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DEFINING RELATIONS IN ORTHOGONAL GROUPS OF 
CHARACTERISTIC TWO 

GEORG GUNTHER AND WOLFGANG NOLTE 

I n t r o d u c t i o n . I t is well-known tha t a group is uniquely determined by a 
system of generators, and a set of defining relations on those generators. Clearly 
it is of interest to find relations tha t are as simple as possible. In this paper, 
this question is dealt with for certain orthogonal groups of characteristic 2, 
which are generated by involutions. 

Let F be a vector space over a field K of characteristic 2 (we always exclude 
the prime field K = G F (2)). Let Q be a quadrat ic form over V} and let 5 be 
the set of orthogonal transformations of (Vt Q) whose pa th is 1-dimensional 
and not contained in the radical of V. Lett ing 0* be the group generated by S, 
we shall show tha t every relation among generators in 5 is a consequence of 
relations of length 2, 3, or 4. Similar results for char K ^ 2 were proved in the 
regular case by Becken [4] and by Ahrens, Dress and Wolff [1] in the general 
case. Fur thermore , K. Meyer [17] solved this problem for orthogonal groups 
of characteristic 2 for dim V < oo , \K\ ^ 4-dim V, again in the regular case. 
In this paper, we solve the problem for the most general case for char K = 2 
(Theorem 6.1). 

In the last pa r t of this paper, we t reat a similar question for orthogonal 
groups which are generated by a subset T of S: we let F be a subspace of V, 
and let T be the set of those isometries in S whose pa ths belong to V. Then 
we can prove a similar theorem (Theorem 8.3) for the group G which is 
generated by T. A similar investigation in the case tha t char K 9^ 2 was 
made by Nolte [18]. 

We remark in conclusion tha t similar results are also known for uni ta ry and 
symplectic groups. We refer here to papers by Becken [4], Ellers [11], Gôtzky 
[12], and Spengler [23]. 

In § 1 , we gather some known results about isometries in metric vector 
spaces. Using these results, we prove a number of preliminary lemmas abou t 
the behaviour of certain products of simple isometries. In § 3, we find four 
types of fundamental relations between simple isometries, and with their aid 
set up an equivalence relation on the set of relations which we examine in 
detail in § 4. All of § 5 is devoted to proving the main lemma of this paper 
(Lemma 5.9) ; we then use this lemma in § 6 to prove Theorem 6.1, which 
s tates t ha t every relation in the group 0* between simple isometries is in fact 
a consequence of the elementary relations introduced in § 3. 
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1218 GEORG GUNTHER AND WOLFGANG NOLTE 

1. I s o m e t r i e s in m e t r i c vector spaces . Let (V, Q) be a metric vector space 
over a field K, where the metric in V is given by the quadra t ic form Q and its 
associated bilinear form / . Throughou t this paper, we exclude the case t ha t 
K = G F (2). T h e isometries of V are those t ransformations in GL(V) t h a t 
preserve Q, and hence also preserve / . Wi th each isometry w, we have two 
associated subspaces 

B(TT) : = {ir(x) — x | x Ç V}y called the path of 7r, and 

F(T) : = {x £ V | 7r(x) = x}, called the fix of 7r. 

An isometry a is simple if dim 5 ( c ) = 1; in part icular , every non-singular 
vector p not in rad V has associated with it the unique involutary simple 
isometry ap for which B(ap) = (p ) and F(ap) = p-1. Wherever we write the 
symbol o>, we shall be referring to such a simple isometry. We let 5 : = 
{<r\ dim B(a) = 1, and 5(cr) £ rad V, and 5 ( a ) non-singular}. Let 0* = 
0* ( F, Ç) be the group of isometries of V generated by S. 

We admi t the possibility t ha t V might be infinite-dimensional. In this 
context, we s ta te the following. 

LEMMA 1.1. Let ( F , Q) be a metric vector space. 
(a) If U is a finite-dimensional sub space of V, then there exists a finite-

dimensional subspace T containing U such that V = T + T1-. 
(b) Suppose V = T + TL, and we have simple isometries aai, i = 1, . . . , k 

with di £ T. Then ani . . . aak = 1 if and only if 

(aai . . . crak)\T = 1\T. 

T h e proof of (a) goes as given in [18] for the case of general character is t ic ; 
the proof of (b) is immediate . This lemma allows us to reduce the general case 
to the case of finite dimension. For this reason, unless explicitly s ta ted to the 
contrary, we restrict ourselves to the case t ha t V is finite-dimensional. 

For easy reference, we gather some well-known results in the next lemma. 
For proofs, we refer to [1], [2], [6], [10], [11] and [14]. 

LEMMA 1.2. Let <ra, ab t S, and let a, /3 G 0*. 

(a) aa = ab if and only if (a ) = (b ). 

( b ) (TbVaVb — &<Tb(a)-

(c) If (a) 5* (b), then a J_ b if and only if o-a(7b = aban. 
(d) B(a(3) ÇI B(a) + B((3). In particular, if a — aai . . . aak, then 

B(a) Q (au . . . , ak ). 

(e) F (a) QB(a)\ 
(f ) If A is a subspace of F, then 

dim A1- = dim V — dim A + dim {A C\ rad F ) . 

(g) If char K = 2, then dim (^4/rad A) is even for all subspaces A. 
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In the special case t ha t V is regular, we can refine (d) and (e) of Lemma 1.2 
to obtain. 

LEMMA 1.3. Let ( F , Q) be a regular metric vector space, and let a Ç 0*. Then 

(a) F (a) = B{a)LandB{a) = F(a)±. 
(b) Given a £ S, we have B (aa) = B (a) + B (a) if and only if B(a) ^ B (a), 

and dim B (a<r) = d i m ^ ( a ) — 1 if and only if B (a) QB(a). 

The next lemma will turn out to be of considerable importance in our 
development. Define 

Q r a d V: = {x £ rad V\ Q(x) = 0}. 

LEMMA 1.4. Let T = aai . . . <rajfc. Let A = (au . . . , ak) and suppose dim A = k. 

Then 
(a) F(T) =A\ 
(b) dim B(T) = dim A - dim (A H rad V). 
(c) If dim ( i H Ç r a d F ) = i ^ - 1, then B(TT) Q Q rad F i / and only if k 

is even. 

Proof, (a) The proof given in 1.4 of [13] goes through if we replace 77* by 

(b) This follows easily from (a) and 1.2 f. 
(c) If dim (A H Q r a d V) = k - 1 = dim ,4 - 1, then by (b), d i m 5 ( i r ) = 1, 

and so w is simple. When X = Y © Z and F l Z w e shall write X = Y©Z. 
Then A = (a)© (A H Q rad F ) , so tha t (a< ) = (a + g7- ) for suitable qt G 
4̂ P\ <2 rad F. A simple computat ion shows tha t 

fix a) 
T(x) = x - ' (aa + gi - q2 + qz . . . ± qk)} 

where a = 1 or a = 0 as k is odd or even. This proves (c). 

We finally s ta te a lemma which gives some information about the occurence 
of singular vectors in a subspace. 

LEMMA 1.5. Let A be a non-singular subspace of V. Suppose A contains a 
singular subspace B with dim B = dim A — 1. Then one of the following holds: 

(a) B C rad A and every singular vector of A lies in B. 
(b) B £ rad A. Then A contains a second singular subspace C with dim C = 

dim A — 1, and rad A = B C\ C. All singular vectors in A lie in B KJ C, and 
(TP(B) = C for any p G A. 

Proof. We refer to [14], where this lemma is proved in the case t ha t F is 
regular, and remark tha t the proof is identical in case rad F 9^ 0. 

This lemma is of interest if char K = 2, for then (a) implies t ha t A is 
isotropic (by (g) of Lemma 1.2), and (b) implies t ha t A is not isotropic. 
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2. Preliminary lemmas. For the remainder of this paper, we shall assume 
that K is some field of characteristic 2, excluding always the prime field G F (2). 

(2.1) (a) Suppose A is a 2-dimensional, non-singular subspace, and suppose A 
contains a singular, non-zero vector. If A is isotropic, then it contains exactly one 
singular, 1-dimensional subspace. If A is non-isotropic, it contains two distinct 
singular 1-dimensional sub spaces. 

(b) Suppose A is a ^-dimensional non-singular subspace containing a 2-
dimensional singular subspace B. If A is isotropic, then all singular vectors in A 
are contained in B; if A is non-isotropic, it contains a second 2-dimensional 
singular subspace C, such that all singular vectors in A are contained in B\J C. 
In this case, B C\C = rad A. 

It is a simple thing to compute products aaabac. If c = aa + fib for some 
a, P G K, than the vector 

d: = (0Q(b) + af(a,b))a + aQ(b)b 

is easily seen to be non-singular (Q(d) = Q(a)Q(b)Q(c)). In fact, we have 

(*) 0-a0-6<rc(x) = x +Q(J)d for all x G V. 

If d G rad V, then/(x, d) = 0 and craa-6o-c = 1; if d G rad V, we obtain the 
familiar formula aa(Tbac = ad. 

We state next the following. 

LEMMA 2.2. Let TT be an isometry. Then B(w) P\ rad V C Q rad V. In particu
lar, if B(TT) = (p ), then either p d rad V and Q(p) ^ 0 (implying that IT is the 
simple isometry ap) or p G Qrad V. 

For the proof of this, we refer to Lemma 3 in [10]. 

In the rest of this section, we make some statements about products of two, 
three, or four simple isometries. First we look at products aacrb, where (a, b ) Pi 
rad V = (r). By 1.4 b and c, and by 2.2, we deduce that B(aaab) = (r ) if and 
only if r G Q rad V. 

If r is non-singular, we obtain 

LEMMA 2.3. Let aaab be an isometry such that (a, b) C\ rad V = (r ) is non-
singular. Then aaab = acfor some c G (a, b ). Conversely, if aaab = ac, then the 
vectors a, b, c are linearly dependent, but pairwise independent, and (a, b, c) C\ 
rad V is non-singular. In particular, if (a, b) C\ rad V = (r ) with Q(r) ^ 0, 
then we can express b uniquely asb = aa + f3r, and craab = ac, where c = Q(b)a + 
aQ(a)b. 

Proof. For the first part we use 1.4 and 2.2 to deduce that B(aaab) ^ (r), 
and hence aaab = ac for some c G (a, b). Conversely, if aaab = ac, then 1.2 d 
and 1.4 b imply that dim (a,b) C\ rad V = 1, and the result follows from 
1.4 c and 2.2. The formula for c follows from simple computation. 
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If r is singular, we obtain 

LEMMA 2.4. Let aa<rt, be an isometry such that (a,b) C\ Q rad V = (r). Then 

B((ra(Tb) — (r )» and if b = aa + fir, then 

/ \ , fi f(X> a) 
a Q(a) 

Proof. This is an immediate consequence of Lemmas 1.5 and 2.2. The last 
pa r t of the lemma follows from a simple computat ion. 

We calculate easily t ha t the following is true. 

(2.5) If a, b are vectors such that f (a, b) = 0, if r £ Q rad V, and s = a + b 
is singular, s (L Q rad V, then 

f (x, s) 
<Ta(ja+Tab<Tb+T(x) = x + ! . r. 

We now introduce some projective notat ion. We say tha t four subspaces 
(a ), (b ), (c ) and (d ) contained in a 3-dimensional subspace form a quadrangle 

if any three of the vectors a, b, c, d are independent. The 2-dimensional sub-
space L containing (u ) = (a, b) C\ (c, d), (v ) = {a, c) C\ (b, d) and (w ) = 
(a, d) C\ (b, c ) shall be called the diagonal of the quadrangle. If L is singular, 

we say t h a t the quadrangle is an sd-quadrangle. In this case, the vectors u, v, w 
are singular, and we can normalize to obtain u = a + b = c + d, and v = 
a + c = b + d. 

We now state 

LEMMA 2.6. Suppose w = (jaahac(jd, and suppose that A = (a, b, c, d) is 3-
dimensional. Suppose (a), (b), (c), (d) form an sd-quadr angle in A whose 
singular diagonal is L. Suppose further, as above, that we have normalized so that 
a-{-b = c-\-d = u ^ L and a-\-c = b + d = v(zL. Then we have the 
following: 

(a) If A is isotropic, then Q(a) = Q(b) = Q(c) = Q(d),and 

w(x) = x + Q(a)~l (f(x, u)v -\- fix, v)u) for all x £ V. 

(b) If A is not isotropic, and if rad A = (u), then 

7r(x) = x + \~l(f(x, u)s -\- f{x, s)u) for all x G V, 

where X = Q(a)Q(c) and s = Q(c)a + Q(a)c. In this case s is singular and 
B(ir) is singular, / / d i m B(ir) = 2, then B(T) F^ L. 

Proof. The formulas given for T(X) are easily verified. All t ha t remains to be 
proved is the last par t of (b). But in this case, B(j) = (u, s), where 5 = 
Q(c)a + Q(a)c. Since (u ) = rad A and u £ (a, b ), we know tha t a1- C\ A = 
(a, b ), and h e n c e / ( a , c) 9^ 0. But v = a + c, and Q(v) = 0, and so Q(a) + 
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Q(c) = f(a, c) ^ 0 implying Q(a) ^ Q(c). Now 

fis, v) = f(Q(a)c + Q(c)a, a + c) = Q(a)f(a, c) + Q(c)f(a, c) 

= (Q(a) + Q(c))f(a, c) =f(a,c)*9*0 
and thus 5 (Z L. 

LEMMA 2.7. Le/ 7r = aaabac, and let A = (a, b, c) be ^-dimensional with the 
property that A C\ rad V = (d ) is non-singular. Suppose that (a), (b), (c), (d) 
form an sd-quadr angle with diagonal L. Then we have: 

(a) A is isotropic. 

(b) 2 * 0 0 = 1 , . 
(c) There exist 07, <rg, ah withf, g, h £ A so that T = aaafaQahl and ( a ) , ( / ) , 

(g )> (^ ) ^ a w sd-quadr angle with diagonal L. 

Proof. Since a7 is non-singular, we know d (fL, and so 4̂ = (d ) + L, imply
ing (as d £ rad F) tha t 4̂ is ivSOtropic. We can again normalize to obtain u = 
a. + 6 = c + d 6 L, so t ha t a + 6 + c + d = 0, and /; + c G L. Then clearly 
Q(a) = Ç(6) = Q(c) = 0 ( d ) : = X ̂  0. Then we have 

7r(x) = x + \~l(f(x, a)a + / ( x , 6)6 + / ( # , c)c), 

and so 

/ ( * ( * ) , *) = X - 1 ( / ( ^ a ) 2 + / ( ^ , 6 ) 2 + / ( ^ c ) 2 ) = X - U / ( x , a + 6 + c)) 2 

= x - y ^ d ) 2 = 0 

for all x G F. Bu t Q(TT(X) — x) = / (TT(X) , X) = 0. Hence B(w) is singular, 

and by Lemma 1.4 (b), dim B(w) = 2. Thus , by Lemma 1.5, we know tha t 
B(ir) = L. If we let g = ac + d and h = c + ad îov some a ^ 0, 1, then by 
Lemma 2.3 agah = ac, and so we have ?r = aa<jbag(jh. Also, 

(a, b ) H (g,h) = (a,b) H (ac + d, c + ad > = (a,b)C\ (c,d) 

= (u) Q L and 

(#> g ) ^ (b, h) = (a, ac + d) C\ (a + u, c + ad) 

= <(1 + a ) ( a + c) + « ) Ç L . 
T h e next lemma is a converse to 2.5. 

L E M M A 2.8. Suppose T(X) = x + X - 1 /(x, s)w, w7& u ^ Q rad F, and 5 g 
rad F 6w£ (?(s) = 0. Lor e z ; ^ isometry aa we can then find ab, ac, ad with b,c,d £ 
(a, s, u ), such that w = aa(Jh^c^d-

Proof. Choose any aa £ S. Suppose first t ha t f(a, s) ^ 0. We may assume 
Q(a) 7^ 1, as otherwise we replace a by aa for some a ^ 1. L e t / ( a , s) = n, 
and define s' = /x_15, and w' = /JL\~1U. Then of course, 7r(x) = x + / ( x , s')uf. 
Now we pu t y = Q{a)~ls' + Q(a)~2a, and define c : = a + v. An immedia te 
check shows t h a t / ( a , 5r ) = 1, Q(v) = 0, (A ) ^ (5' ) and 5' = Q(c)a + Ç(a)c. 
A l s o , / ( a , v) = 0 ( a ) - 1 = / ( a , c), and Ç(c) - Ç(a) + Q(a)~l ^ 0, since 
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Q(a) 9^ 1. Now we pu t /; : = a + uf and d = c + ^ ' , and then by (2.5) we 
see tha t aaabacad = ir. If f(a, 5) = 0, then (a, 5, w) is isotropic. We now pu t 
s' = Q(a)X_15, 6 : = a + u, c : = a + s' and rf = a + it + s', and we again 
obtain w = aaabacad if c, d both do not lie in rad V. I t could conceivably happen 
tha t both c and d lie in rad V, so tha t ac, <rd do not exist. If both lie in rad V, 
then 

aaab(x) = x + / ( x , a)Q(a)-\i. 

But since by assumption, a + s' t rad V, this implies t h a t / ( x , a) = / ( x , 5'), 
so t ha t 

aaab(x) = X + Q(d)~lf(x, Sf)u = X + \~1f(x, s)u = 7r(x). 

T h u s we choose any 0^ with g G (a, 5, w ), and see tha t aaabaga0 = 7r, as 
claimed. 

In 2.6, we saw tha t certain products of four simple isometries yield a singu
lar isometry -K with 2-dimensional path L for which L Pi rad V = 0. The next 
lemma shows tha t we have considerable freedom in expressing such an isometry 
as a product of simple isometries. 

LEMMA 2.9. Let ir(x) = x + f(x, u)v + f(x, v)u, where (u, v) = L is singular 

and 2-dimensional, and L f~\ rad V = 0. Then, for all aa t S, we can find ab, ac, 
ad £ <S with b, c, d £ L + (a) such that T = aaabacad. 

Proof. Let A = (a ) + L. 
(i) Assume first t ha t A is non-isotropic. Then A P\ rad L = 0. We may 

clearly assume t h a t / ( a , v) 7^ 0, and indeed, f(a, v) 9^ 1. Let rad A — (uf), 
then uf (z L, and we can write it' = it + v, so tha t 

7r(x) = x + / ( x , w')z; + / ( x , ZJ)W'. 

Now let c' : = Q{a)~la + «;. Since / ( a , v) ^ 1 we see tha t Q(c') j* 0. We now 
define c = Q{c')~lc', and see tha t Q(c) = Q(cf)~l, and hence c' = Q{c)~lc. 
T h u s we may write v = Ç(a ) - 1 « + (?(V)_1£- We now let r = a + c, and see 
tha t 

Q(r) = Q(a + c) = <2W = 0. 

We define 6 : = a + z/, and d : = c + u', and use Lemma 2.6 (b) to deduce 
t h a t anabac(7d — ir. 

(ii) If A is isotropic, then we define b : = a + u, c : = a + v and d : = 
a + w + v. If none of 6, c, d lies in rad V, then we calculate easily t ha t aa(rb(7cad 

= 7T. Also, a t most one of b, c, d can lie in rad F, as otherwise L r\ rad V y± 0. 
But if one of b, c, d lies in rad V, it is an easy computat ion to show tha t the 
product of aa with the remaining two simple isometries is equal to ir, and then 
we may use Lemma 2.7 to express this product of 3 simple isometries as a 
product aa<TfGg<jh. 
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Lemmas 2.6, 2.8, and 2.9 can be combined to yield 

LEMMA 2.10. Let w = aaabac<Td, and let A = (a, b, c, d) be ^-dimensional. If 
(a), (b), (c), (d) form an sd-quadr angle in A, then for any <jn> £ S, we can 

find ab>, aC'j aa> £ S so that -K = ovovayaa'• 

3. R e l a t i o n s b e t w e e n s i m p l e i s o m e t r i e s . Our aim in this paper is to find a 
presentat ion for the group 0* generated by the set S. For n = 1, 2, . . . , we let 
Sn = {(en, . . . , <rn) | <rt C S\, and S° = {id}. An element (<ru . . . , an) £ Sn is 
a relation of length nil ai. . . an = 1. If in addit ion, dim (B(ai) + . . . + B(an)) 
= k, then we talk of a k-dimensional relation of length n. The trivial relation 0 
is O-dimensional and of length 0. 

In this section, we discuss four types of fundamental relations. We shall use 
these to define the equivalence relation ~ on the wrords of the free group 
W : = Un€N u (o) Sn generated by S: two words (acn, . . . , a(ln) and (abl1 . . . , 
abm) are equivalent if one can be obtained from the other by successive inser
tion or deletion of these fundamental relations. 

We say t ha t B(ai) + . . . + B(ak) is the subspace associated with the word 
(cri, . . . , <rk) G W. Given two equivalent words a = (a(n, . . . , aam) and b = 
(abl, . . . , abn) with associated subspaces A and B respectively, we say tha t 
b is elementary-equivalent to a and write a > b, if B is contained in A and if 
further all the fundamental relations whose insertion or deletion yields b 
from a also have associated subspaces which all lie in A. T h e relation > is not 
an equivalence relat ion; it is reflexive and transit ive, bu t not symmetr ic . We 
do not require this concept till later in this paper ; however, as proof of equiva
lence in most cases is also proof of e lementary equivalence, we introduce the 
concept a t this point. 

For the sake of brevity, wre write a<n . . . a(l/c ^ <rbl . . . abm instead of the 
formally correct (a(ll, . . . , aak) ~ (abl, . . . , abm), and we shall use the same 
abbreviated notat ion with the symbol > . 

The following is a listing of the four types of fundamental relations: 

(a) 1-dimensional relations of length 2. These are of the form (a, a) for 
every a G S. 

(b) 2-dimensional relations of length 3. These are of the form (aa, ab, ac), 
where a, b, c are dependent bu t pairwise independent , and (a, b ) contains a 
non-singular vector of rad V. 

(c) 2-dimensional relations of length 4. These are of the form (<r„, ab, aC} ad), 
where a, b, c are linearly dependent , and d is the vector given in (*) of § 2. 

(d) 3-dimensional relations of length 4. These are of the form (aaj ab, ac, ad) 
where dim (a, b, c) — 3, and dim (a, b, c) C\ Q rad V = 2. 

The relations (a) express the fact t ha t the generators are involutions. 
Lemma 2.3 characterizes the twro types of 2-dimensional relations (b) and (c). 
The relat ions of type (b) are unique to the characterist ic 2 case, as rad V = 
Q rad V if char V ^ 2. Finally, in view of 1.4, we see t ha t all relations of length 
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4 are either consequences of types (a), (b) or (c), or are described by type (d). 

T h u s the list above describes all the relations of length a t most 4. 

4. Equiva lence of w-tuples . In this section we prove a sequence of results 
related to the concepts of equivalence and elementary-equivalence defined in 
§ 3. The first of these arises immediately out of the considerations of § 3. 

(4.1) If aa(Tbacad = 1, then aaabacad > 0. 

Repeated application of formula (*) in § 2 gives 

(4.2) Let w = <rai . . . a„m with dim (au . . . , am ) ^ 2. Then either 

0"ai • • • o"am ^ 0 or aai . . . <ram > ab or <rai . . . a(lm > abiab2. 

In a similar vein, we prove 

(4.3) Let IT = a(n . . . (Jar, with dim (ai, . . . , a 5 ) = 3. Then 

<Tfll • • • 0-«5 ^ 0-&1 • • • °"&A- ^ ^ 0 ^ fe ^ 3 . 

Proof. If either {#i, a2, a3} or {a4, a5} are dependent sets, then (4.3) follows 
a t once from the considerations of § 3. If both {di, a2, a3} and {a4, a 5} are 
independent , then (a4, «5) intersects one of (au a2), («1, #3) or (a2, #3) in 
some non-singular (r ). If (r) = (ah a2 ) O («4, a5 ), and r Ç? rad F then 

<7ai<T(i2a'a2<r(n(rar> ^ ^ « i t f f l 2 ° ' r 0 > 0 " « 3 0 > 0 > 0 ' a 4 0 ' « 5 > 

and (4.3) follows from § 3. If r G rad F, then 

by § 3. A similar a rgument yields the result if r t ( « I , u3 ) or r £ (a2, «3). 

I t is clear tha t if we conjugate any a(l by a ab, then aba(,ab > o-c. Doing this 
repeatedly gives rise to 

(4.4) Le£ 7T = <rni . . . o-„A, and suppose 1 ^ ^ ^ . . . ^ ir S k. Then we can 
findabr+i, . . . , abk and o-Cr+1, . . . , o-CA swc/& that 

0"ai • • • 0"a* ^ ^ t l • • • <Tair<Tbr+l • • • <Tbk a n d 

<*a\ • • • (Tak ~ °"c r + 1 • • • Verdir • • • aail-

Next we show 

(4.5) Suppose TT = anabcrc and dim (a, fr, c ) = 3. Suppose that (a, b, c) C\ 
rad F = (s) is non- singular, and /fea/ (a ), (b), (c), (s) form a quadrangle 
whose diagonal is not singular. Then there exist au, av so that aa(rbac > o-uav. 

Proof. By Lemma 1.5 (b) and 2.2, we know tha t dim B(ir) = 2, and tha t 
5 (? B(T). Since the diagonal of (a), (b), (c), (s) is not singular, we may 
assume tha t (p) = (a, b ) P\ (c, s ) is not singular. Also (p) 9* (s) and 
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rad V P\ (a, b, c) = (s ), and hence p (/- rad V. T h u s ap exists, and so we have 

o'aO'bO'c <̂  o-aabapapac > auav, 

by § 3. 

(4.6) Suppose T = (Taabac, and dim (a, b, c) = 3. Suppose that (a, b, c) C\ 
rad V contains a non- singular (d) for which (a), (b), (c), (d) is an sd-quad-
rangle whose diagonal is L. Then we have: 

(a) If dim (a, b, c) C\ rad V = 2, there exist ax, ay such that aaVbVc ^ o^oy 
(b) If dim (a, b, c) C\ rad V = 1, then there exist af, a0, ah such that aa(rbac > 

(ja<jf<jQ<jh. In this case, (a), ( / ) , (g), (h) is an sd-quadrangle with diagonal L, 
and B(ir) is singular, and in fact, B(j) = L. 

Proof, (a) Let (a, b, c) C\ rad V = B. Since B contains the non-singular 
vector d, we know tha t B is non-singular, and hence either (a, b) C\ B or 
(6, c ) C\ B is non-singular. In either case, Lemma 2.3 yields the result, 

(b) This is jus t a res ta tement of Lemma 2.7. 

We now prove the impor tan t 

L E M M A 4 .7 . If aaabacaC'ovov — 1, then <J(1Gb<jCGc>ab><Ja> J> 0. 

Proof. If either of {<7, /;, c} or {a1, V', c') is a dependent set, then the result 
follows a t once from § 3 and (4.1). We let 

7T = (Tn(Jb(Tc = (Ta> (7b> (JC', 

and we may assume tha t both the associated subspaces A = (a, b, c) and A! — 
(af, b', d ) are 3-dimensional. U A — A', the lemma follows immediately from 
(4.3) and (4.1). W7e may therefore assume t h a t A 9^ A'. This of course im
plies by Lemma 1.4 (b) tha t B{j) 9^ A and hence tha t 

dim (A r\ rad Tr) = dim (Af C\ rad V) ^ 0. 

Wre consider separately four cases. In this case distinction, let 

A C\ rad V = Z and A' C\ rad V = Z>'. 

(a) Z is 2-dimensional and singular. Then by § 3, a(labac > o v , and hence 
(4.1) yields the result. 

(b) Z is 2-dimensional and non-singular. Now dim B(T) = 1, implying t h a t 
dim Z' = 2. By (a) , we may assume tha t Z' is also non-singular. Then the 
methods used in (4.6), (a) show tha t aaabac > <rxay and tha t ovovov > <JX'<JV>. 
Now (4.1) yields the result. 

(c) Z is 1-dimensional and singular. Let Z = (z). By Lemma 1.5, we know 
tha t dim B(w) = 2, and hence we can deduce t ha t Z' is 1-dimensional. Also, 
B(TT) Q A P I A', and hence dim (A + A') = 4 and B(w) = A C\ A''. Now let 
(a,b)r\ (c,z) = (t ). If (/ ) ^ (2 ), we can write 

(TaVbVc ^ aaabatatac > aa"atac w i t h z Ç (/, c ). 
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T h u s we may assume that either z £ (a, b ) or z £ (b, c). Ei ther si tuation 
implies tha t z Ç B(ir), as an easy computat ion will show, and therefore z Ç A', 
implying tha t Z = Z ' . Indeed, we may clearly assume tha t (z ) = (b, c) C\ 
(//, d ), and so B(j) = (a, z) = (af, z), and hence a, a', z are linearly de

pendent . 
If ( a ) = (a')t then 

(J a® b& c& c'& h'& a' ^ ^Wc^c'^V 

for suitable b, c, d, V and the result follows from (4.1). Thus we may assume 
tha t a, a' are independent, and hence wre can normalize them to obtain a' = 
a + z. Similarly we can write c = b + z and d = V + 2. 

Now a, a', /;, c G .4. If the quadrangle ( a ) , ( a ' ) , (& ), (c ) is not an sd: 
quadrangle, then we know tha t one of (a, b) C\ {a', c) = (p ) or (a, c ) O 
(a', b) = (q ) is non-singular, and in either case, cra/a(l(rbac > 0707 for suitable 

/ , g, and we are done. Thus we may assume tha t (a), {a'), (b), (c) is an 
sd-quadrangle. The same argument permits us to restrict ourselves to the case 
t ha t both (ar ), (bf ), (d ), (a ) and (& ), (c), (// ), (cr ) are ^ -quadrang les . In 
this case, both (a, d ) C\ (a', V ) and (b\ c ) C\ (b, d ) are singular. But this 
implies t ha t the 2-dimensional subspace 

G : = (a,b,bf)r\ (a',c,cf) 

is singular as it contains the distinct 1-dimensional subpaces 

(a, b ) H <</', c ), (a, bf ) C\ (a', d ) and (b, bf ) C\ (c, d >, 

which are all singular. As z does not lie in (a, b} b') (as otherwise // £ ^4, 
implying A = Af), we know tha t z £ G, and hence H : = (s ) + G is a singular, 
3-dimensional subspace of A + A'. Now from our normalization, we know tha t 
a + a' = b + c = V -\- d = z; also a' + fr is singular, since (a' + & ) is con
tained in the diagonal of the sci-quadrangle (a ), (a' ), (b ), (c ). Now we have 

aa'aaabac = cr»>crc'> 

Repeated application of Lemma 2.4 yields: 

Ga'aaWcix) = x + f(x, Q{a)~la + Q(b)~lb)z and 

ovov(x) = x+f(x,QQ>')-lV)z. 

Hence we see tha t 

Q(a)-la + Q(b)~lb + Q{b')~lbf = s 

lies in rad V. Since a, fr, // are independent, we know 5 ^ 0 ; since z $ (a, b, b' ), 
we know (s ) 9^ (z). 

We now make two case-distinctions: 
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(0 Q(s) = 0. Since (s) ^ (z ), we know that 

(A + A')C\m(\ V = (s,z) = L 

is singular. Now F : = (b', c', z} s) is 3-dimensional and isotropic and hence, 
by Lemma 1.5, all singular vectors of F belong to L. Now F Pi A contains z, 
but since A P\ rad V = (z ), we know that F C\ A is non-singular, and 
2-dimensional. Thus we can find b", c" (j F C\ A so that ovovov'ov = 1. 
But then 

VaVbVcVc'Vb'Va' ^ &a<?b& c<?c" &b" <*a', 

where a, 6, c, a', &", c" Ç A Now the result follows from (4.3) and (4.1). 
We are left with 
(ii) Q(s) j£ 0. But then s G H, and so we see that A + A' = H© (s), 

where H is singular. Hence in this case, A + A' is isotropic. Now since \K\ ^ 4, 
we know that every 2-dimensional subspace M contains at least five 1-dimen-
sional subspaces, at most one of which is singular if M is non-singular. In 
particular, (a', b' ) contains at least two other non-singular (pi), (pi) (beside 
(af ), (bf )). Let (qt ) = (pu cf ) C\ (a, a' ). Both (qx ) and (q2 ) are non-singular. 
Let (r i ) = (c[u c) C\ (a, b ). At least one of the (rt ) is non-singular. Hence we 
can find p G (a', b' ) so that (p ), (q) = (p, c' ) Pi (a, a' ) and <r ) = (q, c ) P 
(a, b ) are all non-singular. But then 

aaobacac>avac> > aaoboraracaqaQcrc>ap(jpob>aa> > oa"oy >ac"o'a" 

by repeated application of the 3-reflection theorem. Now (4.1) yields the result. 
We are left only with 
(d) Z is 1-dimensional and non-singular. Let Z = (z). If 

z e (a,b)\J (b,c)KJ (a,c), 

then by §3, aaabac > auav. Also, dim B(ir) = 2, and so B(T) = (u,v) Q A'. 
Thus (4.3) and (4.1) yield the result. The same reasoning holds if (a), (b), 
(c ), (z ) is not an sd-quadrangle. Thus we may assume that (a ), (b ), (c ), (z ) 
is an .^-quadrangle with diagonal L. By (4.6) (b), B(ir) = L, and aa(rbac > 
aaafagah for suitable/, g, h G A. Hence we see that L = B(ir) = A P A'', and 
L P rad V = 0. But then A' P rad V = Z' = (z' ) is non-singular, and hence 

A + A' = LQ(z)®(z'), 

implying that A + A' is isotropic. Also, 

(A + A') P r a d V = (z, z' ). 

The singular vectors of A, respectively A\ all lie on L. Let (a, z) C\ L = (u). 
If u G (cr, s; ), we interchange the roles of a' and c;. (We can do this without 
fear, as A is isotropic, and so a^a^ac' > <rc

f°v<ra')• H u Q (cf, z' ), then ^ (? 
(ar, è; ), and so (u, z' ) C\ (a', b' ) = (aff ) is non-singular, and we can replace 
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ovov by ov 'ov 'ovov- Thus we see tha t we may assume tha t 

(a, z ) C\ L = (a', z')C\L = (b,c)C\L = (bf, d') CM = <w ). 

Now, C = (a, a', 2, 2' ) and C = (b, c, b', c' ) are two 3-dimensional subspaces 
of A + A' where C Pi C = M and M is 2-dimensional, with M G M. Now let 
(r ) = (a, a') C\ (z, z' ). If r is non-singular, then 

^ a ^ V ^ ^ a " & n d 0 V ' = (J b(J c(7 b> (J c>, 

implying tha t a" £ C , and then (4.3) and (4.1) yield the result. If r is singu

lar, then B(<Ta<Ta>) = (r ) Q C. But now from 

aaabacac'ab'(ia' = 1, 

we obtain (since A is isotropic) t ha t 

where 

<6, c, V ) r\ rad V = C C\ rad V = (r ) 

which is singular. This puts us back into case (c), and thus the lemma is proved. 

Now we require a technical 

LEMMA 4.8. Suppose w = anabacad, and T 9^ 1. Suppose that A = (a, b, c, d) 
is 3-dimensional, and that (a), (b), (c), (d) is an sd-quadrangle in A with 
diagonal L. Then 

(a) For any u G rad A, u ^ 0, we can find a', b', c'', d' £ A such that 

aa(ibacad > a(l>ab>vc>ad>, and (u ) = {a',bf)C\ (c',df). 

(b) / / (a, b) r\ (c, d) = (u) and A is isotropic, then for all non-singular 
b' G (a, b ) with b' $_ rad V, and (b' ) 7^ (a ), we can find c', d' £ A such that 

aaabacad > onoyayad>. 

Proof, (a) Since u £ rad A, we know u £ L. If (u ) = (a, b) (^ (c, d ), we 
are done. So suppose b, c, d d (u, a ). Observe tha t if (x ) ^ (u ), x 9^ 0 and 
x G (w, a ), then x is non-singular, as (u, a ) is istropic. Now a t least one of 
(b, c) C\ (u, a), (b, d) C\ (u, a) or (c, d) C\ (u, a ) is non-singular, and not 

in rad V. By (4.4), we can assume tha t (bf ) = (b, c) C\ (u, a) is this non-
singular subspace. But then 

aa(Tbacad > aaay ay aba cad > Gaob> o c> Gd. 

(b) Now suppose (a, b) C\ (c,d) = (u) and A isotropic, implying t h a t both 
(a, b) and (c, d) are isotropic. Choose any non-singular b' £ (a, b) with 
(&') T± (a) and V $ rad V. Now (b, c) C\ (a, d) = (v) is singular. 

Since (bf ) p^ ( a ) , we know tha t (b, c) C\ (br, d) 9^ (v), and hence (b,c) C\ 
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(b', d) = (p ) is non-singular. If £ g rad F, then 

a n a b a c a d > <J a(j b v CG V<J v v d(j b> o b> > v a(J c" & d" <? v ^ aa<rv&c'vd' 

for suitable c", d", c', d'. If £ G rad I", then 

( 7 a a b a c a a > anab(Tc(T(i(Tb'ab' > aa(Teafab' > G a o b> <J c> <J d> 

for suitable 6',/, c', d'. 

This lemma is useful in the following impor tan t 

LEMMA 4.9. Let TT = aaabacad 9e 1, awrf suppose A = (a, b, c, d) is 3-dimen-
sional, such that (a), (b), (c), (d) is an sd-quadr angle in A. Then for any 
aa> G 5, we can find ab>} ac>, <jd> such that 

aaobacad ^ avab>ac>od>. 

Proof. We first prove 

(*) Let D be 3-dimensional, and M, N be two 2-dimensional subspaces of D 

such tha t M is isotropic, N is not isotropic, and M C\ N is singular. Then 

for all m'\m G M and all n', n £ N. 

T o prove (*), it is sufficient to observe t ha t rad D is non-singular, as radZ) C 
M} bu t rad D ^ M C\ N. Hence D contains no singular 2-dimensional sub-
spaces, implying tha t (m' ), (m ), (nf ), (n ) is not an ^ - q u a d r a n g l e , and so 
(w, nf )C\ {m', n ) may be assumed non-singular. This immediately yields (*). 

Now for the proof of Lemma 4.9: Let L be the diagonal of (a), (b), (c), 
(d). If A is isotropic, let Z = L. If A is not isotropic, wre know by (2.1) (b) 
t ha t A contains a second singular 2-dimensional subspace Z ^ L. A combina
tion of (2.6), (2.8), (2.9) tells us tha t for a given aa> Ç 5, there exist ov, ov, ad> 
with 6', c', d ; t (a') + Z for which 

a a a b c r c a d = <J a> G b> v c> <J d>. 

We must prove the equivalence of these two expressions for TT. 
If a' £ ^4, the result follows from (4.3) and Lemma 4.7. Hence we are left 

with the case t ha t a' (LA. We let C : = (a' ) + A, and A' : = (a' ) + Z. 
We now distinguish three cases. 

(a) A is isotropic. If a' (?_ Z-1, then there exists u £ Z with f(a', u) 9e 0. 
By Lemma 4.8, there exist b*, c*, d* G 4̂ such t ha t 

aaabacad > o-„.0><7c*o-d* with (w ) = {«,/?*) Pi (c*,d*). 

Also, the same a rgument as was used in the proof of Lemma 4.8 (a) shows tha t 
there exists b" £ (a', w ) such t ha t 

Va'Vb'Vc'Vd' iC <Ta'Vb"Vc"Vd" 
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for suitable cff,d,f. Now let D = (a, b*, a', b" >, let M = (a,b*),N= (a',b"). 
Then apply (*) to conclude that 

But 

a(i"(Tc"0'b"0'arO'aO'b*0'c*0'd* C Gd"<* c"VxGyG c"Vd" 

and so now the result follows from Lemma 4.7. 
If a' 6 Z1-, then of course, Z C rad C, and so in particular, .4' is isotropic 

also. As above, we write 

aa>avcfc>ad> > o v o v o v ' O V r ' 

where <« > = <a, b) C\ (c, d) = (a\ b" ) C\ <c", d"). Clearly 

dim (a, b, a', b" ) = dim (a, b, c"', d" ) = 3. 

If w g rad V, but if 

<a', 6" ) H rad 7 = (s) * (0) and <c", d" ) H rad F = (t ) ^ (0 ), 

then both 5, / are non-singular, implying that 

and then Lemma 4.7 yields the result. 
So we now assume that («', b" ) C\ rad V Q (u). But then it is clear that 

(af, b" ) contains at least one non-singular vector b for which (p ) = (a, b) O 
(a', b ) is non-singular with (h ) ^ («' ). But by Lemma 4.8 (&), we know that 

(Ta'(Jh"(TC"ad" > (Jn>(Jl<J-cQd 

for suitable c, J 6 ^4'. Also 

for suitable o ,̂ ô  by using the non-singular (£ ), and so Lemma 4.7 again yields 
the result. 

Similarly, we obtain the result in the case 
(b) A' is isotropic. 
We thus are left to consider 
(c) Both A, A' are not isotropic. Now let (u ) = rad A. By Lemma 4.8, we 

know that 

aaabacad > aaab*ac*ad*, 

with (u ) = (a, b* ) P\ (c*, d* ), and as in case (a), we know that 

aa'avac>aa' ^ aa'ab"ac"Vd" 

with w G (a', b" ). If a' (f uL, we argue as in (a), again using (*) to obtain the 
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desired result. If a' (E uL, bu t u d rad V, we know tha t there exists aw (z S 

w i t h / ( w , u) T6- 0; by Corollary 4.10, 

<Ta(Ti,<Tc(T(i = <Tw(Tx<Ty(Tz 

for suitable x, y, z. Now w (f uL implies tha t the methods above yield 

and we are done. 

We are left with the case t ha t u Ç rad V. In this case, C = A + A' has a 
non-trivial radical. Also, since A is not isotropic, we know tha t C is not iso
tropic, and hence rad C = W is 2-dimensional, and u G W. Observe tha t 
A H W = (u) = A' C\W. Now let 

Hx : = <a', 6" >.+ W and # 2 : = (c", d" ) + W. 

We know dim H\ = dim i72 = 3, and Hi, H2 are both isotropic. Let 
Fi : = Hi C\ A and 7̂ 2 : = H2C\ A. Now it is easy to see t ha t 7% 7^, 2 are 
three mutual ly dist inct 2-dimensional isotropic subspaces of A containing 
(u ). By (2.1), a t most two of these are singular. Since Z is singular, we may 
therefore conclude tha t Fi is non-singular. Bu t then there exists a-, with 
a 6 Fi, such tha t 

for suitable b, c, d, and by Lemma 4.8, we can choose b in such a way t ha t 
u (z (â, b ). Bu t now we have 

(Taabacad ^ auvWcVd", GàGWiPE = aa'0'b"0'c"0'd" ', Ga'Gb"Vc"Vd" ^ o'a'^b'Oc'^d''• 

Hence 

Qb"Va'Va<tb — 0'c"0'd"0'd(rc-

Now let 5 = <&", a', â, b ) and 73' = <c", d"', J, c ). Since W Ç £ , we know tha t 
JS is isotropic. T h u s we have reduced this case to case (a) . This completes the 
proof of the lemma. 

Out of the proof of (a) in Lemma 4.9, we pull the following 

COROLLARY 4.10. Under the assumptions of Lemma 4.9, we have: If A is 

isotropic, then aa'Va**bffcffd ^ ovov^/ '-

We complete this section with 

LEMMA 4.11. Suppose TT = aai . . . o-fl6 and suppose dim (ah . . . , a6 ) = 4. 
Then 

&ai • • • 0"a6 ~ abi • • • cr&A-

m/& k ^ 5. 
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Proof. In view of (4.4), we may assume tha t ai , . . . , a4 are linearly inde
pendent . If (fl5 ) = (aG ), we are done a t once. So we may now assume also tha t 
a5, a6 are independent, and of course, (a$, a6 ) O rad V C Q rad V. Let Ai : = 
(a2, tt3, a 4 ) , A2 : = (ai, a3, a±), Az : = (ai, a2, a 4 ) , v44 : = (ai, «-2, «3). If 
(a5, a 6 ) lies in one of ^ 1 , ^42, ^43, A*, then (4.4) and (4.3) yield the result. If 
(a5, a6 ) is not contained in any of the 4̂ u then let (/>* ) = At C\ (a5, a6 ) for 

i = 1, 2, 3, 4. At least one of the (pt) is non-singular. Then pt (£ rad F, and 
in view of (4.4), we may assume tha t (a2, a3, a4 ) O («5, «e) = (pi) is non-
singular, and so 

0"«2°"«30"ff4a'«50"o6 ^ VinVinVfnVviGq w h e r e (7ff = (Tpi(rab<Ta<i-

Either 

or (a 2 ) , (^3), (^4), (pt) is an ^ -quad rang l e . But by Lemma 4.9, we know 
there exist au, av, aw such tha t 

(Ta2(j(n(jaAavi ~ (T(nau<Tv<Tw, a n d so 

which proves the lemma. 

5. T h e m a i n l e m m a . We s tar t this section with the following 

Definition. Let H be a subspace, and let <rai . . . ank be some word in W. We 
say tha t a(n . . . aak is H-equivalent if there exist bi} . . . , bm £ H U i/1- such 
tha t aai . . . crttfc ^ o-6l . . . abm. We say tha t o-ai . . . ank is H-sufficient if «1, . . . , 
ak£ HKJ H\ 

T h u s ovu . . . o-HA is / / -equivalent if it is equivalent to some insufficient 
w o r d <jai . . . abm. 

In the following, H shall be some fixed, regular, 2-dimensional subspace. 

LEMMA 5.1. Let Hf be isometric to H such that H' Ç H1-. Then there exists 
en, (72 £ S such that aia2(H) = Hf or <r\(H) = H''. 

Proof. Suppose first t ha t H f\ H' = (a), where Q(a) 9^ 0. Then there exist 
b G H,c e H' such tha t H = (a, b), H' = (a, c) and Q(b) = Q(c), / ( a , 6) = 
/ ( a , c). Fur ther f(b, c) 9^- 0, as otherwise replace b by b' = aa(b). This choice 
of b and c means tha t ab+c(a) = a and crb+c(b) = c s o tha t ab+c(H) = i / ' . 

Now, suppose H C\ Hf is singular. Let q £ H be non-singular, such t ha t 
q (i Hf±, and let U = {y G H' \ Q{y) = Q(q)}. Since i T and i f are isometric, 
we know tha t U contains a t least two elements. Now, for y £ U, we know t h a t 
Q(y + (Z) = / ( % 5)- ^ u r choice of g $ if/J- guarantees the existence of a t least 
one p G U so t ha t Q(p + q) = f(p, q) 9^ 0. Hence ap+Q exists, and ap+Q(q) = p 
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with Q(p) 9* 0. T h u s ap+q(H) = H", with i f H i f" = (p) where Q(p) ^ 0. 
As we saw above, we can now map H" to H' by some a £ S. 

LEMMA 5.2. Let w Ç 0* such that w(H) = H, but H £ F(T). Then II H B (TT) 
i5 non-singular. If H C\ B(ir) = (h), then ir\H = ah\Hj or equivalently, H C 
F(^7r). 

Proof. Since i J £ ^ M , there exists a non-singular h' (z H with 7r(ZO ^ h'. 

Hence / ( T T ( / 0 , A') ^ 0 (as H is regular) and so Q(v(h') + h') ^ 0. T h u s 

h: = h' + TTQÏ) G HnB(w) 

and A is non-singular. Observe tha t 

a^h') = A' +f{h'h)Q(h)-lh = V + A = T T ( / 0 , 

and hence dhir(hr) = 7^. If H C\ B(ir) = (A), then 7r(A) = /z and so in this 
case, i f C F(ahir). 

We next prove a converse to Lemma 5.1. 

LEMMA 5.3. Let w = o - ^ , awrf suppose R' = 7r(if ). 77^?z i / ' £ /J-1. 

Proof. If 77' = / / , there is nothing to prove. So suppose H' ^ H. Let 7:T' = 
<rq(H), so tha t ^ - *P(H"). Now i ï " C (if, q) and ifr Ç (^T", p), and so 
H" C\H^ </<} and ifr P\ i f" 3 (s ) , where 5, / ^ 0. If (s ) = (/ ), then # ' H 
i f = (t), and / (Z H1-, so if ' £ if-1-. If (s) ^ ( 0 , then H" = (s, t). But 
i f" is regular, implying f(s, t) ^ 0. Since s £ i ï 7 and / 6 II, we again conclude 
if' £ i ^ . 

LEMMA 5.4. Suppose <j(ll . . . a(lk(H) = H,for k ^ 3. Then there exists i, with 
1 S i è k — 2 so that 

<Tai<Tak-i<rak(H) £ /f"\ dtld 

°"«l • • • °"«A: ^ 0"6i • • • (Tbk-zVaiVak-lVak-

Proof. Let r = <T(lk_x(rnk, and let H" = r ( i f ) . By Lemma 5.3, H" £ ^T-1-. 
If at (E Tf1- for some i, then a(ll(H

L) = if-1, and hence <r(li(H") £ ffJ-. So we 
must see what happens if none of the at for 1 ^ i ^ k — 2 lie in if1-. Suppose 
tha t (Tair{H) C fi-L for all i g fe - 2. This means tha t 

f(aair(h), h!) = 0 for all A, A' G # , 

or equivalently, 

/ ( T ( A ) , h') + Q(at)-y(T(h), at)f(h', at) = 0 

for all h, h' Ç i f and a lH ^ k — 2. Since we now assume a t 0_ if, we know tha t 
for each i, there exists a unique (/z(i) ) C H, h(i) 9^ 0, so tha t f(au h{i)) = 0. 
Hence, for each i, there exists h(i) Ç i? \{0} such t h a t / ( r ( A ) , A(i)) = 0 for all 
h G if, and so r(A) Ç A^)1- for all A 6 if. Since r ( f i ) Ç H1-, we conclude tha t 
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h(i), h(j) are dependent for all i, j ^ k — 2. So we see tha t GIT{H) is orthog
onal to H for all i rg k — 2 if and only if there exists some h G # \ i 0 } with 
r(H) C h\ and at G fe-1- for all i ^ k - 2. This implies t ha t ^-(A-1) = h\ 
and hence (J(1I{T(H)) C fe-1 for all i. But then 

(7fll . . . <rak_2(r(H)) = HQh1- for ft £ H} 

implying tha t H is not regular, a contradiction. 
The last par t of the lemma follows a t once from (4.4). 

LEMMA 5.5. Let T = afn . . . <rak, and suppose the associated sub space A = 
(<7i, . . . , ak ) is k-dimensional. Suppose further that ir(H) — H. Let Z = A C\ 

HL. If dim B(w) r\ H S 1, then dim Z ^ k - 1. / / ^ C ^ ( T T ) , / ^ n dim Z = 

k ~ 2. If dim Z = & — 1, and Z is singular, then A is isotropic. 

Proof. If II ^ F M, then by Lemma 5.2, i7 P\ B(-7r) is non-singular. Thus , 
if i f <= 5 ( T T ) , either 77 H B(TT) = (h ) 9* (0 ), or H C /^(TT). Bu t i i C F(TT) 

implies by Lemma 1.5 tha t i f C F(TT) Q A1, and hence 4̂ Ç A-L± C i/-1, so 
tha t Z = A If i f H i3(7r) = (fe ), then also by Lemma 5.2, we see tha t ir(h) = 
h,soh(: F(w) = .4-1. Bu t then .4 C fc-L, and A C\ HL = A C\ (h^ C\ h) for 
some h\ 6 ii-1 , implying tha t 

dim ^ H #-*- = dim A C\ h^ = k - 1. 

Certainly, since dim if1- = n — 2, and dim 4̂ = k, we knowr t h a t dim Z ^ 
fe - 2. If H C £(*•), then i i C ,4. Also, dim Z è & - 2, and so in fact, 
.4 = H©Z. Finally, if dim Z = ife — 1 and Z is singular, then A = Z 0 (A) 
is clearly isotropic. 

In a similar spirit, we prove 

LEMMA 5.6. Suppose w = a(n . . . aak, and A = («1, . . . , ak ). If dim A = k — 

1, and if H C ^(71-), //ww dim Z ^ dim yl — 1 awd f>(7r) Q Z, w ^ r ^ Z = A P\ 

Proof. We can assume tha t a2, . . . , aA are linearly independent. Since 

II Q F (IT) j we know tha t 

aa2 . . . 0-„*W = (T<n(h) 

for all /& G if. But dim ai-1 P\ H ^ 1, and so there exists h0 Ç i i \ { 0 j such t h a t 
0Vu(^o) = ^o, implying /&0 t F(afl2, . . . , crnjfc), and hence fe0 G ̂ l-1, or yl C ^Q-1-. 
T h u s again 

dim (A H ii-1) ^ dim . 4 - 1 . 

From Lemma 1.2 (e), we know tha t F(ir) Ç f>(7r)-1, and hence £(71-) C 
BM1-1- Ç ^(TT)-1 . Also, H C ^(TT) implies ^(TT)-1 Ç ff-L. Hence ^ (TT) Ç H1-, 

and trivially, 5(7r) ^ A implies B(ir) C Z. 

Now we prove 
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LEMMA 5.7. Let w = a(n . . . aak with k ^ 3, and suppose ir(H) = H. Then 

<rai • • • Vak is LL-equivalent. 

Proof, (a) If k = 1, then TT = acll, and aai(H) = 77 if and only if ax £ H\J 

H\ 
(b) If & = 2, then 7r = o-aio-a2. If (ai ) = (a2 ), then 7r = 1, hence 7r ^ o-/,^ 

for h £ H. li {(ii ) 9^ (a2 ), then either H C F(7r), and so H Q (au a2 ) ± , im
plying («!, a2 ) Ç 771-, in which case the lemma holds, or there exists non-
singular h^HnB(ir)QHr\ (au a2),h ^ 0. But then 

where aha(llaa2 ~ 0, or ahaniaa2 ~ (rd- Then (a) yields the result. 
(c) If k = 3, then T = oai(ja2<jaz. If a\, <22, a3 are dependent , then either 

VaiVa^as ^ 0 Or 0-aiO-„20-fl3 ~ (Td, 

and (a) yields the result. 
So assume cii, a2, a3 are independent . Let /I = (cii, a2} a3 ). If H C F(7r), 

then i f C ,4-L, and hence ^ C ffJ-. If ff £ F(TT), let Z : = ^ H 77-1. If 77 C 
7>(IT), then H Q A, and so one of (ai, a2 ), (ai, a3 ) or (a2, a3 ) intersects 77 in 
a non-singular 1-dimensional subspace (h ). Bu t then 

and so 

and we use (b) to conclude the result. 
If 77 £ B(TT), then by Lemma 5.2, H C\ B(ir) = </*>, where (A ) is non-

singular, and dim Z = 2. If Z is non-singular, we repeat the a rgument im
mediately above with Z instead of H to deduce the result. If Z is singular, then 
by Lemma 5.5, A is isotropic. 

Consider the 1-dimensional subspaces («i ), (a2), («3), (h). If this is not 
an sd-quadrangle, then 

O'aiO'azO'azO'h ~ Vx<Ty 

and we conclude as above. If it is an sd-quadrangle, and if Z C Q rad F, then 

and we are done by (a). If Z £ Q rad F, then there exists <r&1 w
rith &i Ç 77-1-. 

By Lemma 4.9, there exists ab2, ab3, ab4 with b2, 63, 64 £ (&i ) + Z C 77-1 such 
t h a t 

(Ja\(^a2(Taz^h ^ ^blab2ab3Œb4, 

https://doi.org/10.4153/CJM-1979-103-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-103-x


DEFINING RELATIONS 1237 

and hence we deduce 

with bt 6 HL for i = 1, 2, 3, 4. 

In a similar vein, we prove 

LEMMA 5.8. Let T = aai . . . aak, with 3 ^ k ^ 6 S^C/Ê / /^/ # CZ F(7r). Then 

aai . . . (Tak is H-equivalent. 

Proof. If k = 3, the lemma holds by Lemma 5.7. So suppose 4 rg & ^ 6, and 
suppose the lemma is true for k — 1. We let v4 = (#i, . . . , ak ), and consider 
the following cases: 

(a) dim 4̂ = k. But then 4̂ Ç H1-, and so the claim is true. 
(b) dim A = k — 1. By Lemma 5.6, if Z : = i H H-1, we know tha t dim 

Z ^ & — 2. If dim Z = & — 1, then Z = A, and s o i Ç ZT-1, and we are done. 
So now suppose dim Z = k — 2. Since & §; 4, we know tha t dim A ^ 3, and 
we may assume tha t «i, a2, «3 are linearly independent. Let 

L : = («i, a2, ad ) H ZTL = (au a2, «3 ) H Z. 

Then dim L ^ 2. If dim L = 3, we are done a t once, as then ax, a2, a3 £ H-1. 
Now suppose dim L = 2. If L is non-singular, then either 

0"aiO"a2O-a3 ^ 0 - c l (7 C 2 , O r 0-fll(7a2CTfl3 ^ <Tdi<Td2(Td3 

with ^ Ç L Ç i^-1, and in both cases the lemma follows by the induction 
hypothesis. Now suppose L is singular. If L Ç Q rad F, then 

and we are again finished. So assume L ^ Q rad V. Let 

u (z Q rad («i, #2, ciz), u 5* 0. 

Then u £ L, and as in the proof of Lemma 4.8, there exist a2 , a3 ' such t ha t 

Now choose c G (ai, a2, «3) such tha t (ai ), («2'), («3' ), (c ) is an ^ - q u a d 
rangle, with diagonal 2). Here D = L if (ai, a2, «3 ) is isotropic, and D is the 
second singular 2-dimensional subspace of («i, a2, tf 3 ) if («i, a2, a3 ) is not 
isotropic. Then c is clearly non-singular. If c £ rad V, then i^(0-ai(7a2(7a3)

 = L\ 
if c $ rad 7, then B (aaiv(n<jaz<jc) Q L. Since L ^ Q rad F, we know tha t H1- is 
not isotropic, and hence there exists ad £ 5 with d £ iZ 1 . But now, by Lemma 
4.9, either 0-aia-a2o-a3 or aai(ra2aad(Tc is equivalent to adav(7wax, with z;, w, x £ (rf ) + 
L C iJ-1. Hence either o-aio-a2o-rt3 is i7-equivalent, or crai<702(7a3crc is iZ-equivalent, 
and so the induction hypothesis yields the result. 

(c) Suppose dim A = k — 2. Since & ^ 6, this implies tha t dim A ^ 4. 
But then we come back to the induction hypothesis by using (4.3) or Lemma 
4.11. 
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We are now ready to prove the main Lemma. 

LEMMA 5.9. Let ir = aai . . . aak. If T(H) = H, then ani . . . aak is H-eqiiivalent. 

Proof. We prove this lemma by induction on k. Lemma 5.7 provides the proof 
for k fg 3. So suppose now tha t k g: 4, and tha t the lemma holds for k — 1. 
By Lemma 5.4, we can assume tha t 

CFak_2CFak_l(Tak(H) = H' £ i/1". 

Then either H' = 77, implying tha t 

o"Q1 . . . aak_z{H) = H, 

and so our induction hypothesis yields the result, or H' ^ H, in which case by 
Lemma 5.1, there exist au, av so t ha t auav(H') = H. But then 

a((1 . . . aak ^ (T(ll . . . aak_z(jvau(TuGvaak_2<jnk_l(Tak, 

where 

(J(n . . . <Jnk„z<Jv<Ju(H) = auavaak_2ank__1aak(H) = / / . 

By induction hypothesis, o-ra . . . aak_^auav is / / -equivalent . Hence we need only 
show tha t 

au(ivaa k_2(fak-i<J<i n 

is / / -equivalent . 
Let 

P == &ucrvcrak-2Gr(ik-i(Jak-

If / / C / " ( P ) , then Lemma 5.8 yields the result. If H £ F(p), we know tha t 
HC\B(p) is non-singular. If dim HC\B(p) = 1, say / / H / i (p) = (/* ), then 
by Lemma 5.2, / / C F(ahp), and so, by Lemma 5.8, 

Vh<*uV v^a k-2(Tak-i crn k 

is / / -equivalent , implying t ha t 

(JU(J v<Ja jc-2
(J'ak-i aa k 

is / / -equivalent . 
We are therefore left with the case t ha t 

H C B (p) C (w, v, a*_2, r^_i, a* ). 

Let A = (u, v, ak-2, fl*-i, #* )• Since / / C B(p), we know t h a t there exist 
hi, h2 £ / / s u c h tha t p(/&) = crh2ahl(h) for all h £ H, and hence / / ÇZ F(<rhl<rh2p). 
If dim A ^ 4z, then we can use (4.3), and lemma 4.11 to deduce tha t 

Qh\Gh2<*uGvVfik -oO'ak - l ° " o * ^ ( T ^ . . . (7 6 e w i t h £ ^ 5 , 

and then the lemma follows from Lemma 5.8. 
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This leaves the case that dim A = 5. By Lemma 5.5, we know that A = 
H©Z} where Z = A C\ H\ and dim Z = 3. Now consider L : = Z C\ 
(ak-2, ak-i, ak). If L = {ak-2, ak-U ak), then ak-2, ak-u a,k Ç H1, and we are 
done. Hence we may assume that dim L = 2. If L is non-singular, then either 

L ÇI rad F, and (Tak-zVak-iVak ~ ^s^u 

and we are done, or 

<rak-2<Tak-l<Tak ~ <? z* s° t w i t h Z £ Z Çl H, 

and we are done. 
If L is singular, and L Ç < 2 rad F, then orru_2cra^_1(7a;t ^ <J,S., and we are done. 

So we must only worry about the case that L is singular, but L ^ Q rad V. 
But now we proceed precisely as in part (b) of the proof of Lemma 5.8, to 
conclude that either 

(Tak-2^ak-i^ak ~ a .a ta xd y, with s, t,x,y £ H-1, or 

<Tak-2<Tak-lVak ~ d S(J t(Jx(Jya c, w i t h S, t, X, y £ / / - 1 . 

In either case, we are done. 

We conclude this section with 

LEMMA 5.10. Let -K = aai . . . o\u., and suppose H C ^X71") / 0 f some regular 
2-dimensional sub space H. Then there exist abl, . . . , abm, with bi, . . . , bm £ //-1, 

0"ai • • • 0"afc ^ 0"6i • • • 0"6m« 

Proof. By Lemma 5.9, o-r/1 . . . aak is //-equivalent, and so there exists some 
//-sufficient word aCi . . . aCn such that 

0 « i • • • °"aA; ^ 0 - c l . . . orC n . 

Now the c* all lie in H U Z/^. By Lemma 1.2 (b), we can assume that 

cu . . . , ce £ H, and c6+i, . . . , cn G H1-. 

We have / / C F(aci . . . o-Ce), and so, by (4.2), o-cl . . . aCe ^ 0, and we are done. 

6. The main theorem. We now state the main theorem of this paper. 
Observe that in this theorem we make no assumptions about dim V. In fact, 
we admit the possibility that V is infinite-dimensional. 

THEOREM 6.1. Let (V, Q) be a metric vector space over afield K of characteristic 
2, with K 9^ GF(2). Let S be the set of simple isometrics with non-singular path, 
and let 0* be the group of isometries generated by S. Then every relation in 0* be
tween elements of S is a consequence of the fundamental relations (a), (6), (c), (d) 
of length 2, 3, or 4, discussed in § 3. 
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Proof. Assume first that dim V < oo. Then V = HX®H2®. • .®Hn®R 
where R = rad V, and Hi, . . . , Hn are regular, 2-dimensional subspaces. Now 
suppose Gai • • • (Tau = 1- By Lemma 5.10, aal . . . aafc ^ abi . . . o-6e, with bi, . . . , 
6e £ i^i-1 = H2®. . .®Hn®R. Now we apply Lemma 5.10 again to the 
relation abl . . . <r&e in the subspace H2®. . .©Hn®R, and obtain that 

0"6l . • . 0"6<? ^ ^ ( 7 C 1 . . . 0 " C T O , 

with 

ci, . . . , cn e H^ C\ H^ = Hz®. . .®Hn®R. 

After n steps, we have obtained 

0"«i . . . aae ^ adl . . . aary 

where 

du. . . ,dr 6 H^n . . .fMIn-1 = R, 

and hence ani . . . aak ~ 0. 
Now suppose dim V = oo, and suppose <rai . . . aak = 1. Let U = (ax, . . . , 

a A; ). By Lemma 1.1, there exists a finite-dimensional subspace 7' with U Q T, 
and V = T + 7'-1. Now the theorem is valid in T, and by Lemma 1.2, it is 
therefore valid in V. 

In special cases, we can sharpen the results of Theorem 6.1 to obtain 

COROLLARY 6.2. (1) / / r a d V — 0, then every relation in 0* is a consequence of 
fundamental relations of types (a) and (c). 

(2) If Q rad V = 0, then every relation is a consequence of fundamental rela
tions of types (a), (b) and (c). 

(3) / / rad V = Q rad V, then every relation is a consequence of fundamental 
relations of types (a), (c) and (d). If in addition, dim Q rad V S 1, then we only 
require types (a) and (c). 

7. A class of subgroups of 0*(V, Q). In the following, let V be a fixed 
subspace of V. Define 

T: = {azeS\xe V}. 

Let G be the orthogonal group generated by T and call (G, T) the group 
associated with the pair V, V. We show that a theorem similar to 6.1 holds for 
the group (G, T). 

Again, we first consider the case that dim V < oo. For any a G G, we let 
à be the restriction of a to V, and let G : — {â\a (E Gj. With this notation, 
we have 

LEMMA 7.1. The mapping 
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is a surjective homomorphism. If a £ ker r, then B(a) Ç rad V. If (V, Q) is 
regular, then ker r = j a f G | ̂  (a) Ç rad F}. 

The proof of this given in [19] holds in the case of general characteristic. 
Indeed, the last part of the lemma can easily be shown to be true under the 
weaker condition that rad V C\ V = {0}. 

We next state 

(7.2) Let <TX G T. Then âx = T if and only if' x £ rad V. 

The proof of this is left to the reader. 

From 7.2, we see that the set T* : = [âx \ ax £ T and x (£ rad F} is a system 
of generators for the group G. We remark that G is the group 0*(F, Q), where 
(5 : = Q\v- For the pair (G, T*), we can invoke Theorem 6.1 to state 

(7.3) The relations between elements of T* of types (a), (b), (c) and (d) (as 
described in § 2) form a system of defining relations for the group G. 

8. The relation theorem for (G, T). We first sharpen the concept of 
equivalence discussed in § 3. If 

°"ai • • • O'amj 0-&i • • • Vbk £ 2 \ 

we write 

°"ai • • • Vam ^ °"6i • • • abk 

if the two words are equivalent, and if the fundamental relations whose inser
tion or deletion transforms the first into the second all have associated sub-
spaces that lie in V. Clearly 

<*a\ • • • O'am ^ °"&i • • • &bk 

implies 

aai . . . (Jam œ c&1 . . . abk. 

(8.1) Let V be an isotropic sub space of V, and let (G, T) be the group associated 
with V, V (as described in § 7). Then the fundamental relations of length 2, 3 and 
4 between elements of T form a defining system of relations for G. 

Proof. Since V is isotropic, we have axay œ ayax for all x, y G T. We first 
show that 8.1 is valid in case Q rad V = 0. 

(a) Suppose Q rad F = 0. Then F contains no non-trivial singular vectors. 
We now proceed by induction on dim V. If dim V ^ 2, then the result is an 
immediate consequence of 4.2. We now assume that dim V ^ 3. 

Now let aai . . . <rak = 1 be some given relation, and let if be some hyperplane 
of V. Since any aai, aaj commute, we may assume that ai} . . . , ax G H, and 
that at+i, . . . , ak d H for some suitable / with 0 ^ / ^ k. If / = k, our claim 
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follows by the induction hypothesis. Clearly, k — I = 1 cannot happen as 

otherwise B(aai . . . aak) ^ 0. Hence we mus t have k — / ^ 2. We may assume 

o-a, 7* o"a/+i- But then 

dim ((al+1, al+2) H H) = 1, say 

(o z + i , a ï + 2 ) n 77 = <a i + i ' ) . 

If al+1
f £ rad F, then o-fl/+1o-fl;+2 œ ^ + . / ; if fli+/ ? rad 7, then 

We can repeat this procedure to obtain crtl . . . aak tt abl . . . o-ôm, where bu . . . , 
&m_i Ç 77. Bu t as noted above, this implies bm Ç 77, and hence the result 
follows from the induction hypothesis. 

(b) Now suppose dim Q rad V = n. Suppose t ha t the result 8.1 has been 
proved if dim Q rad V = n — 1. Clearly, n < dim V as otherwise there is 
nothing to prove, and hence there exists a hyperplane 77 of F such t ha t 

dim (77 H <2 rad V) = n - 1. 

If in addit ion Q rad V P\ rad V 9e 0, we may choose this hyperplane 77 such 
t ha t there exists a vector r £ (Q rad V Pi rad V)\H (This can be done as we 
may exclude any given vector r from 77, by jus t taking a complement of r 
in V). 

Now, suppose a(n . . . (iak = 1. As in (a), we may assume t h a t the a/s have 
been ordered so t h a t cii, . . . , ax £ 77, and a z + i , . . . , ak (? 77, for some /, 0 ^ 
1 fg k. We proceed by induction on v = k — 1. For v = 0(k = 1), the result 
holds. If v T6- 0, then again v ^ 2. If a z + i , az + 2 are linearly dependent , then 
aai+1 = ^ U 2 ' an<^ the result holds by the induction hypothesis on v. If cii+i, 
al+2 are linearly independent , we let 

( f l i+/) = 7 7 H (az + 1 , a z + 2 ) . 

If a z + / is non-singular, we proceed as in (a) to deduce the result. T h u s we may 
assume tha t ai+i is singular, and t ha t {al+i, (ii+j) is singular for all j . Thus , 
we may assume tha t the subspace 77 P\ L is singular, where L = (cii+i, . . . , 
ak ). Now <rai . . . o-a/. = 1, and so 

O"AI • • • Vat — <r<n + 1 • • • °"«A: — <* 

where 5 ( a ) C 77 C\ L is singular. We may assume tha t a ^ 1, as otherwise 
we are done by induction. 

We now consider two cases. 
Case 1. B(a) £ Q rad F. In this case, there exists s (i B(a) such t ha t 

5 (L rad F (by Lemma 2.2). Choose a £ F such t h a t a(a) = a + 5. If 5 ( a ) 
were contained in a-1, we would h a v e / ( a ( x ) + x, a) = 0 for all x £ F, implying 

f(a(x),a) = f(x,a) = f(a(x),a(a)) = f(a(x), a + s) 

= f(a(x), a) + / ( a ( x ) , s) for all # € F, 
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and hence f(a (x), s) = 0 for all x £ F. But this would imply tha t 5 Ç rad F, 
contrary to the choice of s. Hence B(a) ^ aL, and so there exists t £ B(a) 
with f(a, t) = I. From Q(a(a) ) = Q(a), we see tha t / ( a , s) = 0. Hence 
(5, t) C\ rad F = 0. Now let r (x ) = x + f(x, s)t + f(x, t)s, and consider 

«* = #r. Since F(T) = (s, t)L, and since (s, t) Q B(a) implies F (a) Ç 5(a)-1-
Ç (5, t )-L = F ( r ) , we see tha t F(a) C F(ar). Also a r ( a ) = a ( a + s) = 
a -\- s + s = a. Hence F{ar) 3^ F (a). Now, using 2.9 and 4.10 we see tha t for 
any <rhl with hi G («1, . . . , (h), and o-6l with 61 G L, we can find <rhi, abi 

(i = 2, 3, 4) , Ai G (ai, . . . ,at) Q H,bi £ L such tha t 

T = (Jhi^h2ahz^hi = ^b^b^b^bi a n d (Th\0'h20'h^h^bi <, crft40"ô3°"&2-

Thus 

'—' (J'ai • • • ValVhY<7hi°'hzO'hiVb4tVbzVb<i(7biVai+i • • • O'aki 

where 

a* = aai . . . aalahlah2ah,ahA, and F (a*) D ^ ( a ) , F (a*) ^ F (a ) . 

If B(a*) $i rad F, we may continue this process of increasing F (a*) until we 
either reach the case tha t a*\H = 1 and we have reduced the case to the induc
tion hypothesis, or the case given by 

Case 2. B(a) Ç rad F. In this case, let B(a) = (si, . . . , sp ), so tha t 

a(x) = x + / ( x , a)si + . . . + / ( x , cp)sp, 

where C\, . . . , cp G L \ r a d F. We t rea t two cases. 
(a) C\ is non-singular. Let X = Q(ci). Let a* = aaclacl+\sl. Then 

aclacl+\sl(x) = X + / ( x , Ci)^i, 

and so 

aaclacl+xsi(x) = x + f(x, c2)s2 + . . . + / ( x , cp)sp. 

Here again F (a*) 3 ^ ( « ) , F (a*) j* F (a). Now, by our choice of iJ , we know 
there exists r ^ r a d F H F , with r Ç H. Now, (ci, r) C\ H = (b* ), and so 
fr* = £ci + fr. By a suitable norming, we can replace &* by 6 = r + Ci, 6 Ç i7, 
Q(fc) = (2(d) . We let &' = 6 + \5i. Then Q(b') = Q(b). Now abab,a = a*, 
and hence we have 

0"ai • • • °"aA; ^ °"ai • • • aaL ° ' c i 0 " c i + X s i c r & o V a ' a / 4.1 • • • ^afc» 

where again we have increased the dimension of the fix, i.e. 

F(a*) 2 F(a), F (a*) ?* F (a). 

(/?) c\ is singular. We choose ov, c' G L. By 2.8, there exist c", d', d" G 
(c', ci, 5 i ) C L such tha t (jC'Vc"Vd'Vd"(x) = x + / ( x , Ci)$i. But then let 
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Now, let (ci, r) C\ H = (ei ) so tha t ei = Ci + r (after norming) . Since 
f(x, Ci) = / ( # , ei) , we see t h a t a(x) = x + f(x, ei)si + . . . + f(x, cv)sp. 

We now repeat the procedure outlined above, only we work in H to obtain 
a* = <re>(re"<rf'<Tf"a, with g', e" ,f ,f" £ i7. By using 4.10 and 4.8, we get 

<Tc'0'c"0'd'0'd"0'e'<Te"<rf'<rf" <^ 0 , 

and hence 

°"fll • • • 0"ffA <^ °"fli • • • °'ai<7V&c"O\VO\i" . (Je'(Je"(Jf'(7f"(Jal + 1 . • . 0"„A, 

where the fix has been increased, i.e. F (a*) 2 F (a), F (a*) j* F (a). 
T h u s we see tha t by repeating this process, we finally obtain 

o-ai • • • vak ^ o-yi • • • o-y.o-zi • • • ̂  where yi £ H, zt £ L, and 

«** = o-yi . . . oy, = o-21 . . . <7Z, = 1. 

Now, by induction hypothesis, we have 

crvi . . . (JVs ̂  0, c21 . . . azt tt 0, 

and hence ani . . . cflA. ^ 0, as claimed. Th is completes the proof of 8.1. 

We now let V be any subspace of V. We define G, T and T* as in § 7, and s ta te 

(8.2) Let <7fl, <7Ô, <7C, <rd G T*. Then we have 
(i) âaâb = 1 implies aaab = 1. 

(ii) / / a , &, c, J are linearly dependent, then âaô-bâcâd = T implies aaabaccrd = 1. 
(iii) ôaàb(jc = T implies that either aaabac = 1 or, /foz/ o-acT&0-c = cr̂  w i ^ x G 

rad F \ Q rad F. 
(iv) If a, b, c are linearly independent, and if (a, b, c) C\ rad V is singular, 

then Gaâb<Jc<Ja — 1 implies that 

dim B(aa(Tbac(Td) ^ 2, and B(aaabacad) ÇZ Q rad F. 

The proof is an easy consequence of the results in § 2 and § 7. 

Now suppose aai . . . aak = 1 is some given relation between elements of T. 
If for ax (z T we have x £ rad V, then we have o - ^ œ oycr̂  for all oy £ 7\ 
Hence we can assume t h a t in the relation given above, we have ordered the 
cr/s so tha t <2i, . . . , ai (f_ Rad V, and ai+i, . . . , ak £ rad F for some suitable 
/ w i t h 0 ^ / ^ &. Then of course <rai . . . âai = Ï. By (7.3), this relation between 
elements of T* is a consequence of the basic relations of length 2, 3 or 4 between 
elements of T*. Thus , we may now use 8.2 to write 

0"ai • • • &ak ^ r l • • • ?' t&vi - • • Vymi 

where each yt (E rad V, and where each rt is a relation between elements of T* 
of length 2, 3 or 4. 

Now choose some fixed ax 6 T. Ii rt = axax for some o^ £ 2", then r* œ 
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^ o ^ o Wlt^ riaxQ
axo ~ 0- If ri = VxVyVz, then by 4.7, o v r ^ ^ o\r0oyov with 

cxo'y<TzaZ'ay'aXQ tt 0. 

Finally, if r* = (Tx<Ty<rz(rW} then by 4.3, o-^r* œ O-^C^O-M,'. By 8.2, all the x', y', 

w' € (#o ) + Q rad F. T h u s we see tha t <rai . . . aak tt abl . . . abm, where bt (E 

(xo ) + rad V, where of course, (x0} + rad V is an isotropic subspace of V. 

Now we invoke 8.1 to conclude tha t aai . . . aak ~ 0. Thus we have proved the 

following theorem in the case dim V < GO . 

T H E O R E M 8.3. Let V be any subspace of a metric vector space (V, Q), V being 

a vector space over afield K of characteristic 2, with K ^ G F(2). Let T be the set 

of simple isometries ax Ç S for which x £ V, and let G be the group generated by T. 

Then every relation in G between elements of T is a consequence of fundamental 

relations of length 2 , 3 or 4 between elements of T. 

T o prove t ha t 8.3 also holds when dim V = co follows along the same lines 

as the proof of 6.1. 

Let ani . . . ank be a relation between elements of T. Let U = ( « I , . . . , ak ). 

By 1.1, there exists some finite-dimensional subspace A of V with U C A 

and A + A1- = V. Now Theorem 8.3 holds for A and U instead of V and V, 

and then Lemma 1.1 (b) gives the desired result. 

As in Corollary 6.2, we can now sharpen the Theorem in special cases. How

ever, we omit the detailed discussion of these cases. 
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