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Abstract

In this paper we derive local error estimates for radial basis function interpolation on the unit sphere
S2

⊂R3 . More precisely, we consider radial basis function interpolation based on data on a (global or
local) point set X ⊂ S2 for functions in the Sobolev space H s(S2) with norm ‖ · ‖s , where s > 1. The
zonal positive definite continuous kernel φ, which defines the radial basis function, is chosen such that
its native space can be identified with H s(S2). Under these assumptions we derive a local estimate for
the uniform error on a spherical cap S(z; r): the radial basis function interpolant 3X f of f ∈ H s(S2)

satisfies supx∈S(z;r) | f (x)−3X f (x)| ≤ ch(s−1)/2
‖ f ‖s , where h = h X,S(z;r) is the local mesh norm of

the point set X with respect to the spherical cap S(z; r). Our proof is intrinsic to the sphere, and makes
use of the Videnskii inequality. A numerical test illustrates the theoretical result.
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1. Introduction
Radial basis function interpolation and approximation on the sphere is a topic that has
been of great interest over the last decade (see [18, Chapter 17], [4, Chapters 5–7],
and the references therein). Since it is essentially a meshless method that allows the
handling of scattered data, it is of great interest for applications. The development
of more powerful computers as well as progress in numerical methods have made
it possible to perform radial basis function interpolation and approximation for very
large sets of data.

In this paper we are concerned with establishing local error estimates for the
maximal absolute pointwise error of a radial basis function interpolant on a spherical
cap in terms of the local mesh norm of the interpolation point set with respect to this
cap. More precisely, we consider the following scenario.
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Let φ be a zonal positive definite continuous kernel on S2
× S2 such that the

native space Nφ associated with the kernel φ can be identified with the Sobolev
space H s(S2), where s > 1, with the norm ‖ · ‖s (for definitions see Section 2). The
space H s(S2) is intuitively the space of all those functions on S2 whose generalized
derivatives up to the order s are square-integrable. Given the values of f ∈ H s(S2)

on the point set X = {x1, x2, . . . , xN } ⊂ S2, the radial basis function interpolant
3X f =

∑N
j=1 α jφ(·, x j ) of f is obtained by solving the linear system

3X f (xi )=

N∑
j=1

α jφ(xi , x j )= f (xi ), i = 1, 2, . . . , N .

We estimate the maximal absolute pointwise error of the radial basis function
interpolant 3X f on a spherical cap S(z; r) of centre z and radius r ≤ π/2. The error
will be expressed in terms of the local mesh norm h X,S(z;r) of X with respect to the
spherical cap S(z; r), defined by

h X,S(z;r) := sup
x∈S(z;r)

inf
y∈X∩S(z;r)

dist(x, y), (1.1)

where dist(x, y) := arccos(x · y) is the spherical (geodesic) distance between x and y.
Under certain assumptions we show in Theorem 3.1 that

sup
x∈S(z;r)

| f (x)−3X f (x)| ≤ ch(s−1)/2
X,S(z;r)‖ f ‖s, f ∈ H s(S2). (1.2)

If we compare (1.2) with the corresponding global error estimate

sup
x∈S2

| f (x)−3X f (x)| ≤ chs−1
X ‖ f ‖s, f ∈ H s(S2), (1.3)

(see [7, Corollaries 2 and 3] with the improvement from [10, Theorem 13] and
[6, Theorem 2.12]), we see that the local error estimate (1.2) has only half the powers
of the local mesh norm h X,S(z;r) compared to the powers of the global mesh norm h X .
(The global mesh norm h X of X is defined by replacing S(z; r) by S2 in (1.1), that
is, h X = h X,S2 .) This loss of convergence order is due to the fact that we use a
local estimate for trigonometric polynomials, the Videnskii inequality (see [2, p. 243,
E. 19 c]), in the proof. Our proof is intrinsic to the sphere, and does not make use of
mapping the spherical cap onto R2 and using results for subsets of R2.

Apart from this main result, we derive as a by-product an interesting novel statement
(see Theorem 3.2) which guarantees, under certain assumptions on the local mesh
norm h X,S(z;r) of a point set X with respect to a spherical cap S(z; r), that we have a
set of local functions (defined on this spherical cap) that provide a local polynomial
reproduction on S(z; r).

An error estimate like (1.2) but with the power of the mesh norm doubled is implicit
in a recent paper [8] for the case of Sd : such a result can be deduced from the proofs
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and a comment in the introduction in [8]. The proof techniques in [8] are completely
different from ours, since they map the sphere Sd with charts onto subsets of Rd and
make use of results for the Euclidean case.

In [9] and [5], global error estimates for radial basis function interpolation on S2

and Sd , respectively, were proved in terms of the global mesh norm. A closer
inspection of the proof, however, shows that the same proof does also imply local
error estimates on a spherical cap in terms of the local mesh norm with respect to a
small neighbourhood of the spherical cap.

Why is the local error estimate (1.2) not only of theoretical but also of practical
interest? If we have a point set X for which h X,S(z;r) ≈ h X , then clearly the global
estimate (1.3) always gives a better result than the local estimate (1.2), and nothing
can be gained from (1.2). However, if we have a sequence of point sets X for which
h X,S(z;r) = o(h2

X ), then the local estimate (1.2) gives asymptotically a better estimate
than the global estimate (1.3).

In particular, the extreme case is of interest, where we have only points in
the spherical cap S(z; r) (that is, X ⊂ S(z; r)), or where we have only points in
S(z; r + ε), with ε > 0 small compared to r . In both cases we have h X ≈ π/2 and
so the global error estimate (1.3) gives no information, whereas the local one (1.2) still
gives useful results.

The paper is organized as follows. In Section 2 we introduce all the necessary
background material about the sphere, function spaces on the sphere, and radial basis
functions, and in Section 3 we formulate and discuss the results. In Section 4 we
present the proofs, and in Section 5 we prove an important lemma (Lemma 4.1 in
Section 4), about the geometry of a point set Y on a spherical cap S(z; r), expressed
in terms of the local mesh norm with respect to this cap. In Section 6 we present a
numerical test that illustrates the theory.

2. Preliminaries

In this section we introduce all the necessary notation and background material.
In Section 2.1 we shall discuss point sets on the unit sphere S2, spherical caps,
and the (global and local) mesh norm of point sets on S2. In Section 2.2
we introduce function spaces on S2, spherical harmonics, the Sobolev spaces
H s(S2), and related terminology. In Section 2.3, we finally briefly discuss zonal
positive definite continuous kernels, radial basis functions, the radial basis function
interpolation problem, and the native space associated with the zonal positive definite
continuous kernel.

2.1. Point sets and geometry on the sphere Let x · y denote the Euclidean inner
product of x, y ∈ R3, and let ‖x‖ := (x · x)1/2 denote the induced Euclidean norm of
x ∈ R3. The unit sphere S2 of the Euclidean space R3 is given by

S2
:= {x ∈ R3

: ‖x‖ = 1}.
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For any two points x and y on the unit sphere S2, the spherical distance dist(x, y)
is defined to be the geodesic distance, that is, the length of a shortest geodesic arc
connecting x and y. (By a geodesic arc we mean an arc which is part of a great circle.)
Since the unit sphere has radius one, this length is just the angle in [0, π ] between the
two points, that is,

dist(x, y) := arccos(x · y).

For x, y ∈ S2 with dist(x, y) < π , the shortest geodesic arc connecting x and y is
uniquely determined; we shall denote that shortest geodesic arc between x and y
(which then has length dist(x, y)) by [x, y] (or [y, x], since here we usually do not
care about orientation).

For a measurable set A⊂ S2, we denote the area of A by |A|.
For a point set X = {x1, x2, . . . , xN } ⊂ S2 the global mesh norm, defined by

h X := sup
x∈S2

inf
x j ∈X

dist(x, x j ),

measures how far away a point x ∈ S2 can be from the closest point of the point set X .
In this paper we are interested in local approximation on spherical caps. The

(closed) spherical cap S(z; r) with centre z ∈ S2 and radius r is defined by

S(z; r) := {x ∈ S2
: dist(x, z)≤ r}.

For a point set X = {x1, x2, . . . , xN } ⊂ S2, the local mesh norm h X,S(z;r) with respect
to S(z; r) is defined by

h X,S(z;r) := sup
x∈S(z;r)

inf
x j ∈X∩S(z;r)

dist(x, x j ).

2.2. Function spaces on the sphere Let L2(S2) denote the Hilbert space of square-
integrable functions on the unit sphere S2 with the usual L2(S2)-inner product

( f, g)L2(S2) :=

∫
S2

f (x)g(x) dω(x);

the corresponding induced norm is ‖ f ‖L2(S2) := ( f, f )1/2
L2(S2)

. Here dω denotes the

surface element of S2.
The space C(S2) is the vector space of continuous functions on the sphere S2

endowed with the supremum norm ‖ f ‖S2 := supx∈S2 | f (x)|, and likewise C(S(z; r))
is the space of continuous functions f : S(z; r)→ R on the spherical cap S(z; r),
endowed with the (local) supremum norm ‖ f ‖S(z;r) := supx∈S(z;r) | f (x)|. For
functions f defined on an interval [a, b] we shall denote the supremum norm by
‖ f ‖[a,b] := supt∈[a,b] | f (t)|.

The space PL(S2) of spherical polynomials on S2 of degree at most L is obtained by
restricting all polynomials on R3 of degree at most L to the sphere S2. The restriction
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to S2 of any homogeneous harmonic polynomial on R3 of exact degree ` is called a
spherical harmonic of degree `. The linear space H`(S2) of all spherical harmonics of
degree ` (and the zero polynomial) has the dimension dim(H`(S2))= 2`+ 1, and by

{Y`,k : k = 1, 2, . . . , 2`+ 1} (2.1)

we shall in the following always denote an orthonormal basis of H`(S2) (with respect
to (·, ·)L2(S2)). Since spherical harmonics of different degree are orthogonal to each

other, and since PL(S2)=
⊕L

`=0 H`(S2), we find dim PL(S2)=
∑L
`=0(2`+ 1)=

(L + 1)2, and the set

{Y`,k : `= 0, 1, . . . , L; k = 1, 2, . . . , 2`+ 1}

forms an orthonormal basis for PL(S2).
A point set X = {x1, x2, . . . , xN } on S2 is said to be PL(S2)-unisolvent if the

only polynomial p in PL(S2) that satisfies p(x j )= 0 for all j = 1, 2, . . . , N is the
zero polynomial.

The spherical harmonics of degree ` satisfy the addition theorem (see
[4, Theorem 3.1.3] and [13, Lemma 4.5 and Theorem 4.7]): for any orthonormal basis
(2.1) of H`(S2), we have

2`+1∑
k=1

Y`,k(x)Y`,k(y)=
2`+ 1

4π
P`(x · y), x, y ∈ S2, (2.2)

where P` denotes the Legendre polynomial (see [16, Chapter IV]) of degree `. The
Legendre polynomials P`, ` ∈ N0, are the uniquely determined complete orthogonal
set in the space L2([−1, 1]) of square-integrable functions on [−1, 1], endowed with
the inner product ( f, g)L2([−1,1]) =

∫ 1
−1 f (t)g(t) dt , with the following properties:

(i) P` is a polynomial of exact degree `, and (ii) ‖P`‖[−1,1] = 1 and P`(1)= 1. The
normalization of the Legendre polynomials is such that

∫ 1
−1 |P`(t)|2 dt = 2/(2`+ 1)

for ` ∈ N0.
The union over ` ∈ N0 of all the sets (2.1) of orthonormal spherical harmonics

of degree ` forms a complete orthonormal system in L2(S2). Thus any function
f ∈ L2(S2) can be expanded into a Fourier series (or Laplace series) with respect
to this orthonormal system,

f =

∞∑
`=0

2`+1∑
k=1

f̂`,kY`,k, (2.3)

with the Fourier coefficients

f̂`,k := ( f, Y`,k)L2(S2) =

∫
S2

f (x)Y`,k(x) dω(x),

and the series (2.3) converges in the L2(S2)-sense to f .
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For s ≥ 0, the Sobolev space H s(S2) (see [4, Sections 5.1 and 5.2]) is the
completion of

⋃
∞

L=0 PL(S2) with respect to the norm

‖ f ‖s :=

( ∞∑
`=0

(`+ 1)2s
2`+1∑
k=1

| f̂`,k |
2
)1/2

. (2.4)

The linear space H s(S2) is a Hilbert space with the inner product

( f, g)s :=

∞∑
`=0

(`+ 1)2s
2`+1∑
k=1

f̂`,k ĝ`,k,

which also induces the norm ‖ · ‖s . We observe that H0(S2)= L2(S2).
For s > 1, the Sobolev space H s(S2) is embedded into the space C(S2) of

continuous functions on S2; that is, H s(S2) is a subset of C(S2) and there exists
a positive constant c such that ‖ f ‖S2 ≤ c‖ f ‖s for all f ∈ H s(S2). This implies
that every point evaluation functional δx : H s(S2)→ R, defined by δx( f ) := f (x),
where x ∈ S2 is fixed, is bounded, and hence that the space H s(S2), with s > 1, is
a reproducing kernel Hilbert space (see [1]).

For more background information on spherical harmonics and functions on the
sphere we refer the reader to [4] and [13, Chapters 4 and 6].

2.3. Zonal positive definite kernels, radial basis functions, and native spaces Let
φ : S2

× S2
→ R be a symmetric and continuous kernel on S2. The kernel is said to

be positive definite if
N∑

i=1

N∑
j=1

αiα jφ(xi , x j )≥ 0,

for any N ∈ N, any vector α = (α1, α2, . . . , αN ) ∈ RN , and any point set X =

{x1, x2, . . . , xN } of N distinct points on S2, and if equality holds only for α = 0.
The kernel φ is said to be zonal if there exists some function 8 : [−1, 1] → R such
that

φ(x, y)=8(x · y), x, y ∈ S2. (2.5)

In other words, a zonal kernel is essentially a function of one variable, since for
arbitrary fixed x ∈ S2 it is constant on any ‘latitude’ {y ∈ S2

: y · x = r}, r ∈ (−1, 1),
with respect to x as the north pole. For any zonal continuous kernel φ : S2

× S2
→ R,

the function 8 in (2.5) is continuous and thus, in particular, is in L2([−1, 1]), and can
be expanded into a Legendre series

8=

∞∑
`=0

2`+ 1
4π

a`P`, (2.6)

with the Legendre coefficients a` defined by

a` := 2π
∫ 1

−1
8(t)P`(t) dt, ` ∈ N0.
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Substituting (2.6) into (2.5) and then using the addition theorem (2.2) yields that in the
L2-sense

φ(x, y)=

∞∑
`=0

2`+ 1
4π

a`P`(x · y)=

∞∑
`=0

a`
2`+1∑
k=1

Y`,k(x)Y`,k(y). (2.7)

We shall in the following only consider zonal positive definite continuous kernels φ. In
addition, we shall assume that the coefficients a`, ` ∈ N0, in the series representation
(2.7) satisfy

∞∑
`=0

`|a`|<∞, (2.8)

thus guaranteeing that the series in (2.6) converges uniformly to8, since the Legendre
polynomials satisfy ‖P`‖[−1,1] = 1.

In [3] (building on earlier results of Schoenberg [15] and Xu and Cheney [19]) a
complete discussion of zonal positive definite continuous kernels satisfying (2.8) is
given: a kernel of the form (2.7) with the property (2.8) is positive definite if and only
if a` ≥ 0 for all ` ∈ N0 with a` > 0 for infinitely many even values of ` and infinitely
many odd values of `.

From now on let φ : S2
× S2

→ R be a fixed zonal positive definite continuous
kernel of the form (2.7) satisfying (2.8). For a given point set X = {x1, x2, . . . , xN }

of N distinct points on S2, let the (N -dimensional) approximation space be

VX := span{φ(·, x j ) : j = 1, 2, . . . , N }.

The radial basis function interpolation problem can be formulated as follows:
given the values f (xi ), i = 1, 2, . . . , N , of a continuous function f on the point set
X = {x1, x2, . . . , xN }, find the function 3X f ∈ VX such that

3X f (xi )= f (xi ), i = 1, 2, . . . , N . (2.9)

Writing (2.9) more explicitly yields the linear system

3X f (xi )=

N∑
j=1

α jφ(xi , x j )= f (xi ), i = 1, 2, . . . , N . (2.10)

Owing to the positive definiteness of φ, the matrix [φ(xi , x j )]i, j=1,2,...,N of the linear
system (2.10) is positive definite, and hence the linear system (2.10) always has a
uniquely determined solution.

Consider the linear function space

Fφ :=

{ N∑
j=1

α jφ(·, x j ) : α j ∈ R, x j ∈ S2, j = 1, 2, . . . , N ; N ∈ N
}
,
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endowed with the inner product (g, h)φ of g ∈ Fφ , given by g =
∑N

j=1α j φ(·, x j ),
and h ∈ Fφ , given by h =

∑M
i=1 βi φ(·, zi ), defined by

(g, h)φ :=

N∑
j=1

M∑
i=1

α jβiφ(x j , zi ). (2.11)

Owing to the positive definiteness of φ, (2.11) is indeed an inner product for Fφ and

induces as usual a norm for Fφ via ‖ f ‖φ := ( f, f )1/2φ , f ∈ Fφ . The native space Nφ
is now defined to be the completion of Fφ with respect to this norm. The space Nφ is
(by construction) a Hilbert space. We shall denote its inner product also by (·, ·)φ and
the induced norm by ‖ · ‖φ .

The kernel φ is symmetric, and Fφ contains φ(·, x) for all x ∈ S2. Furthermore,
(2.11) with g ∈ Fφ and h = φ(·, x) yields (g, φ(·, x))φ = g(x), and thus φ is a
reproducing kernel for Fφ . This property extends from Fφ to its completion Nφ
with respect to the inner product (·, ·)φ of Nφ . This means that (i) φ is symmetric,
(ii) φ(·, x) ∈Nφ for all x ∈ S2, and (iii) the reproducing property holds, that is,

( f, φ(·, x))φ = f (x) for all f ∈Nφ and all x ∈ S2. (2.12)

The native spaceNφ is therefore a reproducing kernel Hilbert space (see [1]) with the
reproducing kernel φ.

From (2.12) it is obvious that the radial basis function interpolation problem (2.9)
for a function f in the native spaceNφ can also be written as follows: given the values
of f ∈Nφ on a point set X = {x1, x2, . . . , xN }, find 3X f ∈ VX such that

(3X f, φ(·, xi ))φ = ( f, φ(·, xi ))φ for i = 1, 2, . . . , N .

This means that 3X :Nφ → VX is just the Nφ-orthogonal projection (with respect
to (·, ·)φ) onto the finite-dimensional subspace VX .

It is well known that the native space Nφ associated with a zonal positive definite
continuous kernel φ, of the form (2.7) and satisfying (2.8) and a` > 0 for all ` ∈ N0,
has the inner product

( f, g)φ =

∞∑
`=0

1
a`

2`+1∑
k=1

f̂`,k ĝ`,k, f, g ∈Nφ,

and the associated norm

‖ f ‖φ =

( ∞∑
`=0

1
a`

2`+1∑
k=1

| f̂`,k |
2
)1/2

, f ∈Nφ . (2.13)

For more background information on radial basis functions on the sphere refer to
[4, Chapters 5–7] and [18, Chapter 17].
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3. Local radial basis function approximation

Let φ : S2
× S2

→ R be a zonal positive definite continuous kernel of the form (2.7)
satisfying

c1(`+ 1)−2s
≤ a` ≤ c2(`+ 1)−2s for all ` ∈ N0, (3.1)

with positive constants c1 and c2 and some s > 1. We observe that, since s > 1, (3.1)
implies that (2.8) is automatically satisfied, and hence the series in (2.7) converge
uniformly on S2

× S2 to φ.
Under the assumption (3.1), the norm ‖ · ‖φ , given by (2.13), is equivalent to the

‖ · ‖s-norm (see (2.4)), that is,

c−1/2
2 ‖ f ‖s ≤ ‖ f ‖φ ≤ c−1/2

1 ‖ f ‖s, f ∈Nφ, (3.2)

with the constants c1 and c2 from (3.1). Thus the native space Nφ associated with
φ can be identified with the Sobolev space H s(S2), and is, in particular, embedded
in C(S2).

The following theorem, which is the main result of the paper, gives local error
estimates for radial basis function interpolation on the sphere. More precisely, for
f ∈ H s(S2) we obtain an estimate for the maximal absolute pointwise error of the
radial basis function interpolant 3X f on the cap S(z; r) in terms of the local mesh
norm h X,S(z;r) of X with respect to S(z; r).

THEOREM 3.1. Let X = {x1, x2, . . . , xN } be a set of N distinct points on S2, and
let S(z; r) be the spherical cap with centre z ∈ S2 and radius r , where 0< r ≤ π/2.
Assume that the local mesh norm h X,S(z;r) of X satisfies the estimate

h X,S(z;r) ≤
tan(r/4)

4(1 + 2/[
√

3 cos(r/2)])
. (3.3)

Let s > 1, and let φ : S2
× S2

→ R be a zonal positive definite continuous kernel of
the form (2.7) with a`, for ` ∈ N0, satisfying (3.1). Then

‖ f −3X f ‖S(z;r) := sup
x∈S(z;r)

| f (x)−3X f (x)| ≤ cr h(s−1)/2
X,S(z;r)‖ f ‖s,

f ∈ H s(S2), (3.4)

with the positive constant cr given by

cr :=
3
√

c2

2
√
π(s − 1)c1

(
4(1 + 2/[

√
3 cos(r/2)])

tan(r/4)

)(s−1)/2

,

where the positive constants c1 and c2 are the constants from (3.1).

REMARK 1. Note that the constant cr depends only on r , s, c1, and c2, and that
cr → ∞ as r → 0+.
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For the proof of Theorem 3.1 we need the following theorem, which is of
independent interest. It establishes a condition on the local mesh norm hY,S(z;r) of
a point set Y ⊂ S(z; r) for the PL(S2)-unisolvency of Y and for the existence of a set
of local functions that provide local polynomial reproduction on the cap S(z; r). This
theorem is motivated by a corresponding result which guarantees local polynomial
reproduction on balls in Rd+1 (see [18, Chapter 3]).

THEOREM 3.2. Let S(z; r) be the spherical cap with centre z ∈ S2 and radius r ,
where 0< r ≤ π/2, and let L ≥ 1 be an integer. Let Y = {y1, y2, . . . , yM } be a set of
M distinct points on S(z; r) whose local mesh norm hY,S(z;r) satisfies

hY,S(z;r) ≤
tan(r/4)

4(1 + 2/[
√

3 cos(r/2)])L2
. (3.5)

Then Y is a PL(S2)-unisolvent set, and there exist functions u j : S(z; r)→ R,
j = 1, 2, . . . , M, such that

M∑
j=1

u j (x)p(y j )= p(x) for all p ∈ PL(S2) and all x ∈ S(z; r), (3.6)

and
M∑

j=1

|u j (x)| ≤ 2 for all x ∈ S(z; r). (3.7)

REMARK 2. Note that for a (global) finite point set X ⊂ S2 whose local mesh
norm h X,S(z;r) with respect to S(z; r) satisfies (3.5), Theorem 3.2 can be applied to
Y := X ∩ S(z; r) and thus Y , and also X , is PL(S2)-unisolvent.

The proofs of Theorems 3.1 and 3.2 will be given in the next section.

4. Proofs

First we prove Theorem 3.2. This proof makes use of a lemma establishing
a geometric property of a (local) finite point set on a spherical cap under some
assumptions on the local mesh norm with respect to that cap. We also apply the
Videnskii inequality, and a fundamental theorem about norming sets. The argument
is inspired by arguments for Rd+1 (see [18, Chapter 3]) that make use of the Markov
inequality and domains that satisfy a cone condition.

LEMMA 4.1. Let S(z; r) be the spherical cap on S2 with centre z ∈ S2 and radius
r ≤ π/2, and let Y = {y1, y2, . . . , yM } be a point set on S(z; r) whose local mesh
norm satisfies hY,S(z;r) ≤ r/2. For every x ∈ S(z; r), there exists a point y ∈ Y with
the following two properties:
(i) dist(x, y)≤ (1 + 2/[

√
3 cos(r/2)])hY,S(z;r);

(ii) the geodesic arc starting at x and going through y and continuing up to the
boundary of S(z; r) has length greater than or equal to r .
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The delicate proof of this lemma is given in Section 5. Here we just want to
interpret the result. Since hY,S(z;r) is the local mesh norm of the point set Y with
respect to S(z; r), it is clear that for every x ∈ S(z; r) there exists a point y′

∈ Y with
dist(x, y′)≤ hY,S(z;r). However, we have in general no information about the length of
the geodesic arc starting at x and going through y′ up to the boundary of S(z; r). The
lemma guarantees that there is a point y ∈ Y reasonably close to x with the property
that the geodesic arc from x through y up to the boundary of the cap S(z; r) has
length at least r .

REMARK 3. We also observe that the estimate in (i) easily gives an upper bound
which is independent of r : since r ≤ π/2 we have cos(r/2)≥ 1/

√
2, and thus

dist(x, y)≤ (1 +
√

8/3)hY,S(z;r).

REMARK 4. The second term 2/(
√

3 cos(r/2)) in the constant in the estimate in
(i) is asymptotically optimal, in a sense that will become apparent in the proof of
Lemma 4.1 in Section 5.

After some elementary transformations, the Videnskii inequality (see [2, p. 243,
E. 19 c]) reads as follows.

LEMMA 4.2 (Videnskii inequality). Let ω ∈ (0, 2π). If

2L ≥

(
3
(

tan
ω

4

)2

+ 1
)1/2

, (4.1)

then, for every trigonometric polynomial sL of degree ≤ L, the derivative s′

L satisfies

‖s′

L‖[0,ω] ≤ 2L2 cot
(
ω

4

)
‖sL‖[0,ω]. (4.2)

Let V be a finite-dimensional real vector space with norm ‖ · ‖V , and let V ∗ denote
the dual space of V consisting of all linear and continuous functionals on V . A finite
subset Z of V ∗ with cardinality M is called a norming set for V if the mapping
T : V → RM defined by T (v)= (z(v))z∈Z is injective.

We shall use [18, Theorem 3.4] (see also [7] for the original source of Theorem 4.3
below), which we quote (with appropriate adaptation to our notation) for the reader’s
convenience.

THEOREM 4.3. Let V be a finite-dimensional real vector space with norm ‖ · ‖V ,
and let Z = {z1, z2, . . . , zM } ⊂ V ∗ be a norming set for V . Further, let T : V → RM

be the sampling operator T (v) := (z1(v), z2(v), . . . , zM (v)), where RM is equipped
with the supremum norm. Then, for every9 ∈ V ∗, there exists a vector u = u9 ∈ RM ,
u = (u1, u2, . . . , uM ), depending only on 9, such that

9(v)=

M∑
j=1

u j z j (v), v ∈ V,

https://doi.org/10.1017/S0004972708000087 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000087


208 K. Hesse and Q. T. Le Gia [12]

and
M∑

j=1

|u j | ≤ ‖T −1
‖ ‖9‖V ∗ .

PROOF OF THEOREM 3.2. Let p ∈ PL(S2) be an arbitrary spherical polynomial
such that ‖p‖S(z;r) = 1. Then there exists a point x ∈ S(z; r) such that |p(x)| = 1.

Under the assumptions in Theorem 3.2 it is easy to see using (3.5) that hY,S(z;r) ≤

r/2; thus from Lemma 4.1 and the assumption (3.5) there exists a point y ∈ Y such
that

dist(x, y)≤

(
1 +

2
√

3 cos(r/2)

)
hY,S(z;r) ≤

tan(r/4)

4L2 , (4.3)

and such that the geodesic arc from x through y up to the boundary of the cap S(z; r)
has length at least r . For simplicity of notation, let us from now on denote the point
where this geodesic arc reaches the boundary of S(z; r) by q, and let r ′ (≥ r) denote
the length of the geodesic arc [x, q]. The length of [x, q] is bounded from above by
the diameter of the cap, that is, r ′

≤ 2r ≤ π .
The restriction of any polynomial in PL(S2) to a great circle is a trigonometric

polynomial of degree at most L . Let now P := p|[x,q] denote the trigonometric
polynomial P : [0, r ′

] → R of degree at most L obtained by restricting p to the
geodesic arc [x, q]. The parametrization is such that P(0)= p(x) and P(r ′)= p(q).
Furthermore, let ρ be the value of the parameter that corresponds to y, that is,
P(ρ)= p(y) and ρ := dist(x, y). Since L ≥ 1 and r ≤ r ′

≤ π , the estimate

2L ≥ 2 =

(
3
(

tan
π

4

)2

+ 1

)1/2

≥

(
3
(

tan
r ′

4

)2

+ 1

)1/2

,

ensures that (4.1) is satisfied with ω = r ′, allowing us to use the Videnskii inequality
(4.2) for the trigonometric polynomial P with ω = r ′. Then the mean value
theorem, the Videnskii inequality (4.2) with ω = r ′, ρ = dist(x, y), the estimate (4.3),
‖P‖[0,r ′] = |P(0)| = |p(x)| = 1, and 0< r ≤ r ′

≤ π imply that

|p(x)− p(y)| = |P(0)− P(ρ)| ≤ ρ‖P ′
‖[0,r ′]

≤ dist(x, y)2L2 cot(r ′/4)‖P‖[0,r ′]

≤
tan(r/4)

4L2 2L2 cot(r ′/4)

≤
1
2 . (4.4)

From (4.4) and |p(x)| = 1, we obtain with the help of the lower triangle inequality for
our spherical polynomial p of degree at most L

|p(y)| ≥ |p(x)| − |p(x)− p(y)| ≥ 1 −
1
2 =

1
2 . (4.5)
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Now let V := PL(S2)|S(z;r) := {p|S(z;r) : p ∈ PL(S2)} be equipped with the
supremum norm ‖ · ‖S(z;r), and consider the sampling operator

T : PL(S2)|S(z;r) → RM , p 7→ T (p) := (p(y1), p(y2), . . . , p(yM )),

corresponding to point evaluation on Y = {y1, y2, . . . , yM }, where RM is
equipped with the supremum norm ‖v‖∞ := max{|v j | : j = 1, 2, . . . , M} for
v = (v1, v2, . . . , vM ) ∈ RM . The operator T satisfies ‖T ‖∞ ≤ 1 because ‖T (p)‖∞ ≤

‖p‖S(z;r) for all p ∈ PL(S2). From (4.5) it follows that T is injective, since for every
non-zero p ∈ PL(S2) we have T (p) 6= 0. By definition, this means that the subset
Z = {δy j : j = 1, 2, . . . , M} ⊂ V ∗ of point evaluation functionals δy j : V → R,
δy j (p) := p(y j ), is a norming set for V = PL(S2)|S(z;r). The inverse operator of T
exists on the range T (V )⊂ RM of T (since T is injective), and T −1

: T (V )→ V
satisfies

‖T −1
‖∞ := sup

v∈T (V )\{0}

‖T −1v‖S(z;r)

‖v‖∞

= sup
p∈V \{0}

‖p‖S(z;r)

‖T (p)‖∞

= sup
p∈PL (S2)\{0}

‖p‖S(z;r)

max{|p(y j )| : j = 1, 2, . . . , M}
≤ 2, (4.6)

where the estimate in the last step follows from (4.5).
Now we apply Theorem 4.3 to the finite-dimensional space V and the norming set

Z = {δy j : j = 1, 2, . . . , M} ⊂ V ∗ for V . Theorem 4.3 guarantees that for every point
evaluation functional δw : V → R, δw(p) := p(w), where w ∈ S(z; r), there exists
u = u(w)= (u1(w), u2(w), . . . , uM (w)) ∈ RM such that

p(w)= δw(p)=

M∑
j=1

u j (w)δy j (p)=

M∑
j=1

u j (w)p(y j ), p ∈ PL(S2)|S(z;r), (4.7)

and
M∑

j=1

|u j (w)| ≤ ‖T −1
‖∞ ‖δw‖V ∗ ≤ 2.

In the last step we have used (4.6) and the fact that the norm of any point evaluation
functional δw, with w ∈ S(z; r), satisfies the estimate

‖δw‖V ∗ = sup
p∈V \{0}

|p(w)|
‖p‖S(z;r)

≤ 1.

Because (4.7) is valid for all p ∈ V = PL(S2)|S(z;r), it also holds true for all
p ∈ PL(S2), since the sets are in one-to-one correspondence. This proves that (3.6)
and (3.7) are satisfied.

It remains to show that Y = {y1, y2, . . . , yM } is PL(S2)-unisolvent. Consider
p ∈ PL(S2)with p(y j )= 0 for j = 1, 2, . . . , M . Then (3.6) implies that p ≡ 0 on S2.
Thus Y is PL(S2)-unisolvent. This concludes the proof of Theorem 3.2. 2

Now we prove Theorem 3.1 with the help of Theorem 3.2.
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PROOF OF THEOREM 3.1 – PART I. The radial basis function interpolant 3X f of
any function f ∈Nφ can be written in the Lagrange representation as

3X f =

N∑
j=1

f (x j )` j , (4.8)

where the Lagrangians ` j , j = 1, 2, . . . , N , are defined by ` j ∈ VX and ` j (xi )= δi, j
for i = 1, 2, . . . , N , with the Kronecker symbol δi, j defined by δi, j = 1 if i = j and
zero otherwise. From (4.8) and the reproducing property (2.12) of the reproducing
kernel φ, we find for any f in the native spaceNφ that

f (x)−3X f (x) = ( f, φ(·, x))φ −

N∑
j=1

( f, φ(·, x j ))φ` j (x)

=

(
f, φ(·, x)−

N∑
j=1

φ(·, x j )` j (x)
)
φ

, x ∈ S2.

The Cauchy–Schwarz inequality then yields

| f (x)−3X f (x)| ≤ ‖ f ‖φ PX (x), x ∈ S2, (4.9)

with the power function PX : S2
→ R+

0 given by

PX (x) :=

∥∥∥∥φ(·, x)−

N∑
j=1

φ(·, x j )` j (x)
∥∥∥∥
φ

=

(
φ(x, x)− 2

N∑
j=1

φ(x, x j )` j (x)+

N∑
i=1

N∑
j=1

φ(xi , x j )`i (x)` j (x)
)1/2

.

(4.10)

The equivalence (3.2) of the norms ‖ · ‖φ of Nφ and ‖ · ‖s of H s(S2) and (4.9) imply
that for every f ∈ H s(S2)

| f (x)−3X f (x)| ≤ c−1/2
1 ‖ f ‖s PX (x), x ∈ S2, (4.11)

with the constant c1 from (3.1). 2

It remains to estimate the power function PX uniformly on S(z; r). We use the
following well-known lemma.

LEMMA 4.4. Let φ : S2
× S2

→ R be a zonal positive definite continuous kernel
of the form (2.7) with a` > 0 for all ` ∈ N0 and satisfying (2.8). Let X =

{x1, x2, . . . , xN } be a set of N distinct points on S2, and for fixed x ∈ S2 define the
quadratic functional Lx : RN

→ R by

Lx(α)= φ(x, x)− 2
N∑

j=1

φ(x, x j )α j +

N∑
i=1

N∑
j=1

φ(xi , x j )αiα j ,
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where α = (α1, α2, . . . , αN ) ∈ RN . The unique global minimum of Lx is achieved by
the vector (`1(x), `2(x), . . . , `N (x)), where ` j , j = 1, 2, . . . , N, is the Lagrangian
corresponding to x j , defined by ` j ∈ VX and ` j (xi )= δi, j for i = 1, 2, . . . , N.

PROOF. Computation of the partial derivative ∂Lx(α)/∂α j yields

∂Lx(α)

∂α j
= −2φ(x, x j )+ 2

N∑
i=1

φ(xi , x j )αi .

Thus ∇Lx(α)= 0 is equivalent to

φ(x, x j )=

N∑
i=1

φ(xi , x j )αi , j = 1, 2, . . . , N ,

which has a unique solution since the kernel φ is positive definite. This unique solution
is αi = `i (x), i = 1, 2, . . . , N , since

∑N
i=1 φ(xi , x j )`i is the Lagrange representation

of φ(·, x j ) ∈ VX . At this critical point Lx assumes a local minimum, because the
Hessian of Lx is given by the positive definite matrix [2φ(xi , x j )]i, j=1,2,...,N . Since
the local minimum at α = (`1(x), `2(x), . . . , `N (x)) is the only local minimum, it is
the global minimum of Lx. 2

PROOF OF THEOREM 3.1 – PART II. Now we estimate the power function PX
uniformly on S(z; r). From Lemma 4.4, we know that an upper bound on the
power function is obtained when the ` j (x), j = 1, 2, . . . , N , are replaced in (4.10)
by the components of any vector α = (α1, α2, . . . , αN ) ∈ RN . To obtain a suitable
vector α we apply Theorem 3.2. Consider the point set Y := X ∩ S(z; r). For
simplicity, we denote the M (≤N ) points in Y by y1, y2, . . . , yM , that is, Y =

{y1, y2, . . . , yM }, and, after renumbering the points in X , we may assume that yi = xi
for i = 1, 2, . . . , M . We observe that hY,S(z;r) = h X,S(z;r), and we define

L :=

⌊(
tan(r/4)

4(1 + 2/[
√

3 cos(r/2)])h X,S(z;r)

)1/2
⌋
,

which is greater than or equal to 1 by the assumption (3.3) in Theorem 3.1. From this
it follows that

L2
≤

tan(r/4)

4(1 + 2/[
√

3 cos(r/2)])h X,S(z;r)
,

which is equivalent to the assumption (3.5) in Theorem 3.2. Thus we know
that Y is a PL(S2)-unisolvent set and that there exist functions u j : S(z; r)→ R,
j = 1, 2, . . . , M , such that

M∑
j=1

u j (x)p(y j )= p(x) for all p ∈ PL(S2) and all x ∈ S(z; r), (4.12)
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and

M∑
j=1

|u j (x)| ≤ 2 for all x ∈ S(z; r). (4.13)

Now we fix x ∈ S(z; r), and choose the vector α = (α1, α2, . . . , αN ) ∈ RN to be

α j :=

{
u j (x), j = 1, 2, . . . , M,

0, j = M + 1, M + 2, . . . , N .

(Remember that we have renumbered the points in X so that x j = y j for
j = 1, 2, . . . , M .) From Lemma 4.4 we obtain then

PX (x)≤

(
φ(x, x)− 2

M∑
j=1

φ(x, x j )u j (x)+

M∑
i=1

M∑
j=1

φ(xi , x j )ui (x)u j (x)
)1/2

. (4.14)

From the local polynomial reproduction property (4.12) we have, for all `≤ L ,

P`(x · x)− 2
M∑

j=1

P`(x · x j )u j (x)+

M∑
i=1

M∑
j=1

P`(xi · x j )ui (x)u j (x)

=

(
P`(x · x)−

M∑
j=1

P`(x · x j )u j (x)
)

−

M∑
j=1

(
P`(x · x j )−

M∑
i=1

P`(xi · x j )ui (x)
)

u j (x)= 0.

Thus the terms up to (and including the) degree L in the series expansion (2.7) of φ
cancel on the right-hand side of (4.14), and we can replace φ in (4.14) by

φL(x, y) :=

∞∑
`=L+1

2`+ 1
4π

a`P`(x · y)=

∞∑
`=L+1

a`
2`+1∑
k=1

Y`,k(x)Y`,k(y).

This, together with |P`(t)| ≤ 1 for all t ∈ [−1, 1], the estimate (4.13), and the
assumption (3.1) on the coefficients a`, ` ∈ N0, yield
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PX (x) ≤

(
φL(x, x)− 2

M∑
j=1

φL(x, x j )u j (x)+

M∑
i=1

M∑
j=1

φL(xi , x j )ui (x)u j (x)
)1/2

=

( ∞∑
`=L+1

2`+ 1
4π

a`

[
P`(1)− 2

M∑
j=1

P`(x · x j )u j (x)

+

M∑
i=1

M∑
j=1

P`(xi · x j )ui (x)u j (x)
])1/2

≤

( ∞∑
`=L+1

2`+ 1
4π

a`[1 + 4 + 4]

)1/2

(4.15)

≤
3
√

c2
√

2π

( ∞∑
`=L+1

(`+ 1)1−2s
)1/2

≤
3
√

c2
√

2π
√

2(s − 1)
(L + 1)1−s . (4.16)

Finally, since

L + 1>
(

tan(r/4)

4(1 + 2/[
√

3 cos(r/2)])h X,S(z;r)

)1/2

,

the estimate (4.16) implies

PX (x)≤
3
√

c2

2
√
π(s − 1)

(
4(1 + 2/[

√
3 cos(r/2)])

tan(r/4)

)(s−1)/2

h(s−1)/2
X,S(z;r), (4.17)

for all x ∈ S(z; r). Combining (4.11) and (4.17) yields (3.4). 2

5. Proof of Lemma 4.1

The proof of Lemma 4.1 is done by a geometric construction. Note that in all
our illustrations S(z; r) is depicted as a ball in R2, since this is easier to draw and
visualize. However, this ignores the curvature of the sphere. In particular, this means
that geodesic arcs appear as straight lines in our illustrations and that any (seemingly
planar) triangle in our illustrations is in fact a spherical triangle, that is, a triangle given
by connecting the corner points with geodesic arcs.

For purposes of explanation and description in the proof, we shall sometimes use
polar coordinates for S2, given by

x(ϑ, ϕ)= (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ), ϑ ∈ [0, π ], ϕ ∈ [−π, π ]. (5.1)

We shall also use the following well-known fact.
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LEMMA 5.1. Any spherical cap S(z; r) with r < π/2 is convex. That is, the
shortest geodesic arc between any two points of S(z; r) lies in S(z; r), and is unique.

PROOF OF LEMMA 4.1. First we discuss the trivial case x = z. In this case we
know that there exists a point y in Y with dist(x, y)≤ hY,S(z;r), and the geodesic
arc from x = z through y up to the boundary of S(z; r) has exactly the length r . So
properties (i) and (ii) are clearly satisfied.

For the case x 6= z the proof is much more complicated. First we need a geometric
construction of a ‘spherical cone’ C(x, z) which is a subset of S(z; r) having a vertex
at x, and which contains z, and which is guaranteed to contain a point y ∈ Y satisfying
conditions (i) and (ii) in the lemma.

Without loss of generality, we may assume in the following that x and z both lie
on the equator, and that z has the polar coordinates (π/2, 0) (that is, z = (1, 0, 0))
and that x lies west of it, that is, x has the polar coordinates (π/2,−ρ) with
ρ := dist(x, z)≤ r . In particular, this means that the uniquely determined great circle
through x and z is the equator, and any great circle perpendicular to the equator passes
through the north pole n = (0, 0, 1) and the south pole s = (0, 0,−1). We denote the
point given by the intersection of the equator and the boundary of S(z; r) to the east
of z by q; this point has the polar coordinates (π/2, r).

From now on we consider only r < π/2, and comment at the end on the case
r = π/2. Since r < π/2, the cap S(z; r) contains neither the north nor the south pole,
and from Lemma 5.1 S(z; r) is convex.

For x ∈ S(z; r) \ {z} consider a second spherical cap S(x; r), with centre x and
radius r . Since x 6= z, there are exactly two points p1 and p2 where the boundaries of
the two caps intersect, and the geodesic arc [p1, p2] is perpendicular to the geodesic
arc [x, z], cutting [x, z] in half (see Figure 1(a)). Since the two spherical caps S(z; r)
and S(x; r) are not identical, their union has an area which is larger than that of each
individual cap. Also [p1, p2] cuts the union of the two caps into two mirror-symmetric
regions of equal size, and each of these two regions has an area which is strictly larger
than |S(z; r)|/2. From now on we focus on the region containing z, and denote it by
A(x, z). The set A(x, z) can be described as the part of the cap S(z; r) to the east of
the geodesic arc [p1, p2]. Since its area is larger than |S(z; r)|/2, it has to contain the
‘hemi-cap’ {v = v(ϑ, ϕ) ∈ S(z; r) : ϕ ≥ 0} which is the part of S(z; r) to the east of
the longitude through z.

Now we construct our spherical cone C(x, z) as shown in Figure 1(b): the two
geodesic arcs [x, p1] and [x, p2] cut the original cap S(z; r) into a (smaller) part
which does not contain z and a (larger) part which contains z. We denote the part
that contains z by C(x, z). We shall call C(x, z) the spherical cone with vertex at x
and ‘arms’ [x, p1] and [x, p2].

Since [x, p1] and [x, p2] are geodesic arcs, and since x lies outside A(x, z), it
follows that C(x, z) contains A(x, z). Hence C(x, z) contains in particular the ‘hemi-
cap’ {v = v(ϑ, ϕ) ∈ S(z; r) : ϕ ≥ 0}. Inside this ‘hemi-cap’ we can place a unique
spherical cap with radius r/2 so that its centre is on the equator half-way between z
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(a) (b)

FIGURE 1. (a) The region A(x, z) and (b) the cone C(x, z) with the spherical cap of radius r/2 with
centre in the middle of [z, q], for r < π/2.

(a) (b)

FIGURE 2. (a) The cone C(x, z)with the spherical cap S(u; h) and (b) the cone C(x, z)with the spherical
cap S(z′

; h). In both pictures h = r/2 and r < π/2.

and q, as shown in Figure 1(b). It follows that any spherical cap with the same centre
and radius h ≤ r/2 is also contained in the ‘hemi-cap’ and hence in C(x, z).

Now we move the centre of this spherical cap with radius h ≤ r/2 westwards along
the equator subject to the condition that the cap stays inside C(x, z). At some point
the west side of the boundary of the cap just touches [p1, p2] as shown in Figure 2(a);
we denote the centre of the cap of radius h ≤ r/2 at this position by u. We observe that

dist(x, u)=
dist(x, z)

2
+ h ≤

r

2
+

r

2
= r < π/2. (5.2)

We now continue to move the centre of the cap with radius h further along the
equator to the west until the cap just touches the arms [x, p1] and [x, p2] of the
cone C(x, z). This is as far as we can go to the west while keeping the cap with
radius h completely inside C(x, z).
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FIGURE 3. The triangle 1(x, z′, q1).

Let us denote by z′ the centre of this final spherical cap. Thus z′ is the centre of
the spherical cap with centre on the equator and radius h, lying inside C(x, z) and just
touching the arms [x, p1] and [x, p2] of the cone C(x, z) (see Figure 2(b)). As in the
figure, we denote the points where S(z′

; h) touches [x, p1] and [x, p2] by q1 and q2,
respectively.

We are interested in obtaining an estimate for the distance

h1 := dist(x, z′).

Obviously, from (5.2) one bound is h1 ≤ dist(x, u)≤ r < π/2, but we need a bound of
the form h1 ≤ γ h, with a constant γ independent of h. For this purpose we consider
the spherical triangle 1(x, z′, q1) with corners given by x, z′, and q1 and sides given
by the shortest geodesic arcs connecting the corner points (see Figures 2(b) and 3).
Since [x, q1] is a sub-arc of the geodesic arc [x, p1] and since S(z′

; h) just touches
[x, p1] at q1, the angle at the corner q1 is π/2. Let us denote the angle at the corner
x by α. We know that dist(z′, q1)= h. From the spherical sine theorem (see [12,
Theorem 2.5.2]) we obtain

sin h1 =
sin h1

sin(π/2)
=

sin h

sin α
. (5.3)

The angle α satisfies π/3< α < π/2. (This will be shown in Appendix A.) Since
π/3< α < π/2, we have sin α >

√
3/2, and thus from (5.3)

sin h1 <
2

√
3

sin h. (5.4)

Since h1 < π/2, we can use sin h1 > 2h1/π and sin h ≤ h, yielding with (5.4)

2h1

π
<

2h
√

3
⇔ h1 <

π
√

3
h. (5.5)

Since π/
√

3 ≈ 1.8138, (5.5) provides the upper bound h1 < 2h which we now use to
improve the upper bound (5.5). Since we have h1 < 2h < π/2 (with the last inequality
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following from h ≤ r/2 and r < π/2), from the monotonically decreasing nature of
sin x/x on [0, π/2] it follows that

sin(2h)

2h
<

sin h1

h1
. (5.6)

Using sin(2h)= 2 sin h cos h we obtain from (5.6) and (5.4) that

sin h cos h
h1

h
<

2
√

3
sin h ⇔ h1 <

2
√

3 cos h
h.

To obtain a constant that is independent of h, we use cos h ≥ cos(r/2) (from h ≤ r/2
< π/4), and thus find that

h1 <
2

√
3 cos(r/2)

h. (5.7)

Before we continue with the proof we want to explain why (5.7) is in a certain
sense asymptotically optimal. If we consider r → 0+ then the area of the triangle
1(x, z′, q1) shrinks and the geometry of the triangle becomes more and more
Euclidean. In the limit case r = 0 we would have a planar triangle. For a planar
triangle as in Figure 3, we have h = h1 sin α. Since π/3< α < π/2 we have h1 =

h/ sin α < 2h/
√

3, with equality as α → π/3+. This is exactly the estimate that
we obtain from (5.7) for r → 0+. Moreover, the limit α → π/3+ is achieved in
the Euclidean case when x is on the boundary of S(z; r) as we then have a triangle
1(x, z, p1) with three sides of equal length r . Thus (5.7) cannot be improved when r
is small.

Now we continue with the proof. Let h in the above construction be the local
mesh norm hY,S(z;r) of Y with respect to S(z; r). We have established that the
distance h1 = dist(x, z′) satisfies the estimate (5.7) with h = hY,S(z;r). Moreover,
by the definition of the local mesh norm hY,S(z;r), the spherical cap S(z′

; hY,S(z;r))

contains a point y from the point set Y . The distance of this point y from x is
bounded by

dist(x, y) ≤ dist(x, z′)+ dist(z′, y)

≤ h1 + hY,S(z;r)

<

(
1 +

2
√

3 cos(r/2)

)
hY,S(z;r),

and thus y satisfies property (i) in Lemma 4.1. The geodesic arc from x through y up
to the boundary of C(x, z) lies inside C(x, z) and intersects the common boundary of
C(x, z) and S(z; r). Since this geodesic arc crosses the boundary of S(x; r), it is clear
from the construction that it has length ≥ r .

It remains to briefly discuss the case when r = π/2. For this case the proof follows
along the same lines as for r < π/2, but it is much simpler due to the particular
geometric scenario. We briefly sketch the essential steps. For r = π/2, S(z; π/2)
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is a hemisphere whose boundary is the union of the longitudes through (0, 1, 0) and
(0,−1, 0); this boundary contains both the north pole n = (0, 0, 1) and the south pole
s = (0, 0,−1). Now we consider the spherical cap S(x; π/2). It is also a hemisphere,
and its boundary intersects the boundary of S(z; π/2) in n and s. The union of the
geodesic arcs [x, n] and [x, s] is just the longitude {v = v(ϑ, ϕ) : ϕ = −ρ} through x.
Now we choose C(x, z) to be the part of S(z; π/2) to the east of this longitude.
Because in this case the angle at the vertex at x formed by the arms [x, n] and [x, s] of
the cone is π (a degenerate case), the construction is now much simpler. For fixed
0< h ≤ r/2 = π/4, z′ is now the point with polar coordinates (π/2,−ρ + h), so
that S(z′

; h) lies in C(x, z) and touches the boundary of C(x, z) just in the point x,
and h1 = h. From here onwards the proof continues analogously to that for the case
0< r < π/2. 2

6. Numerical results

In our numerical experiment we consider the function

f (x, y, z) := exp(x + y + z)+ 25x3
+, (x, y, z) ∈ R3

∩ S2,

where x+ is x if x > 0 and zero otherwise. The function f consists of the
infinitely often differentiable component f1(x, y, z) := exp(x + y + z) and the (local)
component f2(x, y, z) := x3

+. The latter function has support on the hemisphere
S((1, 0, 0); π/2), is twice continuously differentiable, and is in the Sobolev space
H s(S2) for any s < 3.5 (see [4, pp. 123–126]). Thus f ∈ H s(S2) for any s < 3.5.

As radial basis function (RBF) we use the zonal positive definite function of
Wendland type (see [17] and [18, p. 129]) given by

φ(x, y) := ψ
(√

2 − 2x · y
)
, ψ(r) := (1 − r)4+(4r + 1).

The asymptotic behaviour of the Fourier coefficients of this RBF is (see [11])

c1(`+ 1)−5
≤ a` ≤ c2(`+ 1)−5,

and hence the native space can be identified with H2.5(S2).
We compute the RBF interpolant 3X f of the function f from the values of f

given on a set X of uniformly distributed points on the polar cap S(n; 0.1), where
n = (0, 0, 1) is the north pole. These points were generated by modifying Saff’s
algorithm for partitioning the sphere into regions of equal area and approximately
equal diameter (see [14]), and then restricting the point set to S(n; 0.1); from now on
we shall refer to these points as ‘Saff points’. We stress that we do not use any values
of the function at points outside the cap S(n; 0.1). The arc x = 0, along which the
function x3

+ ‘lacks smoothness’, cuts the north polar cap S(n; 0.1) in half. We may
expect the lack of smoothness along this arc to be reflected in the pointwise error of
the RBF interpolant.
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TABLE 1. The local mesh norm h X,S(n;0.1) of the set X of N Saff points, and the maximal absolute
pointwise error err(X, S(n; 0.1)) of the RBF interpolant on the cap S(n; 0.1). (Note that X ⊂ S(n; 0.1).)

N h X,S(n;0.1) err(X, S(n; 0.1))
500 0.007353 0.001596

1000 0.005220 6.9838 × 10−4

2000 0.003676 2.8189 × 10−4

3000 0.003005 1.7838 × 10−4

4000 0.002603 1.2306 × 10−4

5000 0.002332 9.4106 × 10−5

FIGURE 4. Plot of the logarithm of the ratio of the maximal absolute pointwise errors of the RBF
interpolants on S(n; 0.1) against the logarithm of the ratio of the respective local mesh norms with respect

to S(n; 0.1). All possible combinations of the data in Table 1 have been used.

Table 1 lists the cardinality N of the set X of Saff points in the first column, and its
local mesh norm h X,S(n;0.1) with respect to S(n; 0.1) in the second column. The third
column lists the maximal absolute pointwise error err(X, S(n; 0.1)) of 3X f on the
spherical cap S(n; 0.1). The maximal absolute pointwise error on the spherical cap
S(n; 0.1) was estimated by determining the maximum of the absolute pointwise error
at those points of a 241 × 241 point evaluation grid that lie inside the cap S(n; 0.1).
This grid is a rectangular region of a polar coordinate grid which has been rotated such
that its centre is mapped from the equator onto the north pole n.

We see that the maximal absolute pointwise error declines as the cardinality N of
the set X of Saff points inside the cap S(n; 0.1) increases and the local mesh norm
h X,S(n;0.1) with respect to S(n; 0.1) decreases.
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(a) (b)

FIGURE 5. The absolute pointwise error on (a) S(n; 0.1) and (b) S(n; 0.08) of the RBF interpolant of
f , computed from data at 5000 Saff points located inside the cap S(n; 0.1). In each picture the error has
been set to zero outside the respective cap. Note the very different scale for the error on the smaller cap.

We are interested in monitoring the decay rate of the maximal absolute pointwise
error on S(n; 0.1) as the local mesh norm h X,S(n;0.1) of the set X of Saff points
declines. From (3.4) in Theorem 3.1 we know that

err(X, S(n; 0.1))≈ sup
x∈S(n;0.1)

| f (x)−3X f (x)| ≤ ch(s−1)/2
X,S(n;0.1)‖ f ‖s,

where the X is the set of N Saff points inside S(n; 0.1). Treating the upper bound
as an equality, and taking the quotient for any two different sets X (i) and X ( j) of
Saff points with corresponding local mesh norms h X (i),S(n;0.1) and h X ( j),S(n;0.1) with
respect to S(n; 0.1), we find that

err(X (i), S(n; 0.1))
err(X ( j), S(n; 0.1))

≈

(
h X (i),S(n;0.1)

h X ( j),S(n;0.1)

)(s−1)/2

.

Thus we plot log[err(X (i), S(n; 0.1))/err(X ( j), S(n; 0.1))] on the vertical axis
against log(h X (i),S(n;0.1)/h X ( j),S(n;0.1)) on the horizontal axis, for all possible
combinations of data from Table 1, and we expect that the points lie approximately
on a straight line with slope α ≥ (s − 1)/2 = (2.5 − 1)/2 = 0.75. This is indeed the
case, but with a value of α much bigger than 0.75: the linear fit of the data has the
slope α ≈ 2.47. We observe that in Table 1 the local mesh norm condition (3.3) in
Theorem 3.1 is satisfied for N > 3000 points but not for smaller N .

In Figure 5(a) we show the absolute pointwise error on S(n; 0.1) of the RBF
interpolant of f constructed from the 5000 Saff points. In the picture the error outside
the cap S(n; 0.1) has been set to zero. We observe that the absolute pointwise error
at the boundary of S(n; 0.1) is much larger than that inside S(n; 0.1) away from the
boundary, a phenomenon that might be expected but is not predicted by the theory.
To explore the evident faster convergence in the interior, we evaluate the absolute
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TABLE 2. The local mesh norm h X,S(n;0.08) of the set X of N Saff points inside S(n; 0.1), and the maximal
absolute pointwise error err(X, S(n; 0.08)) of the RBF interpolant on the cap S(n; 0.08).

N h X,S(n;0.08) err(X, S(n; 0.08))

500 0.005492 2.6626 × 10−5

1000 0.003893 4.1698 × 10−6

2000 0.002757 3.2151 × 10−7

3000 0.002266 7.5403 × 10−8

4000 0.001963 2.1394 × 10−8

5000 0.001756 1.8779 × 10−8

pointwise error of the computed RBF interpolant on the smaller cap S(n; 0.08). The
absolute pointwise error on the smaller cap is shown, on a very different scale, in
Figure 5(b), using the same data as before but now setting to zero the error outside
S(n; 0.08). Figure 5(b) can be considered to be obtained by zooming in to the smaller
cap S(n; 0.08) in Figure 5(a). The very different scale of the second plot (differing by
more than three orders of magnitude from the first) reveals a pattern of local error on
the arc x = 0, arising of course from the lack of smoothness of x3

+ along this arc.
In Table 2 we show the maximal absolute pointwise error on S(n; 0.08) and the

local mesh norm h X,S(n;0.08) of the set X of N Saff points with respect to S(n; 0.08)
for the same six values of N as in Table 1. (Note that the values of the local mesh
norm differ from those in Table 1, because the local mesh norm in Table 2 is the
local mesh norm of the Saff points with respect to the smaller cap S(n; 0.08).) The
maximal absolute pointwise error of 3X f on the smaller cap S(n; 0.08) is again seen
to be much smaller than the maximal absolute pointwise error on S(n; 0.1). It also
declines much faster as the number N of Saff points increases. From this we conclude
that, to obtain a good RBF approximation of a function on a spherical cap from local
data, it is advisable to take data of the function on a slightly larger cap. This purely
empirical observation is not reflected by the present theory.

We have also computed the RBF interpolant of f for N = 5000 randomly chosen
points inside the spherical cap S(n; 0.1). The maximal absolute pointwise error on
the cap S(n; 0.1) was found to be comparable to the maximal absolute pointwise error
for RBF interpolation with respect to the 5000 Saff points, but the error in the interior
showed more variability.

Appendix A. Proof of the restrictions on the angle α in the proof of Lemma 4.1

Now we show that the angle α in the proof of Lemma 4.1 satisfies the estimate
π/3< α < π/2. Remember that we assume here that r < π/2 and x 6= z.

PROOF OF π/3< α < π/2. Consider the spherical triangle 1(x, z, p1) with the
corners x, z, and p1 (see Figure A1). We have dist(x, p1)= dist(z, p1)= r and
ρ = dist(x, z)≤ r , and thus we have a triangle with two equal sides (and hence also
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FIGURE A1. The triangle 1(x, z, p1).

two equal angles). Furthermore, since [x, q1] is a sub-arc of [x, p1], and [x, z′
] is a

sub-arc of [x, z] (or vice versa), the corner x of 1(x, z, p1) has the same angle α as
the corner x of the spherical triangle 1(x, z′, q1) (see Figures 2(b) and 3). Hence the
corner z of 1(x, z, p1) also has the angle α. We denote the angle of the corner p1 by
γ (see Figure A1).

The point z lies to the east of x, and therefore the point p1, which lies on the
longitude which cuts the geodesic arc [x, z] in half, is also to the east of the longitude
through x. For this reason, the angle α formed by [x, p1] and by [x, z] satisfies
α < π/2.

It remains to show that α > π/3. To do this we shall make use of the fact that the
area of the spherical triangle 1(x, z, p1) is given by (see [12, Theorem 2.5.5])

|1(x, z, p1)| = 2α + γ − π. (A.1)

Let w denote the point on the equator half-way between x and z (see Figure A1).
The spherical sine theorem applied to the spherical triangle 1(x, w, p1) yields

sin r =
sin r

sin(π/2)
=

sin(ρ/2)
sin(γ /2)

,

or equivalently

sin(γ /2)=
sin(ρ/2)

sin r
=

sin(ρ/2)
2 sin(r/2) cos(r/2)

⇒ sin(γ /2)≤
1

2 cos(r/2)
,

since ρ ≤ r < π/2. Moreover, because r < π/2 it follows that cos(r/2) > cos(π/4)
= 1/

√
2, and hence (since clearly γ /2 ≤ π/2, or γ ≤ π )

sin(γ /2) <
1

√
2

= sin(π/4) ⇒
γ

2
<
π

4
.

Thus both α and γ are strictly less than π/2.
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Now apply the spherical sine theorem to the spherical triangle1(x, z, p1), to obtain
(using ρ ≤ r < π/2)

sin ρ
sin γ

=
sin r

sin α
⇒ sin α =

sin r

sin ρ
sin γ ≥ sin γ.

Because of the monotonicity of sin x on [0, π/2], it follows that α ≥ γ . From this and
(A.1) and the fact the spherical triangle 1(x, z, p1) has positive area, we now obtain
0< |1(x, z, p1)| ≤ 3α − π , that is, 3α > π or equivalently α > π/3. This concludes
the proof. 2

Acknowledgements

We are very grateful to Ian Sloan for suggesting the project and for his valuable
input and feedback. We also thank Doron Lubinsky for advice about the Videnskii
inequality.

References

[1] N. Aronszajn, ‘Theory of reproducing kernels’, Trans. Amer. Math. Soc. 68 (1950), 337–404.
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