOF. Let h : G -> IB be a local homomorphism guaranteed by Theorem 2.1 and
let /o be a mapping from D into 5. Define a local homomorphism g : B —*• S as
follows. Let* e E. Ifh~l(x) e £>,putg(;t) = fo(x). For any other basic x e B.pick
g(;t) arbitrarily. If x is nonbasic, put g(x) = g(x0) • • • g(xk), where JC = x0 H h jct

is the canonical representation of x. We then define f = g oh.
Obviously, f\D = /o. To see that / is a local homomorphism, let x e G \ {e}. Put

Ux = {y e G : minsupp(/i(;y)) > maxsupp(fc(;t)) + 2} U {e}.

Then Ux is a neighborhood of e because h is continuous, and for every y e Ux \ [e],
f(xy) = g(h(x) + h(y)) = g(h(x)) • g(h(y)) = f(x)f(y). •

COROLLARY 2.3. Every countable regular left topological group containing a dis-
crete subset with exactly one accumulation point admits a local homomorphism on to N.

PROOF. Let G be a countable regular left topological group and let D be a discrete
subset of G with cl D \ D = {e}. For every x e D, put fo(x) = 1 e N. By
Corollary 2.2, the mapping /o : D —> N can be extended to a local homomorphism
/ : G -> N. Since e e cl D and / (D) = {1}, / is onto. •

Corollary 2.3 can be specified by using the following notion.
Given a space X with a distinguished element e € X, let 8(X) denote the least

cardinal such that for every discrete subset D of X with D' = {e} where D' is the set
of all accumulation points of D c X and for every partition {/),:/ e /} of D with
D'i = {e} for each / e I, one has | / | < S(X).

Notice that

(1) 8(X) = 0 if and only if X has no discrete subset D with D' = {e}, and
(2) 0 < S(X) = n < co if and only if there is a discrete D c X with a partition

{D, : / < n] of D such that D' = D(' = {e} for each / e I, and for every discrete
C c X with C = {e} there exist a neighborhood U of e and a 7 c n such that

LEMMA 2.4. Ler X be a countable space with a distinguished element e 6 X. Then
S(X) = co if and only if there is a discrete D C X with a partition {£>, : i < co} of D
such that D' = D\ = {e}for each i e I.

PROOF. The sufficiency is obvious. To see the necessity, let (nj),<tt) be an increasing
sequence of natural numbers and let (C,)1<w be a sequence of discrete subsets of G
such that for every i < co there is a partition {C,7- : j < n,} of C, with C-; = C\ = [e\.
Since X is countable and Hausdorff, there exists a decreasing sequence (f/,),<(U of
closed neighborhoods of e with f]Uto [/, = {e}. Put D = L L a / A ^ ^<)- Clearly,
£>' = [e] and there is a partition {D, : / < w} of D with D- = {e}. •
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COROLLARY 2.5. Every countable regular left topological group G with 8(G) > 0
admits a local homomorphism onto any semigroup generated by a subset whose
cardinality is less than or equal to 8(G).

PROOF. Let 5 be a semigroup with a generating set / such that | / | < S(G). Then
there is a discrete subset D of G with a partition {£>, : i e 1} of D such that
D' = D\ = {e} (Lemma 2.4). Define the mapping f0 : D -*• I by fo(x) = i if
x 6 Dt. By Corollary 2.2, the mapping f0 can be extended to a local homomorphism
/ : G -> S. Clearly, / is onto. D

We now are going to show that it is consistent that countable topological groups
with 0 < S(G) < co do not exist.

A point of a topological space is called a P -point if the intersection of any countable
family of its neighborhoods is again its neighborhood. A nonprincipal ultrafilter p
on a; is a /'-point in co* = fico \ co if and only if for every partition {An : n < co} of co
with An £ p there exists A e p such that |>l n An | < co for all n. It is consistent with
ZFC that there are no P-points in co* (see [7]).

THEOREM 2.6. Let G be a countable topological group and let D be a discrete
subset ofG with D' = {e}. Assume that

(1) there is only one ultrafilter on G containing D and converging to e,
(2) there is an open U D D such that for every discrete C C U with C = {e} we

have CHD ^ 0.

Then there is a P-point in co*.

PROOF. Enumerate D as {*„ : n < co}. Choose a decreasing sequence (Un)n<a> of
clopen neighborhoods of e such that xn £ Un and xnUn c. U and all xnUn are pairwise
disjoint and cl {\Jn<a>xnUn) = {\Jn<0>xnUn) U {e). Define the mapping / : G -»• co
by

f. ifxeUn\Un+i

(0 if x £ Uo.

Let p be the ultrafilter on G containing D and converging to e and let / : fiG -»• fico
be the continuous extension of / and let q = f(p), so that q is an ultrafilter on co
with a base of subsets f(B), where B e p. Clearly q is nonprincipal. We shall prove
that q is a P-point in co*.

Let [Am : m < co} be a partition of co with Am £ q and let Dm = f~\Am). Then
[Dm : m < co} is a partition of D with Dm £ p, and consequently e £ cl Dm. Every
element xn e D belongs to some subset Dmn of the partition. Put Cn = xn{Un n DmJ
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and C = \Jn<0)Cn. Th™ c» c x"Un and C'n = 0 and xn $ Cn. It follows that
C c [e} and C n D = 0. Hence c g cl C. Choose neighborhoods V and W
of e such that V n C = 0 and W2 c V. P u t £ = D n W a n d A = / ( £ ) . We
claim that all A n Am are finite. Indeed, otherwise there exist xn e E n Dm and
JC* € UnD E D Dm. Then, on the one hand, xnxk e £"2 c W2 c V and, on the other
hand, x ^ e xn(Un n £>m) c C c G \ V, which is a contradiction. •

COROLLARY 2.7. If there are no P-points then there are no countable topological
groups G with 0 < <5 (G) < co.

PROOF. Let S(G) = n and let D be a discrete subset of G with a partition
{£), : / < n] of D such that D' = D\ = {e}. It is clear that for each / < n,
there is only one ultrafilter on G containing £>, and converging to e. Fix i < n and for
every x € £>,-, choose an open neighborhood {/* of x such that UXD (D\ £>,) = 0,
and put U = \JxeD. Ux. Then for every discrete C C U with C" = {e}, there
exists a neighborhood V of e such that C fl V = D, D V. Hence, one can apply
Theorem 2.6. •

Combining Corollary 2.5 and Corollary 2.7 gives the following result.

COROLLARY 2.8. If there are no P-points then every countable topological group
containing a discrete subset with exactly one accumulation point admits a local
homomorphism onto any countable semigroup.

REMARK. Given any nonprincipal ultrafilter p on co, one can define the group
topology STp on B = 0 u 12 by taking as a neighborhood base of zero the subgroups
[x e i : supp* c A), where A € p. If p is a selective ultrafilter then G = (IB, &p) is
an extremally disconnected topological group (see [8]). It can be shown that S (G) = 1
and G admits local homomorphisms only onto cyclic semigroups.

Recall that an ultrafilter p on co is called selective if for every partition {An :n < co}
of co with An £ p, there exists A e p such that \A n An\ < 1 for all n. Obviously,
every nonprincipal selective ultrafilter is a P -point. A nonprincipal selective ultrafilter
can be constructed using Martin's Axiom (see, for example, [3]).

3. Local homomorphisms onto right zero semigroups

For any sequence {mn)n<w of integers > 2, let the group 0n < a ,2m, be endowed
with the topology induced by the product topology on nn<a, ̂ ""n-
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THEOREM 3.1. Let G be a countable nondiscrete maximally almost periodic topo-
logical group. Then there exist a sequence {mn)n<0> of integers > 2 and a continuous
bijection h : G -> 0 n < c u 1mn with hie) = 0 such that

(1) h{xy) — h(x) + h(y) wheneverr(x)+ 2 < l(y), where r(x) = max supp(/i(x))

andl{y) = minsupp(/i(}0)>
(2) r(x'yj) < M + 1 for all i, j 6 {1, -1}, where M = max[r(x), r(y)}, and

consequently, if\r(x) — r(y)\ > 2, then r(x'yJ) > M — 1,
(3) ifm > 1 and prn(*) = prn(y)/or all n < m, then l{x-ly), l(xy~l) > m - 1,

w/iere prn(;r) = (ft(j:))n.

/f G is first countable, then h can be chosen to be a homeomorphism.

PROOF. The proof is similar to that of Theorem 2.1.
Given a sequence (mn)n<(0 of integers > 2, let W = W((mn)neN) be the set of

words of the form w = a0 • • • an, where a, e 2mj, including the empty word 0. A word
w — a0 • • • an is basic if {i < n : a, 7̂  0} is a nonempty final interval in {0 , . . . , n}.
For any ID = a0 • • • an and v = b0 • • -bm, define w + v = c0 •• • ck by k = max{n, m]
and

ia, if 1 < n

bi otherwise.

Each nonempty w € W has a unique canonical representation in the form

w = w0 H h lo* where

(a) for every / < k — 1, u); is basic,
(b) ID* is either basic or zero,
(c) forevery / < k — 1, \wt\ < \wi+]\ and the first \wt\ + 1 letters of io,+1 are zero.

From now on, when we write w = w0 -\ hu) twe mean that this is the canonical
representation.

Enumerate G \ [e] as {xn : n < co}. We shall construct a sequence (mn)n<a> of
integers > 2 and assign to each w € W = W((mn)n<a>) a point x(w) e X and a clopen
neighborhood X(w) of x(w) so that

(i) ^(0") = e and X(0) = G,
(ii) {X(u;a) : a € 2 m J is a partition of X(w), where n = \w\,

(iii) J:(W) = A;(IO0) • • -x(wk) and X(u;) = x(w0) • ••x(wk-\)X(wk), where

tu = u>0 H hioii,
(iv) {xn) U X ^ . X ^ , c Xn, where Xn = {*(u;) : \w\ = n + 1},
(v) X{w)Cx{w)X(Qwi),

)2(vi) X(0") = (XCO"))"1 andx(X(0n+1))2jc-1 c X(0") for all x e G.

Without loss of generality we may assume that G is totally bounded.
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Suppose that X(w) and x(w) have been constructed for all w with \w\ < n such
that conditions (i) to (vi) are satisfied.

Denote Yn - X*\X±\ U [xn] and let y e Yn. Notice that the subsets X(w) with
\w\ — n form a partition of G. So exactly one of them, say X(u), contains y. Let
u = uo-\ \rur. ThenX(u) = x(u0) • • • x(ur-i)X(ur) and y = x(u0) • • -x(ur^)y'
for some unique y' e X{ur). Put Zn = [y1 : y 6 Yn) \ Xn_,. Choose X(0"+1) by (vi)
and such that for every basic u with |M| = n,

X(u) \ x(u)X(On+l) j£ 0 andx(w)X(0"+1) D Zn = 0.

Choose mn > 2 large enough to ensure that that for every basic u, there exists a
finite (mn - l)-element subset F(u) c X(u) \x(u)X(On+l) with

Z n n X ( « ) C F ( M ) and X(u) \x(u)X((r+l) C F(u) • X(0n+1).

Enumerate F(u) as {X(MO) : a e Z n < \ {0}} and choose as {X(«a) : a e 2mr \ {0}}
a clopen partition of X(M)\A:(M)X(0n+l) such that x(ua) e X(ua) £ x(ua)X(0n+1).
For nonzero nonbasic w with \w\ = n + 1, define X(io) and A:(U;) by condition (3).
Then

x(w) = x(w0) • ••x(wk) e x(w0) • ••x(wk_i)X(wk) = X(w),

and if v e Yn \ Xn_u then

v = ^(M0) • • -x(ur-i)x(ura) = x{ua) e Xn, and

X(w) = jt(u,0) • .-xiwt-dXiWk) c X(u;o) • • •*(u;*_1);c(i^)X(0|u'1) =

Similarly, to check (ii), let \w\ — n. Then

x(wO)=x(wQ-i \-wk + 0") =x(w0) • • • x(wk)x((r) =x(w0) • • • x(wk) =

X(w0) = x(w)X(0n)=x(w0) • ••x(wk)X(0n)=x(w0) • ••x(wk_i)X(wk0),

Now, for every x e G there is w € W with nonzero last letter such that x = x(w),
so {v € W : x = x(u)} = {iu~0" : « < a)}. It follows that we can define
h: G -* 0 n < o , 2mn by putting, for every w = a0 • • • an e W,

h(x{w)) = w = (a0, ...,an,0,0,...).

As in the proof of Theorem 2.1, it can be easily checked that h is a continuous
bijection satisfying (1). The condition (2) is the inclusion X^1 X^ c XM+i. To see (3),
let x, y 6 X(w) for some w with |u>| = m + 1. Then by (v), x, y e x(w)X(0m+1),
and then by (vi),
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If G is first countable, we can choose {X(0") : n < co} to be a neighborhood base
of e, and then h will be a homeomorphism. D

THEOREM 3.2. Let G be a countable nondiscrete maximally almost periodic topo-
logical group and let h : G —>• ©n<w2mji be a bijection guaranteed by Theorem 3.1.
Define the subset F C. co* by F = r(Ult(G)), where r : 0G \ [e) ->• fico is the
continuous extension ofr : G \ {e} -> co. Assume that G has no subsets with exactly
one accumulation point and that F is finite. Then every point from F is a P-point.

PROOF. Let & be the filter on co with a base consisting of subsets of the form
r ([/) = [r(x) : x e U \{e}}, where U is a neighborhood of e e G. Observe that F
consists of all ultrafilters on co containing &'. For every s e F, choose A(s) e s so
that the subsets A(s), where s e F, are pairwise disjoint, and put

A=\jA(s).
seF

It is clear that A e &. Let {An(j) : n < co} be any partition of A(» with An(s) $. s.
Without loss of generality we may assume that if s = t + 1 for s, t e F, then
An(s) = An(t) + 1. For every n < co, put

Then {An : n < o>} is a partition of A and for every m < co,

Define g : A -> co by

g(jc) = n if/z 6 An \ An +i.

Notice that if both x and x + I e A then g(;t) = g(* + 1). To prove the theorem, it
is enough to find C e ^ such that g\c is finite-to-one.

Define the subset U c G by

(/ = {x € G : g(r(x)) > l(x)} U {e}.

We claim that U is a neighborhood of e. Indeed, assume the contrary and let P =G\U.
Then P e p for some p e Ult(G) and g(r(x)) < l(x) for all x e P. Since e is
an accumulation point of P, there exists one more accumulation point a ^ e of P.
Consequently, there exists q e Ult(G) such that P e aq. Choose Q e q such that
r(a) + 2 < l{x) for all x e Q and aQ c p . Then for every x e Q we have
r(x) = /-(ax) and g(r(ax)) < /(ax) = /(o), hence g(r(x)) < /(a) which contradicts

(J Afl
/(a)<n«a
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Now choose a neighborhood V of e such that VV"1 c U and put C = r(V).
Assume on the contrary that g\c is not finite-to-one. Then there exist m < co and a
sequence (an)n<l0 of elements in V such that r(an) + 2 < r(an+{) and g{r(an)) = m.
Since (an)n<a, is infinite and ®n<m+1 2mn is finite, there exist n < k < co such that
pr,(g(an)) = pr,(g(at)) for all i < m 4- 1. Then we obtain that l{aka~x) > m,

r(atfla-I)er(flt) +{-1 ,0 ,1}

' 6 £/, hence

( ( ) ) ( ( ; 1 ) ) ' ( ^ " " 1 ) > m,

which is a contradiction. •

COROLLARY 3.3. If there are no P-points then every countable nondiscrete max-
imally almost periodic topological group admits a local homomorphism onto the
countably infinite right zero semigroup.

PROOF. Let G be any countable nondiscrete maximally almost periodic topolog-
ical group. If G has a discrete subset with exactly one accumulation point then,
by Corollary 2.8, G admits a local homomorphism onto any countable semigroup.
Assume that G has no discrete subset with exactly one accumulation point. Let
h : G -> 0 n < m 2 m n be a bijection guaranteed by Theorem 3.1. Then, by Theo-
rem 3.2, the subset F = 7(Ult(G)) c co* is infinite. Consequently, one can choose
a partition {An : n < co} of co such that for every neighborhood U of e we have
r(U) HAn^0. Let S — {an : n < co} be the countably infinite right zero semigroup.
Define / : G -+ S by

f(x) = anifr(x) € An.

To see that / is a local homomorphism, let

Ux = [y e G : r(x) + 2 < l(y)} U {e}.

Then Ux is a neighborhood of e and for every y e Ux \ [e}, r(xy) = r(y), so
Hxy) = f(y) = f(x)f(y).

To see that / i s onto, let (/be any neighborhood of e and let an € 5. Pick* e U\{e}
with r(x) e An. Then f(x) =n. •

REMARK. Under Martin's Axiom, there is a group topology ^ on IB = 0 ^ 22

with exactly one nonprincipal ultrafilter converging to the zero (see [5]). It is clear
that (B, S?) admits a local homomorphism only onto the 1-element semigroup.
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