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Background
Clinical high-risk states for psychosis (CHR) are associated with
functional impairments and depressive disorders. A previous
PRONIA study predicted social functioning in CHR and recent-
onset depression (ROD) based on structural magnetic resonance
imaging (sMRI) and clinical data. However, the combination of
these domains did not lead to accurate role functioning predic-
tion, calling for the investigation of additional risk dimensions.
Role functioning may be more strongly associated with envir-
onmental adverse events than social functioning.

Aims
We aimed to predict role functioning in CHR, ROD and trans-
diagnostically, by adding environmental adverse events-related
variables to clinical and sMRI data domains within the PRONIA
sample.

Method
Baseline clinical, environmental and sMRI data collected in 92
CHR and 95 ROD samples were trained to predict lower versus
higher follow-up role functioning, using support vector classifi-
cation and mixed k-fold/leave-site-out cross-validation. We built
separate predictions for each domain, created multimodal pre-
dictions and validated them in independent cohorts (74 CHR, 66
ROD).

Results
Models combining clinical and environmental data predicted role
outcome in discovery and replication samples of CHR (balanced
accuracies: 65.4% and 67.7%, respectively), ROD (balanced
accuracies: 58.9% and 62.5%, respectively), and transdiagnosti-
cally (balanced accuracies: 62.4% and 68.2%, respectively). The
most reliable environmental features for role outcome prediction
were adult environmental adjustment, childhood trauma in CHR
and childhood environmental adjustment in ROD.

Conclusions
Findings support the hypothesis that environmental variables
inform role outcome prediction, highlight the existence of both
transdiagnostic and syndrome-specific predictive environmental
adverse events, and emphasise the importance of implementing
real-world models by measuring multiple risk dimensions.
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Functioning impairments and risk for psychosis and
depression

Loss of functioning is linked to reduced quality of life, and they
combine to negatively influence the disease course of many psychi-
atric conditions, especially psychosis and major depression.1 Early
functional deficits are already present in clinical high-risk states
(CHRs).2,3 More specifically, deficits in role functioning (educa-
tional and occupational) within the CHR period are particularly
relevant because they frequently develop in CHRs irrespective of
transition to psychosis, and lead to problems associated with
inability to attend school, unemployment, social impairments
and lasting financial consequences.4,5 Notably, although outcomes
in social functioning could recently be promisingly predicted by
machine learning models6 constructed on clinical and structural
magnetic resonance imaging (sMRI) baseline data in up to 83%
of patients in CHRs,7 outcomes related to role functioning could
not accurately be determined, thus calling for a broader investiga-
tion of potential predictors. Evidence shows that social and role
functioning may be fundamentally different phenomena, differen-
tially linked to symptoms,8 neurocognitive deficits9 and adverse

outcomes.10,11 More specifically, recent views posited that role
functioning may be more strongly associated with concurrent
environmental factors, compared with social functioning.12,13

This would be coherent with the notion that environmental
adverse events during maturational/developmental periods (e.g.
trauma experiences, repeated negative social interactions, malad-
justments in developmental goals) are central for psychosis,14

depression15 and bipolar disorder16 pathophysiology. Moreover,
such adverse events have been associated with brain structure
and function alterations.17–19

Notably, impairments in role functioning also concern indivi-
duals in early illness stages outside the psychosis risk spectrum,
such as depression.20 This is particularly relevant since the CHR
may evolve in different psychiatric disorders.21 Indeed, 35–68% of
patients in CHRs develop or maintain non-psychotic disorders,20,21

thus calling for research on CHRs to broaden the scope of risk esti-
mation to detect not only psychosis, but also other adverse out-
comes. Consistently, patients in CHRs often experience affective
symptoms, to the extent that 41% of have a depressive disorder.21,22

Furthermore, studies showed that psychosis risk is detectable also in
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affective conditions beyond the traditional ‘at-risk’ construct.23,24

These findings highlight that multiple conditions are associated
with role impairments since their early stages. Thus, the prediction
of such functional outcomes should be targeting both CHRs and
affective samples, to obtain more realistic, reliable and potentially
transdiagnostic prediction models of future risk for further func-
tional impairments and, ultimately, disability, in a more heteroge-
neous help-seeking population.7,25,26

Employing machine learning to identify reliable
functioning predictors

So far, research on early identification of patients who subsequently
develop psychosis or other adverse outcomes has produced favour-
able results, yet further improvement is required. Few studies27,28

have tested the predictive value of environmental adverse events
on functional impairments across concurrent psychiatric condi-
tions, as frequently present in psychosis risk syndromes. In this
context, machine learning could harness the interacting effects of
different risk factors by building prognostic models using multiple
data domains, rather than using only one domain at a time. This
form of multimodal learning has been shown to improve prognos-
tic/predictive performance in various fields of medicine, such as
affective disorders,29,30 Alzheimer’s disease31 and stroke.32 Also,
in the CHR field, multimodal risk calculators outperformed uni-
modal prediction models.28,33–35 Notably, these multimodal risk
calculators also showed generalisability,7,36 even when applied to
outcome prediction.37 Thus, embracing a multimodal predictive
approach could facilitate the identification and characterisation of
people at risk for adverse functioning outcomes, which might, in
turn, lead to differential managements that are tailored on a
patient’s individual needs and impairments,38 irrespective of a
later transition to psychosis.38 Parallel to the development of gener-
alisable predictive models, a deeper investigation into the prognostic
power of single data domains and how each domain individually
influences the final prediction is also of central importance.6

Study aim

The aim of this study was therefore to expand existing role function-
ing prediction models,7 which operated on clinical and sMRI data,
by adding information regarding environmental factors previously
associated with psychosis39–42 and depression.43–46 We analysed
two populations with overlapping courses of functional impair-
ments (i.e. CHR and recent-onset depression (ROD)), drawn
from the database of the Personalized Prognostic Tools for Early
Psychosis Management study (PRONIA; https://www.pronia.eu/).
We hypothesised that, by adding environmental information to
the clinical and sMRI data domains, follow-up role functioning
impairments could be more accurately predicted in CHR and
ROD samples separately, as well as transdiagnostically. As a first
step, we investigated the predictive power of environmental
factors occurring before baseline, alone and in combination with
clinical (i.e. retrospectively collected scores of social and role func-
tioning) and sMRI data. Then, we investigated the models’ trans-
diagnostic potential and generalisability to unseen individuals. We
evaluated the predictive importance of each environmental variable
in the respective predictive models, and then investigated whether
the best multimodal predictive model generalised to the prediction
of other clinically relevant trajectories. As a final step, we employed
multivariate regression techniques to assess whether the environ-
mentally determined predictions of role functioning were associated
with the clinical and sMRI data domains, and could therefore act via
clinical vulnerability or sMRI abnormalities.

Method

Sample determination

Individuals were recruited within the European Union’s Seventh
Framework Programme project PRONIA.7 The cohort is divided
based on the date of recruitment in CHR (n = 92) and ROD (n =
95) discovery samples (i.e. individuals recruited between February
2014 and May 2017, at seven sites; Table 1), for model generation,
and in CHR (n = 74) and ROD (n = 66) replication samples, for gen-
eralisability assessments (i.e. individuals recruited after May 2017
and July 2019 at the same seven discovery sites, plus three new
sites; Supplementary Appendix 1 and Supplementary Table 1 avail-
able at https://doi.org/10.1192/bjp.2022.16). Individuals meeting the
criteria for CHR or RODwere recruited according to internationally
established diagnostic criteria;7 20% of CHR and 16% of ROD indi-
viduals were recruited at the three new replication sites.

For all individuals, baseline sMRI and environmental informa-
tion, as well as baseline and follow-up social and role functioning
scores between the 6- and 12-month timepoints of the study
(clinical data), were available. Written informed consent was
obtained from all participants. The Global Functioning: Role (GF:
R) scale47 was used to define lower versus higher role functioning
at a literature-based threshold,7 using the participants’ latest exam-
ination within the 6- to 12-month follow-up period. Based on the
literature,47 a score of >7 points indicated higher outcome and a
score of ≤7 points indicated lower outcome, as a score of 7 points
marks initial mild, but already persistent, role functioning
impairment.

Two-sample t-tests, z-tests and chi-squared tests were used to
investigate potential across-sites demographic and clinical baseline
differences in CHR and ROD. Furthermore, we investigated the
prevalence comparisons of DSM-IV-TR diagnoses in CHR and
ROD with lower versus higher role functioning at baseline (T0)
and follow-up examinations 9 months after baseline (T1), through
chi-squared tests. P-values were group- and timepoint-wise false
discovery rate (FDR)-corrected (α = 0.05).

Unimodal classifiers

The combined clinical and sMRI role functioning predictionmodels
reported in the previous study from our group,7 which we aimed to
expand by adding environmental information, informed the present
analysis with respect to the choice of predictors and the machine
learning pipelines for sMRI and clinical classifiers, which were not
altered in any part. The environmental classifier was not informed
from the previous study,7 except for the machine learning pipeline,
which was implemented consistently with the clinical and sMRI
ones. However, it should be noted that our samples do not com-
pletely overlap with those used in that study, because 24 CHR and
25 ROD individuals in the discovery samples skipped the environ-
mental assessment (see Supplementary Appendix 1, Section 1).
Therefore, only individuals with environmental assessments
(besides clinical and sMRI) were retained in the present study.
Based on this rationale, we trained the following classifiers:

(a) A ‘clinical’ classifier based on eight baseline Global
Functioning: Social (GF:S) and GF:R scores (i.e. highest social
and role functioning lifetime score, highest and lowest social
and role functioning scores in the past year, and current
social and role functioning scores), based on the Global
Functioning Scale.47

(b) An ‘environmental’ classifier, using six summary scores derived
from the Childhood Trauma Questionnaire (CTQ45), the
Bullying Scale for Adults,48 and time-window scores (child-
hood, early adolescence, late adolescence and adulthood) of
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Table 1 Study-associated, sociodemographic, physical, clinical, functional and environmental differences at baseline in discovery individuals with clinical high-risk states, and in individuals with recent-onset depression, with
lower versus higher Global Functioning: Role scale outcomes at follow-up

Characteristic

Follow-up

CHR ROD

Lower GF:R Higher GF:R t/z/χ2
P-
value Lower GF:R Higher GF:R t/z/χ2 P-value

Sample sizes and study variables
Total 52 40 48 47
Participants per site, n (%)
Munich 16 (30.8) 10 (25) χ26 ¼ 9:38 0.15 18 (56.3) 14 (27.7) χ26 ¼ 7:32 0.30

Milan 5 (9.6) 1 (2.5) 2 (4.2) 1 (2.1)
Basel 5 (9.6) 9 (22.5) 5 (12.5) 5 (8.5)
Cologne 6 (11.5) 4 (10) 6 (16.7) 11 (23.4)
Birmingham 4 (7.7) 8 (20) 3 (6.3) 9 (19.1)
Turku 10 (19.2) 3 (7.5) 6 (12.5) 3 (6.4)
Udine 6 (11.5) 5 (12.5) 6 (12.5) 6 (12.8)

Participants examined post-enrolment, number per month
6 0 0 χ21 ¼ 0:06 0.81 1 0 χ22 ¼ 2:13 0.38

9 34 28 38 33
12 18 12 9 13

Sociodemographic data
Age, mean (s.d.), years 24.1 (5.3) 24 (5.2) t85 = 01 0.90 25.2 (5.8) 27.4 (6.1) t93 =−2.12 0.04
Male, n (%) 27 (51.9) 19 (47.5) χ21 ¼ 0:04 0.83 24 (50) 16 (34) χ21 ¼ 1:87 0.17

Edinburgh Handedness Score, mean (s.d.) 59.1 (68.7) 73.6 (46.2) t82 =
−1.16

0.25 79.9 (34.7) 76.1 (46.8) t83 = 0.44 0.66

Education, mean (s.d.), years 13.3 (2.6) 14.1 (3.5) t68 =
−1.20

0.23 14.6 (2.9) 15.3 (2.9) t92 =−1.27 0.21

Educational years repeated, mean (s.d.), years 0.6 (1.0) 0.2 (0.4) t67 = 2.73 0.01 0.2 (0.5) 0.7 (1.9) t51 =−1.66 0.10
Having a partnership most of the time in the year before study inclusion, n (%) 12 (23.1) 7 (17.5) χ21 ¼ 0:11 0.73 9 (18.8) 16 (34) χ21 ¼ 1:96 0.16

Population density in living area, mean (s.d.), habitants/km2 3110.6 (2387.5) 3242.5 (2600.4) t78 =
−0.25

0.80 3369.6 (2280.2) 3284.1 (2312.1) t92 = 0.18 0.86

Number of hospital admissions, mean (s.d.) 0.5 (0.6) 0.4 (0.7) t80 = 0.78 0.44 0.7 (0.6) 0.6 (0.6) t93 = 0.74 0.46
Clinical high-risk state inclusion criteria

Schizotypal personality disorder present, n (%) 5 (9.6) 1 (2.5) χ21 ¼ 0:89 0.35 0 0 Not applicable Not applicable

First-degree relatives with psychosis, n (%) 4 (7.7) 10 (25) χ21 ¼ 3:99 0.05 1 (2.1) 0 χ21 ¼ 0 <0.99

30% Loss of global functioning compared with highest levels in the year before study inclusion, n (%) 17 (32.7) 8 (20) χ21 ¼ 1:25 0.26 9 (18.8) 5 (10.6) χ21 ¼ 0:68 0.41

Genetic risk disability schizotypal personality disorder criterion criteria met, n (%) 5 (9.6) 8 (20) χ21 ¼ 1:24 0.26 0 0 Not applicable Not applicable

Cognitive disturbances criteria met, n (%) 27 (51.9) 23 (57.5) χ21 ¼ 0:10 0.75 0 0 Not applicable Not applicable

Attenuated psychotic symptoms criteria met, n (%) 38 (73.1) 21 (52.5) χ21 ¼ 3:32 0.07 0 0 Not applicable Not applicable

Brief limited intermittent psychotic symptoms criteria met, n (%) 1 (1.9) 3 (7.5) χ21 ¼ 0:62 0.43 0 0 Not applicable Not applicable

Global Assessment of Functioning score at baseline, mean (s.d.)
Disability, highest lifetime score 78.4 (9.1) 82 (5.6) t86 =

−2.32
0.02 80.3 (9.3) 82.9 (7.3) t89 =−1.54 0.13

Symptoms, highest lifetime score 78.6 (8.9) 81.1 (8.1) t87 =
−1.40

0.16 81.8 (7.6) 83.2 (7.4) t93 =−0.90 0.37

Disability, score in past year 65.0 (13.2) 71.5 (10.1) t90 =
−2.65

0.01 68.8 (14) 75 (12.7) t92 =−2.26 0.03
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Table 1 (Continued )

Characteristic

Follow-up

CHR ROD

Lower GF:R Higher GF:R t/z/χ2
P-
value Lower GF:R Higher GF:R t/z/χ2 P-value

Symptoms, score in past year 63.3 (12.6) 70 (9.8) t90 =
−2.83

0.01 71.5 (10.6) 73.9 (12.0) t91 =−1.06 0.29

Disability, score in past month 53 (12.7) 62 (15) t76 =
−3.07

0.002 52.6 (13.7) 61.4 (15.4) t91 =−2.94 0.004

Symptoms, score in past month 53.9 (10.7) 57.5 (10.8) t84 =
−1.59

0.12 55.1 (12.1) 58.4 (13.0) t92 =−1.25 0.21

Global Functioning: Social scale, mean (s.d.) score
Highest lifetime score 7.6 (0.9) 8.2 (0.6) z =−3.34 0.001 8 (0.9) 8.3 (0.8) z =−2.01 0.05
Highest score in past year 6.8 (1.4) 7.7 (0.7) z =−3.53 <0.001 7.3 (1.0) 7.5 (1.1) z =−1.11 0.27
Baseline score 6.2 (1.4) 7.0 (1.1) z = 3.20 0.002 6.3 (1.2) 6.9 (1.3) z =−1.98 0.05

Global Functioning: Role scale, mean (s.d.) score
Highest lifetime score 7.7 (0.9) 8.3 (0.7) z =−3.74 <0.001 8.2 (0.8) 8.5 (0.9) z =−1.85 0.07
Highest score in past year 6.8 (1.2) 7.8 (0.9) z =−4.75 <0.001 7.4 (1.1) 8 (1.2) z =−2.41 0.02
Baseline score 5.7 (1.2) 7.0 (1.3) z =−5.07 <0.001 6.1 (1.5) 6.8 (1.6) z =−2.26 0.03

Standardized Interview for Prodromal Symptoms score at baseline, mean (s.d.) scores
Unusual thought content or delusional ideas 2.6 (1.5) 2.5 (1.5) z = 0.28 0.78 1 (1.1) 0.9 (1.0) z = 0.40 0.69
Suspiciousness or persecutory ideas 2.0 (1.8) 1.9 (2.1) z = 0.35 0.73 0.2 (0.7) 0.2 (0.5) z = 0.29 0.77
Grandiosity 0.3 (1) 0.3 (0.9) z = 0.01 0.99 0.0 (0.1) 0.0 (0.3) z =−0.46 0.65
Perceptual abnormalities 2.1 (1.9) 1.8 (1.5) z = 0.89 0.38 0.7 (1) 0.8 (1.3) z =−0.52 0.60
Disorganised communication 1.1 (1.5) 0.6 (1.1) z = 1.82 0.07 0.3 (0.6) 0.0 (0.2) z = 2.65 0.01
Social anhedonia 2.1 (1.8) 1.5 (1.8) z = 1.56 0.12 2 (1.8) 1.2 (1.6) z = 2.06 0.04
Avolition 2.5 (1.5) 1.9 (1.8) z = 1.67 0.10 2.7 (1.6) 2.2 (1.8) z = 1.35 0.18
Expression of emotion 1.2 (1.6) 0.8 (1.3) z = 1.50 0.14 1 (1.2) 0.5 (1) z = 2.09 0.04
Experience of emotions and self 1.4 (1.5) 1.2 (1.7) z = 0.66 0.51 1.3 (1.4) 1.1 (1.6) z = 0.61 0.54
Ideational richness 0.6 (1.3) 0.1 (0.5) z = 2.45 0.02 0.3 (0.8) 0.0 (0.1) z = 1.99 0.05
Occupational functioning 3.0 (1.8) 1.4 (1.7) z = 4.45 <0.001 2.7 (1.7) 1.9 (1.7) z = 2.37 0.02

Beck Depression Inventory sum score 26.2 (12.7) 22.3 (11.3) t85 = 1.54 0.13 23.5 (13.7) 26.3 (15.3) t91 =−0.94 0.35
Positive and Negative Symptoms Scale, mean (s.d.) scores

Total 53.3 (15.5) 45.4 (9.4) t84 = 3.01 0.003 48 (8.9) 45 (9.6) t92 = 1.59 0.11
Positive sum 10.4 (3.1) 9.5 (2.8) t87 = 1.35 0.18 7.7 (1.3) 7.6 (1.0) t88 = 0.36 0.72
Negative sum 14.6 (6.6) 9.8 (3) t72 = 4.61 <0.001 13.0 (4.6) 11.3 (4.2) t91 = 1.96 0.05
General sum 28.9 (7.8) 26 (6.1) t88 = 1.0 0.05 27.3 (5.7) 26.1 (6) t92 = 0.97 0.34

Childhood Trauma Questionnaire, mean (s.d.) scores
Raw scores 32.94 (4.96) 34 (6.32) z =−0.83 0.41 33.48 (7.57) 34.12 (7.08) z =−0.83 0.41
Deviation scores 0.08 (0.48) 0.26 (0.57) z =−1.52 0.13 0.16 (0.71) 0.22 (0.66) z =−1.52 0.13

Premorbid Adjustment Scale, mean (s.d.) scores
Childhood

Raw score (total) 0.16 (0.12) 0.2 (0.15) z =−1.12 0.27 0.31 (0.18) 0.27 (0.2) z =−0.40 0.69
Deviation score (total) 0.36 (1.2) 0.42 (1.44) z =−0.20 0.84 0.64 (1.42) 0.35 (1.32) z =−0.40 0.69

Early adolescence
Raw score (total) 0.26 (0.18) 0.27 (0.17) z =−0.46 0.65 0.17 (0.12) 0.19 (0.15) z = 1.11 0.27
Deviation score (total) 1.23 (2) 1.19 (1.84) z = 0.11 0.91 1.78 (1.98) 1.3 (2.19) z = 0.1 0.32

Late adolescence
Raw score (total) 0.26 (0.18) 0.23 (0.14) z = 0.74 0.46 0.29 (0.19) 0.26 (0.17) z = 0.67 0.51
Deviation score (total) 0.99 (1.6) 0.8 (1.36) z = 0.61 0.54 1.31 (1.7) 1.08 (1.54) z = 1.11 0.27
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the Premorbid Adjustment Scale (PAS49), which measures the
relative level of harmony between an individual’s needs
and environmental characteristics and requests.50 Notably,
although the PAS does not strictly measure adverse events, its
derived scores reflect how environmental challenges and risk
factors may modulate the capacity of people to adjust in differ-
ent periods of life.49 All summary scores entering the algorithm
were derived by normalising total raw scores by using the pub-
lished psychometric norms of each instrument (Supplementary
Appendix 1, Section 2).

(c) An ‘sMRI’ classifier, including baseline whole-brain grey matter
volume (GMV) individual data. We employed open-source
CAT12 toolbox (version r1155 for Linux; Christian Gaser,
University of Jena, Germany; see http://dbm.neuro.uni-jena.
de/cat12/) to pre-process and analyse individual GMV maps.
Detailed consortium-wise pre-processing and site correction
procedures of MRI data is reported in Supplementary
Appendix 1, Section 3 and elsewhere.7

Classifiers were based either on continuous variables (i.e. envir-
onment and sMRI) or ordinal variables (i.e. clinical), which were
treated as continuous variables based on previous literature.51 All
predictor assessments were made without knowledge of outcome
data, and the outcome label was determined without knowledge
of predictor information. Two-sample t-tests and z-tests were
used to investigate potential clinical and environmental differences
between CHR and ROD with regards to lower versus higher role
functioning (P < 0.05). Results for discovery cohorts are reported
in Table 1, and results for the replication cohort are reported in
Supplementary Table 1. For MRI, we ran checks to rule out any
role functioning or site effects, as well as their interaction, on
GMV estimates. The results of these checks highlighted the
absence of any main effect of role functioning, site and their
interaction, on GMVmaps (all P > 0.05, family-wise error-corrected
k = 10; Supplementary Appendix 1, Section 4).

Machine learning pipeline

The overall analytic strategy (Supplementary Fig. 1) was to first
quantify the unimodal prognostic performance of each classifier
(clinical, environmental, sMRI), and then to understand whether
environmental information would improve prediction performance
when combined with the clinical model and/or the sMRI model.
Therefore, for each cohort (CHR and ROD), we built six machine
learning models to predict higher versus lower GF:R outcome:
three using unimodal classifiers and three using combinations of
individual classifiers (multimodal classifiers). To facilitate compar-
ability and interpretation of our findings, both for unimodal and
multimodal classifiers, we chose to implement the same machine
learning pipelines reported to generate the combined clinical and
sMRI prediction models we aimed at expanding.7 With this aim,
we implemented a mixed inner k-fold/outer leave-site-out7 cross-
validation strategy based on our machine learning platform
NeuroMiner, version 1.0 for Linux (Nikolaos Koutsouleris,
Munich, Germany; see https://github.com/neurominer-git). Per
each population (CHR, ROD), we obtained unimodal risk calculator
predictions based on environmental, clinical and sMRI baseline
features. On the basis of these unimodal predictions, we built the
three multimodal classifiers described above, using stacked general-
isation (Supplementary Appendix 1, Section 5).52 We purposefully
did not investigate the joint predictive ability of clinical and sMRI
classifiers, as this was already explicitly addressed in a recent publi-
cation from our group.7 To measure the discriminative utility of the
input variables within each unimodal classifier, we computed
the probability of being selected for classification purposes within
the inner cross-validation loop for each feature,27 following a
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Table 2 Performance of all unimodal and multimodal classifiers tested in clinical high-risk, recent-onset depression and the pooled sample, for global functioning role outcome at follow-up

True
positives

False
positives

True
negatives

False
negative Accuracy Specificity Sensitivity FPR PPV NPV AUC (95% CI)

BAC (minimum–

maximum) [s.d.]

Permutation-
based
significance

CHR: global functioning role
prediction
Environmental: discovery CHR 34 13 27 18 66.3 67.5 65.4 32.5 72.3 60.0 0.63 (0.52–0.74) 66.4 (40.0–81.7) [13.0] 0.01
Environmental: replication CHR,
all sites

60 14 0 0 81.0 0 100 100 81.0 Not
assessed

0.51 (0.39–0.63) 50.0 (50.0–50.0) [0.0] Not assessed

Clinical: discovery CHR 31 10 30 21 66.3 75.0 59.6 25.0 75.6 58.8 0.76 (0.66–0.86) 67.3 (50.0–90.0) [16.0] 0.04
Clinical: replication CHR, all sites 38 4 10 22 64.8 71.4 63.3 28.5 90.4 31.2 0.76 (0.66–0.86) 67.3 (61.9–74.8) [3.3] Not assessed
sMRI: discovery CHR 28 17 23 24 48.9 53.8 42.5 57.5 54.9 41.5 0.51 (0.39–0.63) 48.2 (30.0–80.0) [12.6] 0.63
sMRI: replication CHR, all sites 26 12 14 60 18.9 100 0 0 Not

assessed
18.9 0.30 (0.19–0.41) 50.0 (42.4–62.1) [3.3] Not assessed

Three modalities: environmental
+ clinical + sMRI: discovery CHR

35 30 10 17 70.7 67.3 75.0 25.0 77.8 63.8 0.75 (0.65–0.85) 71.2 (51.3–90.0) [12.1] 0.01

Three modalities: environmental
+ clinical + sMRI: replication
CHR, all sites

49 9 5 11 72.9 35.9 81.6 64.3 84.4 31.2 0.70 (0.59–0.81) 58.7 (48.2–69.0) [4.6] Not assessed

Two modalities: environmental
+ clinical: discovery CHR

29 30 10 23 64.1 55.8 75.0 25.0 74.4 56.6 0.76 (0.66–0.86) 65.4 (50.0–100.0) [15.6] 0.04

Two modalities: environmental
+ clinical: replication CHR, all
sites

47 6 8 13 74.3 57.1 78.3 42.8 88.6 38.1 0.76 (0.66–0.86) 67.7 (52.7–71.5) [5.2] Not assessed

Two modalities: environmental
+ sMRI: discovery CHR

31 23 17 21 58.7 59.6 57.5 42.5 64.6 52.3 0.57 (0.45–0.69) 58.6 (20.0–81.7) [17.4] 0.11

Two modalities: environmental
+ sMRI: replication CHR, all sites

59 14 0 1 79.7 0 98.3 100 80.8 0 0.30 (0.19–0.41) 49.2 (37.7–54.0) [3.5] Not assessed

ROD: global functioning role
prediction
Environmental: discovery ROD 24 17 30 24 56.8 63.8 50.0 36.2 58.5 55.6 0.53 (0.41–0.65) 56.9 (40.2–75.0) [11.4] 0.11
Environmental: replication ROD,
all sites

9 2 20 35 43.9 90.9 20.4 9.1 81.8 36.3 0.56 (0.44–0.68) 55.6 (47.7–56.6) [1.9] Not assessed

Clinical: discovery ROD 30 22 25 18 57.9 53.2 62.5 46.8 57.7 58.1 0.62 (0.51–0.73) 57.8 (41.7–79.2) [11.8] 0.12
Clinical: replication ROD, all sites 38 10 12 6 75.5 54.5 86.3 45.5 79.1 66.6 0.81 (0.72–0.90) 70.5 (63.6–79.5) [5.3] Not assessed
sMRI: discovery ROD 24 26 21 24 47.4 44.7 50.0 55.3 48.0 46.7 0.49 (0.37–0.61) 47.3 (16.7–75.0) [17.2] 0.72
sMRI: replication ROD, all sites 40 19 3 4 65.2 13.6 90.9 86.3 67.7 42.8 0.53 (0.41–0.65) 52.2 (44.3–56.8) [3.4] Not assessed
Three modalities: environmental
+ clinical + sMRI: discovery ROD

29 23 24 19 55.8 51.1 60.4 48.9 55.8 55.8 0.54 (0.42–0.66) 55.7 (33.3–67.6) [10.1] 0.16

Three modalities: environmental
+ clinical + sMRI: replication
ROD, all sites

22 6 16 22 57.6 72.7 50.0 27.2 78.5 42.1 0.53 (0.41–0.65) 61.3 (44.3–56.8) [6.3] Not assessed

Two modalities: environmental
+ clinical: discovery ROD

30 21 26 18 58.9 55.3 62.5 44.7 58.8 59.1 0.60 (0.49–0.71) 58.9 (40.2–75.0) [11.4] 0.04

Two modalities: environmental
+ clinical: replication ROD, all
sites

21 17 5 23 57.5 77.2 47.7 22.7 80.7 42.5 0.72 (0.62–0.82) 62.5 (47.7–78.4) [8.3] Not assessed

Two modalities: environmental
+ sMRI: discovery ROD

25 22 25 23 52.6 53.2 52.1 46.8 53.2 52.1 0.52 (0.40–0.64) 52.6 (25.0–67.6) [11.5] 0.31
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Table 2 (Continued )

True
positives

False
positives

True
negatives

False
negative Accuracy Specificity Sensitivity FPR PPV NPV AUC (95% CI)

BAC (minimum–

maximum) [s.d.]

Permutation-
based
significance

Two modalities: environmental
+ sMRI: replication ROD, all sites

17 5 17 27 51.5 77.2 38.6 2.7 77.2 38.6 0.53 (0.41–0.65) 57.9 (44.3–62.5) [5.0] Not assessed

Transdiagnostic (CHR + ROD):
global functioning role
prediction
Environmental: discovery (CHR
+ ROD)

45 26 61 55 56.6 70.1 45.0 29.8 63.3 52.5 0.58 (0.50–0.66) 57.7 (40.0–78.6) [9.2] 0.06

Environmental: replication (CHR
+ ROD), all sites

16 4 32 88 34.3 88.8 15.4 11.1 80.0 26.6 0.58 (0.50–0.66) 52.1 (48.3–60.5) [3.1] Not assessed

Environmental: replication (only
CHR), all sites

11 2 12 49 31.1 85.7 18.3 4.2 84.6 19.6 0.72 (0.65–0.79) 52.0 (45.4–55.8) [2.4] Not assessed

Environmental: replication (only
ROD), all sites

5 2 20 39 57.8 90.9 11.3 9.1 71.4 33.8 0.68 (0.60–0.76) 51.1 (47.7–55.7) [1.9] Not assessed

Clinical: discovery (CHR + ROD) 61 27 60 39 64.7 68.9 61.0 31.0 69.3 60.6 0.72 (0.65–0.79) 64.9 (45.4–87.7) [13.7] 0.02
Clinical: replication (CHR + ROD),
all sites

67 9 27 37 67.1 75.0 64.4 25.0 88.1 42.1 0.74 (0.67–0.81) 69.7 (63.2–74.5) [3.5] Not assessed

Clinical: replication (only CHR), all
sites

39 6 8 21 63.5 57.1 65.0 2.8 86.6 27.6 0.75 (0.68–0.82) 61.1 (59.4–73.2) [5.2] Not assessed

Clinical: replication (only ROD),
all sites

28 3 19 16 71.2 86.3 63.6 13.6 90.3 54.3 0.72 (0.65–0.79) 75.0 (58.0–76.1) [4.2] Not assessed

sMRI: discovery (CHR + ROD) 42 35 49 58 41.8 41.6 42.0 58.3 46.1 37.6 0.40 (0.32–0.48) 41.8 (24.5–85.7) [13.3] 0.5
sMRI: replication (CHR + ROD), all
sites

56 15 21 48 55.0 58.3 53.8 41.6 78.8 30.4 0.59 (0.51–0.67) 56.0 (46.0–61.6) [3.8] Not assessed

sMRI: replication (only CHR), all
sites

31 6 8 29 52.7 57.1 51.6 42.8 83.7 21.6 0.64 (0.56–0.72) 54.4 (33.7–73.9) [10.0] Not assessed

sMRI: replication (only ROD), all
sites

25 9 13 19 57.6 59.1 56.8 40.9 73.6 40.6 0.55 (0.47–0.63) 57.9 (44.3–60.2) [3.6] Not assessed

Three modalities: environmental
+ clinical + sMRI: discovery
(CHR + ROD)

58 31 56 42 60.9 64.3 58.0 35.6 65.1 57.1 0.67 (0.59–0.75) 61.1 (45.4–85.7) [10.5] 0.04

Three modalities: environmental
+ clinical + sMRI: replication
(CHR + ROD), all sites

61 7 29 43 64.2 80.5 58.6 19.4 89.7 40.2 0.75 (0.68–0.82) 69.6 (64.9–73.5) [2.1] Not assessed

Three modalities: environmental
+ clinical + sMRI: replication
(only CHR), all sites

38 4 10 22 64.4 71.4 63.3 28.5 90.4 31.2 0.77 (0.70–0.84) 67.4 (60.2–78.9) [4.6] Not assessed

Three modalities: environmental
+ clinical + sMRI: replication
(only ROD), all sites

23 3 19 21 63.3 86.3 2.2 13.6 88.4 47.5 0.72 (0.65–0.79) 69.3 (63.6–75.0) [2.7] Not assessed

Two modalities: environmental
+ clinical: discovery (CHR +
ROD)

57 59 28 43 62.0 67.8 57.0 32.1 67.0 57.8 0.71 (0.64–0.78) 62.4 (45.4–85.7) [12.8] 0.03

Two modalities: environmental
+ clinical: replication (CHR +
ROD), all sites

61 8 28 43 63.5 77.7 58.6 22.2 88.4 39.4 0.74 (0.7–0.8) 68.2 (65.7–72.2) [2.0] Not assessed
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forward feature selection procedure that occurred only in the inner
cycle (CV1) of training data. Of note, this procedure was performed
only for significant unimodal classifiers (see Results). A detailed
description of our machine learning pipeline is provided in
Supplementary Appendix 1, Sections 5 and 6. P-values reflecting
the permuted significance of models (Supplementary Appendix 1,
Section 6) are reported in Table 2. Permutation-based pairwise
comparisons between discovery unimodal andmultimodal classifier
performance are reported in Supplementary Table 5. As a check, we
have calculated the expected calibration error (ECE)25,53 to estimate
calibration for the models achieving best accuracy and generalisabil-
ity in our discovery cohorts (see Results). The ECE was relatively
low, although not perfect (mean ECE = 0.21). Methods and results
of this check are fully described in Supplementary Appendix 1,
Section 10 and Supplementary Fig. 2.

Assessment of generalisability
Transdiagnostic potential of risk calculators

To investigate whether the hypothesised unimodal and multimodal
risk calculators that we computed separately for CHR and ROD
could have transdiagnostic potential, we repeated the same
pre-processing, training and testing pipeline (Supplementary
Appendix 1, Sections 5 and 6) on the combined CHR-ROD popu-
lation, comprising 187 individuals (92 CHR, 95 ROD).

Validation of risk calculators

To test for the generalisability of all prognostic models derived from
CHR, ROD and the pooled CHR and ROD sample, we validated
CHR discovery models in the CHR replication cohort (n = 74);
ROD discovery models in the ROD replication cohort (n = 66);
and transdiagnostic (CHR + ROD) discovery models in the
pooled CHR and ROD replication sample (n = 140), without any
re-training (Supplementary Appendix 1, Section 5).

Despite the employment of leave-site-out cross-validation, we
used sanity checks to rule out whether the discovery and validation
performance of our unimodal and multimodal classifiers could be
affected by any latent site effects. Results of these checks are
reported in Supplementary Appendix 1, Section 5.

Prognostic generalisation of risk calculators to clinical
trajectories

To assess our role functioning predictor’s generalisability to the
development of other clinical outcomes over time, we used linear
mixed effects models (see Results). We therefore generated trajec-
tories based on three longitudinal timepoints for three clinical read-
outs (Supplementary Appendix 1, Section 7): number of psychiatric
hospital admissions across timepoints; prodromal positive and
negative symptoms, drawn from the Structured Interview for
Psychosis-Risk Syndromes;54 and quality of life, drawn from
the World Health Organization Quality of Life – Brief
Questionnaire.55 For each clinical variable of interest, baseline,
T1 (6–12 months after baseline) and T2 assessment (18 months
after baseline) evaluations were entered into the analyses
(Supplementary Appendix 1, Section 7). A multiple comparisons
correction was carried out with FDR (α = 0.05).

Environmental feature knock-out analysis

To quantify the predictive contribution of each of the environmental
variables included in the algorithm, we ran new GF:R outcome pre-
diction models based on environmental features, but we removed
each of the six features originally included in the individual classifier,
one at a time, without altering the original machine learning pipeline
employed for the environmental classifier. This led to six independent
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Support Vector Machine analyses for CHR and ROD, each compris-
ing five features.

Investigation of between-classifiers relationships

To understand whether environmentally determined predictions
could act via clinical vulnerability or sMRI abnormalities in increas-
ing the risk for worse outcome in CHR and ROD – that is, to
preliminarily investigate whether the predictive power of our
environmental model on follow-up occupational functioning
might be partially explained either by baseline global functioning
impairments or baseline sMRI anomalies – we ran support vector
regression analyses (Supplementary Appendix 1, Section 9).

Ethic statement

The authors assert that all procedures contributing to this work
comply with the ethical standards of the relevant national and insti-
tutional committees on human experimentation and with the
Helsinki Declaration of 1975, as revised in 2008. All procedures
involving human patients were approved by the German Clinical
Trials Register (DRKS00005042) and approved by the local research
ethics committees in each centre.

Results

Demographic, clinical and environmental site-level characteristics
are reported separately for CHR and ROD discovery patients in

Table 1, and for CHR and ROD replication patients in
Supplementary Table 1. Table 3 and Supplementary Table 2
report prevalence comparisons of DSM-IV-TR diagnoses in CHR
and ROD samples with lower versus higher GF:R at baseline (T0)
and T1 follow-up examinations.

Discovery results
CHR cohort

In the CHR group (Table 2, Fig. 1 and Supplementary Appendix 1,
Section 4), only environmental and clinical risk calculators pre-
dicted GF:R outcomes significantly better than chance, according
to leave-site-out cross-validated balanced accuracy (BACLSOCV)
(environmental model: BACLSOCV = 66.4%, PFDR = 0.01; clinical
model: BACLSOCV = 67.3%, PFDR = 0.04) and area under the curve
(AUC) (environmental model: 0.63; clinical model: 0.76). The
multimodal classifier integrating environmental, clinical and
sMRI predictions was more accurate than all unimodal classifiers
(BACLSOCV = 71.2%, PFDR = 0.01, AUC = 0.75), followed by the
model integrating environmental and clinical predictions
(BACLSOCV = 65.4%, PFDR = 0.04, AUC = 0.70). Permutation-
based pairwise comparisons between discovery unimodal and
multimodal classifier performances are reported in Supplementary
Table 5. In the environmental domain, higher deviation scores for
premorbid adjustment in adulthood, self-reported bullying victim-
isation and self-reported experiences of childhood trauma were pre-
dictive of poor role functioning outcomes (Fig. 2a). In the clinical
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domain, lower GF:R lifetime scores predicted poor role functioning
outcomes (Fig. 2b).

ROD cohort

In the ROD group (Table 2, Fig. 1 and Supplementary Appendix 1,
Section 4), no unimodal risk calculator predicted a GF:R outcome
above chance. Only the stacked model integrating environmental
and clinical predictions provided significant prediction perform-
ance (BACLSOCV = 58.9%, PFDR = 0.04, AUC = 0.60). Lower GF:R
outcomes were predicted by the PAS adulthood, PAS early adoles-
cence and PAS childhood features of the environmental risk calcu-
lator (Fig. 2a), as well as by GF:R highest scores during the past year
and GF:R highest lifetime scores in the clinical risk calculator
(Fig. 2b). Permutation-based pairwise comparisons between discov-
ery unimodal and multimodal classifier performances are reported
in Supplementary Table 5.

Assessment of generalisability
Transdiagnostic potential of risk calculators

In the pooled CHR and ROD discovery sample (Table 2 and Fig. 1),
the clinical risk calculator predicted a GF:R outcome above chance
and with significance (BACLSOCV = 64.8%, PFDR = 0.02, AUC =
0.72). In the environmental domain, higher deviation scores for
PAS adulthood and PAS late adolescence were predictive of poor
role functioning outcomes. In the clinical domain, lowest current
GF:R score and lowest GF:S score during the past year predicted
poor role functioning outcome. The multimodal classifier
combining clinical and environmental predictions, as well as the
model integrating all unimodal models, performed significantly
above chance (combined clinical + environmental model:
BACLSOCV = 62.4%, PFDR = 0.03, AUC = 0.71; combined clinical +
enviornmental + sMRI model: BACLSOCV = 61.1%, PFDR = 0.04,
AUC = 0.67).

Validation of risk calculators

The study-group-specific clinical models, as well as multimodal risk
calculators combining environmental and clinical data, performed
above chance when applied to the respective CHR and ROD replica-
tion samples (CHR: BACLSOCV = 67.3% and AUC = 0.76 for the
clinical model, BACLSOCV = 67.7% and AUC= 0.76 for the environ-
mental plus clinical model; ROD: BACLSOCV = 70.5% and AUC =

0.81 for the clinical model, BACLSOCV = 62.5% and AUC= 0.72 for
the environmental plus clinical model). Notably, the model integrat-
ing environmental, clinical and sMRI predictions, which achieved the
best BACLSOCV in the CHR discovery sample, achieved much lower
BAC (58.7%) when applied to the CHR replication sample, but the
performance difference between CHR discovery and validation
samples was not significant (P = 0.12; Supplementary Table 6). The
transdiagnostic risk calculator built with the clinical data of
the pooled CHR and ROD groups performed above chance in the
pooled replication cohort (BACLSOCV = 69.7% and AUC = 0.74), in
CHR alone (BACLSOCV = 61.1% and AUC = 0.75) and in ROD
alone (BACLSOCV = 75% and AUC = 0.72) (Table 2 and
Supplementary Table 4). Models combining clinical and environ-
mental decision scores, and those combining clinical, environmental
and sMRI decision scores, were those reaching the highest perform-
ance in all cohorts, and performed similarly (clinical + environmental
model: BACLSOCV = 68.2% and AUC = 0.74 for CHR + ROD,
BACLSOCV = 62.1% and AUC= 0.76 for CHR alone, and
BACLSOCV = 71.5% and AUC = 0.73 for ROD alone; clinical + envir-
onmental + sMRI model: BACLSOCV = 69.6% and AUC = 0.75 for
CHR + ROD, BACLSOCV = 67.4% and AUC= 0.77 for CHR alone,
and BACLSOCV = 69.3% and AUC = 0.72 for ROD alone) (Table 2,
Supplementary Tables 4 and 6).

Potential generalisation of risk calculators to relevant
clinical trajectories

Linear mixed models results revealed that the prognostic role func-
tioning assignments produced by the environmental plus clinical
model stratified clinical trajectories of the ROD cohort, with
respect to negative symptoms (PFDR = 0.02) and environmental
quality of life (PFDR = 0.02; Fig. 3b). It did not stratify any clinical
readout trajectory in the CHR group (all PFDR > 0.4; Fig. 3a).

Environmental feature knock-out analysis

In the CHR group, the removal of one environmental variable at a
time did not produce models superior to the original environmental
classifier (Fig. 3, Supplementary Appendix 1, Section 8 and
Supplementary Table 7), whereas in ROD, the model without the
PAS childhood variable was superior to the original one
(BACLSOCV = 60.1%). All other models performed similarly to the
original one (Fig. 3d, Supplementary Appendix 1, Section 8 and
Supplementary Table 7).

Feature selection probability, environmental classifier Feature selection probability, clinical classifier

CHR. GF:R prediction
CHR. GF:R prediction

ROD. GF:R prediction

ROD. GF:R prediction

Bullying Scale

PAS early adolescence

PAS adulthood
0 0.2 0.4 0.6 0.8 1.0

PAS childhood

PAS late adolescence

Childhood Trauma Questionnaire

GF_R_HighLifetimeT0
GF_S_HighLifetimeT0

GF_R_HighPastYearT0
GF_S_HighPastYearT0

GF_R_LowPastYearT0
GF_S_LowPastYearT0

GF_R_Current
GF_S_Current

0 0.2 0.4 0.6 0.8 1.0

(a) (b)

Fig. 2 Probability of each feature for being selected in our mixed k-fold/leave-site-out cross-validation framework by (a) the environmental
classifier, (b) the clinical classifier and (c) the sMRI classifier. For (a) and (b), a value of 1 indicates that all models had retained the given variable
(Supplementary Appendix 1, Section 5). Feature permutation testing results are reported in Supplementary Table 10. CHR, clinical high-risk; GF:R,
Global Functioning: Role; GF:S, Global Functioning: Social; PAS, Premorbid Adjustment Scale; ROD, recent-onset depression; sMRI, structural
magnetic resonance imaging; GF_R_HighLifetimeT0, GF:R highest lifetime score measured at T0; GF_R_HighPastYearT0, GF:R highest score in
the last year before T0; GF_R_LowPastYearT0, GF:R lowest score in the last year before T0; GF_R_Current, GF:R score at T0 examination;
GF_S_HighLifetimeT0 , GF:S highest lifetime score measured at T0; GF_S_HighPastYearT0, GF:S highest score in the last year before T0;
GF_S_LowPastYearT0, GF:S lowest score in the last year before T0; GF_S_Current, GF:S score at T0 examination.
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Investigation of between-classifiers relationships

In the CHR group, the sMRI-based model significantly predicted
environmental decision scores, explaining 6.56% of the observed vari-
ance (PFDR = 0.02; Supplementary Table 7). However, the clinical
regression model could not predict environmental decision scores
(explained variance 1.99%, PFDR = 0.24). In the ROD group, the
model predicting environmental-related decision scores for GF:
R according to clinical data was significant (PFDR = 0.01), and
explained 9.18% of the observed variance (Supplementary Table 7).
However, the sMRI regression model was non-significant (explained
variance 0.03%, PFDR = 0.87). Full performance metrics from each
multivariate regression performed are reported in Supplementary
Table 8.

Discussion

We demonstrated that, by combining environmental, clinical and
sMRI baseline predictions, we could predict outcome in role func-
tioning in CHR with 71.2% BACLSOCV, and significance, across
seven geographically different European sites, but with much less
accuracy and lower AUC than a CHR replication sample
(BACLSOCV = 58.7%). On the other hand, by combining clinical
and environmental predictions without sMRI, we could predict
outcome role functioning in CHR with 65.4% BACLSOCV in the dis-
covery sample and 67.7% BACLSOCV in the replication sample, in
both cases with an AUC of around 0.75. Therefore, our results
support our hypothesis that environmental variables inform predic-
tion of outcome in role functioning. Furthermore, they encourage
future research to employ, set up or redefine machine learning algo-
rithms for worse outcome prediction in a complex, superordinate

and multimodal, rather than unimodal perspective.7 Despite the
good performance of our combined environmental and clinical
risk calculator in CHR discovery and validation samples, linear
mixed model analysis revealed that prognostic assignments (lower
versus higher role outcome) were not associated with any other clin-
ical trajectory. This finding suggests that the prognostic validity of
this classifier seems limited to functional deficits and does not gen-
eralise to other clinical readouts. However, future studies involving
the investigation of less state-affected clinical variables (i.e. aca-
demic functioning, work skills, resilience) should further clarify
the extent of prognostic relevance of this model.

In ROD, only the combination of environmental and clinical
variables predicted role outcome with significance and a modest
BACLSOCV (58.9%), with an AUC of 0.60. It also pointed to a
great extent of generalisability to the ROD replication sample
(BACLSOCV = 62.5% and an even higher AUC of −0.72). Notably,
despite lower BACLSOCV scores compared with CHR, linear
mixed effects models used to calculate clinical trajectories in ROD
revealed that role functioning outcome assignments based on envir-
onmental and clinical predictions stratified negative symptoms and
environmental quality-of-life trajectories. This finding may indicate
prognostic generalisation of this multimodal predictive model
outside of its original role functioning domain.

Notably, accuracies in both discovery and replication samples
were slightly lower in ROD than in CHR. A possible explanation
emerges from the analysis of the prevalence of DSM-IV-TR diagno-
ses in both samples. A greater percentage of ROD individuals, rela-
tive to CHR, meet diagnostic criteria for at least one DSM-IV-TR
psychiatric disorder. However, in our CHR samples, several and
diverse DSM-IV-TR conditions are present, especially in mood
and anxiety domains, consistent with previous literature.56 Unlike
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Multimodal prediction of role functioning

239
https://doi.org/10.1192/bjp.2022.16 Published online by Cambridge University Press

https://doi.org/10.1192/bjp.2022.16


Table 3 Prevalence comparisons of the DSM-IV-TR diagnoses in the CHR and ROD discovery samples characterised by lower versus higher role functioning at baseline and follow-up examinations 9 months later

T0 T1

CHR ROD CHR ROD

Characteristic Lower GF:R Higher GF:R χ2
P-

value Lower GF:R
Higher GF:

R χ2
P-

value Characteristic Lower GF:R
Higher GF:

R χ2
P-

value Lower GF:R Higher GF:R χ2
P-

value

≥1 DSM-IV
diagnosis: yes/
no (% yes/%
no)

45/7 (87/13) 29/11 (73/77) 2.83 0.09 48/0 (100/0) 45/2 (96/4) 2.09 0.15 ≥1 DSM-IV
diagnosis: yes/
no (% yes/%
no)

32/20 (62/38) 6/34 (15/85) 2.02 <0.01 32/16 (67/33) 19/28 (40/60) 6.58 0.01

Bipolar disorder
type 1

1/51 (2/98) 0/40 (0/100) 0.78 0.38 0/48 (0/100) 0/47 (0/100) – – Bipolar disorder
type 1

1/51 (2/98) 0/40 (0/100) 0.78 0.38 0/48 (0/100) 0/47 (0/100) – –

Bipolar disorder
type 2

0/52 (0/100) 2/38 (58/95) 2.66 0.10 0/48 (0/100) 0/47 (0/100) – – Bipolar disorder
type 2

0/52 (0/100) 0/40 (0/100) – – 0/48 (0/100) 0/47 (0/100) – –

Major depressive
disorder

24/28 (46/53) 14/26 (35/65) 1.16 0.28 47/1 (98/2) 39/8 (83/17) 6.18 0.01 Major depressive
disorder

14/38 (27/73) 0/40 (0/100) 1.27 <0.01 20/28 (42/58) 8/39 (17/83) 6.94 0.08

Dysthymic
disorder

5/47 (10/90) 3/37 (7/93) 1.65 0.44 0/48 (0/100) 0/47 (0/100) – – Dysthymic
disorder

3/49 (6/94) 1/39 (2/98) 0.58 0.45 3/45 (6/94) 1/46 (2/98) 4.00 0.14

Panic disorder 8/44 (15/85) 1/39 (2/98) 4.25 0.04 4/44 (8/92) 1/46 (2/98) 1.83 0.18 Panic disorder 3/49 (6/94) 0/40 (0/100) 2.39 0.12 1/47 (2/98) 1/46 (2/98) <0.01 0.99
Agoraphobia

(AWOPD)
1/51 (2/98) 3/37 (7/93) 1.69 0.19 1/47 (2/98) 0/47 (0/100) 0.99 0.32 Agoraphobia

(AWOPD)
2/50 (4/96) 1/39 (2/98) 0.13 0.72 0/48 (0/100) 2/45 (4/96) 2.09 0.15

Social phobia 12/40 (23/77) 2/38 (5/95) 5.73 0.02 4/44 (8/92) 3/44 (6/94) 0.13 0.72 Social phobia 2/50 (4/96) 1/39 (2/98) 0.13 0.72 2/46 (4/96) 3/44 (6/94) 0.23 0.63
Specific phobia 2/50 (4/96) 0/40 (0/100) 1.57 0.23 1/47 (2/98) 3/44 (6/94) 1.09 0.23 Specific phobia 0/52 (0/100) 0/40 (0/100) 1.31 0.25 0/48 (0/100) 4/43 (9/91) 4.26 0.04
Obsessive–

compulsive
disorder

6/46 (12/88) 3/37 (7/93) 0.42 0.52 1/47 (2/98) 1/46 (2/98) <0.01 0.99 Obsessive–
compulsive
disorder

4/48 (8/92) 0/40 (0/100) 3.22 0.07 2/46 (4/96) 2/45 (4/96) <0.01 0.98

Post-traumatic
stress disorder

1/51 (2/98) 0/40 (0/100) 0.78 0.38 0/48 (0/100) 1/46 (2/98) 1.03 0.31 Post-traumatic
stress disorder

0/52 (0/100) 0/40 (0/100) – – 0/48 (0/100) 0/47 (0/100) – –

Alcohol
dependence

0/52 (0/100) 0/40 (0/100) – – 0/48 (0/100) 1/46 (2/98) 1.03 0.31 Alcohol
dependence

3/49 (6/94) 0/40 (0/100) 2.39 0.12 0/48 (0/100) 0/47 (0/100) – –

Sedative-
hypnotic-
anxiolytic
dependence

0/52 (0/100) 0/40 (0/100) – – 1/47 (2/98) 0/47 (0/100) 0.99 0.32 Sedative-
hypnotic-
anxiolytic
dependence

0/52 (0/100) 0/40 (0/100) – – 0/48 (0/100) 0/47 (0/100) – –

Cannabis
dependence

1/51 (2/98) 2/38 (4/96) 0.68 0.41 1/47 (2/98) 1/46 (2/98) <0.01 0.99 Cannabis
dependence

2/50 (4/96) 0/40 (0/100) 1.57 0.21 1/47 (2/98) 0/47 (0/100) 0.99 0.32

Analyses were performed for diagnoses in the domains of mood, anxiety and substance misuse. Presence of threshold diagnostic criteria in the past month before respective timepoint was examined, using χ2-tests. For dysthymic disorder, lifetime presence of threshold and
subthreshold criteria were combined and compared against absence of lifetime criteria. P-values were group- and timepoint-wise corrected for multiple comparisons, using the false discovery rate. Significancewas defined at α = 0.05. T0, baseline; T1, follow-up examinations 9
months after baseline; CHR, clinical high-risk; ROD, recent-onset depression; GF:R, Global Functioning Role; AWOPD, agoraphobia.

A
ntonucciet

al

240
https://doi.org/10.1192/bjp.2022.16 Published online by Cam

bridge U
niversity Press

https://doi.org/10.1192/bjp.2022.16


CHR, in ROD, the most represented DSM-IV-TR category across
individuals is major depressive disorder. This pattern is observable
in both discovery and replication samples, and across both time-
points (Table 3 and Supplementary Table 2). However, this
observed homogeneity of our ROD group is only partially consistent
with previous literature, which indeed reported frequent comorbid-
ities between depression and other psychiatric disorders.57,58 We
might speculate that the higher clinical variability in our CHR
samples might have led to a more accurate and more representative
multimodal predictive model for this population, and that the
higher clinical homogeneity in our ROD samples may have driven
the better generalisation of ROD models to other clinical trajector-
ies. However, these hypotheses need to be tested by future studies;
for example, studies using subtyping/clustering procedures.59

Taken together, our CHR and ROD findings suggest that indi-
vidualised prediction of role functioning outcomes is possible,
although with modest accuracy, in a replicable and geographically
validated framework based on environmental and clinical informa-
tion. sMRI, however, did not seem to play an important role in this
prediction, as highlighted by the fact that the combined clinical-
environmental-sMRI prediction model developed here could
predict role outcome very well in the CHR discovery sample, but
with much lower accuracy in the CHR validation sample, although
the difference was marginally significant. This aligns with recent
views cautioning researchers about neuroimaging-based machine
learning findings, because of their excessively high dimensionality,
especially in presence of small sample sizes and heterogeneous clin-
ical phenomena.60 However, a recently published study has high-
lighted that sMRI models show great predictive power when
applied to transition-to-psychosis prediction.61 Considering our
findings and this recent evidence, we may speculate that structural
neuroimaging-based information could be more informative for
diagnostic prediction, rather than for transdiagnostic outcomes.
Future studies are strongly warranted to validate this hypothesis.

Consistently, our assessment of transdiagnostic generalisability
supported the prognostic relevance of the combination of environ-
mental and clinical risk calculators for role prediction, showing
accuracy (62.4% BACLSOCV and 0.71 AUC), significance and gener-
alisability to any replication sample combination. Notably, also the
combination of environmental, clinical and sMRI decision scores
led to accurate (61.1% BACLSOCV and 0.67 AUC), significant and
generalisable findings, and its performance metrics were very
similar to those of the combined clinical and environmental risk cal-
culator (Table 2 and Supplementary Table 6). These findings further
support the view that MRI data carry a negligible amount of predict-
ive information when applied to the longitudinal investigation of
transdiagnostic outcomes.

Interestingly, investigation of the reliability of features within pre-
dictive models built on both separate and pooled on CHR and ROD
samples revealed that premorbid adjustment in adulthood was trans-
diagnostically important for outcome prediction. This suggests that
this environmental feature might be associated with role functional
outcome regardless of the clinical population tested, and that the
transdiagnostic potential of our combined environmental and clinical
risk calculator ismainlydrivenby this environmental feature.Notably,
the PAS scale measures the degree of achievement of developmental
goals over time, according to gender, socioeconomic status and
age.62 Therefore, adult maladjustments to developmental goals may
be more predictive compared with other features, because they
represent the most proximal-to-baseline environmental feature in
the algorithm, and may indeed be a result of earlier environmental
adverse events.14,46 Consistently, besides premorbid adjustment in
adulthood, the combinations of environmental adverse events with
the highest predictive value were different between CHR- and
ROD-based risk calculators, but all included the presence of earlier

developmental maladjustment. Indeed, after PAS adulthood, the
most predictive feature for role functioning prediction in the CHR
sample was the occurrence of childhood trauma,39 and, in ROD,
early adolescence maladjustment to environment.63 Findings there-
fore highlight the existence of both transdiagnostic and syndrome-
specific environmental adverse events able to predict role outcome
in different clinical populations.64 Notably, environmental adverse
events occurred in different time periods may increase the risk for
disease in a composite/compounding way.65 For example, it may be
hypothesised that childhood adversities (e.g. childhood trauma)
may increase the risk for subsequent maladjustment (e.g. lower
levels of environmental adjustment in adulthood) by increasing the
risk of exposure to further environmental stressors (e.g. bullying vic-
timisation), thus acting as triggers of a causal environmental path.66

However, childhood adversities may either predict subsequent adver-
sities, or interact with other adult adversities,67 thus making the
picture even more complex. This view is consistent with findings
from our recursive feature elimination procedure, which showed
that themost accurate environmentalmodel in CHRwas the one con-
structed on all environmental adverse events, hence reiterating the
importance of taking into account the complex gestalt of environmen-
tal maladjustments and adverse events.

Finally, we observed that environmental decision scores predicting
follow-up role outcome were significantly associated in CHR, with
sMRI baseline data, and in ROD, with clinical data. These preliminary
findings partially support the hypothesis that the history of environ-
mental adverse eventsmaymediate differential associations of baseline
clinical and sMRI predictors with follow-up role outcome. However,
future path analysis studies investigating the specific mediating or
moderating role of environmental events in the relationship between
clinical data, GMVs and follow-up outcome are warranted.

Limitations

This study has some limitations. Although our study was based on
an extension of previously published prediction models,7 we could
not directly compare the two sets of results, as the samples did
not exactly overlap. This was because complete lack of environmen-
tal assessments for some of the patients in the CHR and ROD
samples. Furthermore, it should be noted that the small sample
size did not allow us to investigate potential gender effects on role
functioning predictions. As gender is differentially linked to envir-
onmental adversity effects,68 future studies should further investi-
gate this relationship. Also, calibration results (Fig. 1 and
Supplementary Appendix 1, Section 10) revealed relatively low,
although not perfect, ECEs. This seems to be frequent
with Support Vector Machine algorithms.69 Future studies might
take into account calibration already the model-building phase, e.
g. via Bayesian Binning into Quantiles, to try to achieve better cali-
bration performance.70 Moreover, the type of environmental infor-
mation collected might represent a limit. As well as developmental
maladjustments, childhood traumatic experiences and bullying vic-
timisation have been all previously associated with psychosis39,41

and depression;43,44,46 information regarding other adverse life
events that are known risk factors for psychosis and other mental
disorders were not collected within this study.71 Furthermore, our
environmental predictive model was based on variables reflecting
the occurrence of environmental adverse events, as well as variables
reflecting the level of environmental adjustment to such adverse
events (and many others), as measured by PAS. It cannot be
excluded, therefore, that PAS score variations may be the result of
not only the occurrence of environmental adversities across the life-
span, but also individual differences in the ability of adapting to
adverse environmental exposures, thus having a close relationship
with core adjustment-related psychological attributes, such as

Multimodal prediction of role functioning

241
https://doi.org/10.1192/bjp.2022.16 Published online by Cambridge University Press

https://doi.org/10.1192/bjp.2022.16


coping strategies and resilience.72 This relationship needs to be
thoroughly and experimentally investigated by future studies.

Importantly, it should be noted that our validation sample was
recruited within the same study of the discovery sample, although a
part of the validation sample was recruited at different sites to the
discovery ones. Furthermore, we employed the NeuroMiner soft-
ware to carry out our machine learning pipeline, as one of the
main aims of the PRONIA consortium was to facilitate open
science and validation of findings via the NeuroMiner Model
Library (see Data availability). However, the current NeuroMiner
version allowed us to perform permutation testing only on the dis-
covery cohorts, without providing significance estimates for replica-
tion performance. Future validation of the model in completely
independent populations from other consortia and countries is war-
ranted, to better account for optimism in the performance estimate
and further characterise the performance of our models. Another
important limitation of our study is the small sample size. CHR is
a difficult population to recruit and keep in a longitudinal study,
because of the risk-related aspect of their condition. This issue is
quite common; indeed, our sample size is in line with other
samples employed in recent machine learning studies conducted
on CHR populations.73,74 Moreover, in our case, it should be
noted that findings are further limited by the number of features
employed in the models. Machine learning-based predictions
require a large amount of data,75 but the number of features we
used was limited. Consistently, within our machine learning pipe-
line, the number of events per predictor variable is lower than
recently recommended.76 However, this is not uncommon in the
CHR field. Indeed, although a large number of input features
reduces the risk of overoptimistic results, it could be difficult to
translate models based on a large number of features into clinical,
real-world settings, where data obtained are usually limited
because of patient adherence, drop out or time constraints. With
this regard, it has been previously suggested77 to employ double-
cycle, nested, leave-site-out cross-validation techniques as a gold-
standard strategy to mitigate overfitting and optimism of models’
performance, especially in cases of limited numbers of features
and/or of individuals, as in this study. Nevertheless, taking all of
these limitations into account, it should be noted that the under-
standing of the clinical usefulness of the presented models is strictly
dependent on the results of further validation on larger and geograph-
ically diverse cohorts. Future studies are warranted to thoroughly
investigate the stability and generalisability of our models, and
further test the potential of translation into clinical practice of our
models. With respect to the clinical implementation of our models,
it should be also noted that the threshold we have chosen for the clas-
sification metrics was not determined based on clinical grounds.
Indeed, CHR and ROD are very heterogeneous clinical states, and
obtaining consensus-based risk estimates for these help-seeking popu-
lations, especially for transdiagnostic outcomes like occupational func-
tioning, is a challenge. An online machine learning-based strategy has
been recently proposed in a publication aiming at developing psychosis
predictive models in diverse at-risk populations across different con-
sortia.25 Future studies are warranted to test the feasibility of such solu-
tion, and to direct efforts toward the generation of a public library of
machine learning-based estimated risk distributions reflecting
diverse help-seeking populations.

In conclusion, we explored syndrome-specific and transdiag-
nostic predictive models combining clinical and environmental
information, which could predict role outcome with moderate
accuracy in several independent samples. For ROD, these predic-
tions seem to be prognostically relevant to non-functioning clinical
trajectories, like negative symptoms and quality of life. The modest,
although stable across samples, performance of our combined clin-
ical and environmental predictive models (both the syndrome-

specific and transdiagnostic) encourage future research to spend
significant efforts in further validating existing multimodal risk cal-
culators to fully assess their degree of applicability in healthcare set-
tings, as well as in defining guidelines for models’ comparability and
replicability.26 If geographically and extensively validated, risk cal-
culators built on both CHR and affective populations could benefit
patients with a realistic, personalised prognostic estimation of their
functioning level irrespective of diagnostic boundaries, thus support-
ing early rehabilitation and a better integration of patients into their
societal environment. However, future studies on environmental
adverse events are warranted to define to what extent risk factors
interact with each other, with symptoms profiles and with neurobio-
logical alterations, to predispose young individuals for worse role out-
comes. Such multimodal frameworks will more likely mirror the
complex and heterogeneous architecture of psychosis and depression
risk, and would hopefully contribute to provide models with even
higher accuracies, closer to real-world scenarios, and with more
potential for translation into clinical practice.
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Extra
Auschwitz: 2. Children

Greg Wilkinson

Nazi Germany and its collaborators killed about 1.5 million Jewish children and tens of thousands of ‘Gypsy’ children, 5000–7000 German
children with physical and mental disabilities living in institutions, as well as many Polish children and children residing in the German-
occupied Soviet Union: adolescents had a greater chance of survival – in forced labour.a

Upon arrival at Auschwitz-Birkenau and other camps, the vast majority of young Jewish children were sent directly to the gas chambers.
According to Dr Janina Kosćiuszkowa / 36319 (1897–1974), the children of Auschwitz concentration camp were divided into four groups:
burned to death immediately on arrival; killed in their mothers’ wombs or as soon as they were born; born in the camp and allowed to
live; deported to the camp as prisoners.

There appear to be few medical accounts of children’s mental states in Auschwitz. Robert Waitz / 157261 (1900–1978), professor in the fac-
ulty of medicine at Strasbourg, contributed two contrasting portraitsb in Témoignages Strasbourgeois (1947).

As can be seen in the adults, some children collapse morally and present themselves dirty, very pale, with a vague and anxious look, hardly responding to
questions asked of them. Others, on the contrary, keep their equilibrium, stay clean, polite, affectionate.
May I be allowed to give examples of two children’s behaviour.
One of these children is a young Luxemburger, arrived aged 13½ years, with his father and his brothers from Treblinka, one of the extermination camps in
the Lublin area. For 3 months they were assigned to the Sonderkommando, charged with transporting bodies from the gas chambers to the crematorium.
From morning to evening, the sole function of this child consisted of exploring the vagina of female bodies in order to search for jewels, gems that might
have been hidden there. After 3 months of this occupation, he volunteers for one of the worst mines in Poland. His father and his brothers refuse to leave
with him and, a few days after his departure, were gassed as per usual. A year later, saved on a number of occasions by miracle, he presents with quite
marked decline, sleeplessness with nightmares, and convulsive seizures. Analysis of his mental and nervous equilibrium by a psychiatrist would have been
of great interest.
The other boy, aged 14 years, was arrested at Lyon with his parents. The father was killed in Lyon prison, the mother deported with him was separated on
their arrival. He refused to work in any form for the Germans. There would be time, he explains to me, looking at me with a keen eye and a determined look,
to learn a job on returning to France, because, at this time, he will be responsible for a young brother, aged 8 years, that the Gestapo had not found.

The Nobel Laureate Elie Wiesel / A-7713, entered Auschwitz aged 15 with his family. He said that he survived because his father was alive:
‘And I knew that if I died, he would die’.
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a Data from US Holocaust Memorial Museum.
b Translated by Greg Wilkinson.
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