PARSEVAL RELATIONS FOR KONTOROVICHLEBEDEV TRANSFORMS

by J. S. LOWNDES
(Received 15th July, 1961)

1. Kontorovich-Lebedev Transforms

The Kontorovich-Lebedev Transform of a function $f(r), 0<r<\infty$, may be written in a general form as $f_{g}(\mu)$ where,

$$
\begin{equation*}
f_{g}(\mu)=\int_{0}^{\infty} f(r) G_{\mu}(k r) r^{-1} d r . \tag{1}
\end{equation*}
$$

$G_{\mu}(k r)$ is a Bessel function of order μ and argument $k r$ and $k=k_{1}+i k_{2}$ is a complex constant. If $f(r)$ satisfies certain conditions then the inversion formula corresponding to equation (1) may be written as

$$
\begin{equation*}
f(r)=\left[f_{g}, M_{\mu}(k r)\right]=\int_{\mu_{1}-i \infty}^{\mu_{1}+i \infty} \mu f_{g}(\mu) M_{\mu}(k r) d \mu \tag{2}
\end{equation*}
$$

where the path of integration is some abscissa μ_{1} in the plane of the variable $\mu=\mu_{1}+i \mu_{2} . \quad M_{\mu}(k r)=\phi(\mu) N_{\mu}(k r)$ where $\phi(\mu)$ is a constant or a function of μ alone and $N_{\mu}(k r)$ is a Bessel function of order μ and argument $k r$.

Particular transforms of $f(r)$ may be written as
(a) $f_{j}(\mu)=\int_{0}^{\infty} f(r) J_{\mu}(k r) r^{-1} d r$,
(b) $f_{y}(\mu)=\int_{0}^{\infty} f(r) Y_{\mu}(k r) r^{-1} d r$
(c) $f_{1}(\mu)=\int_{0}^{\infty} f(r) H_{\mu}^{(1)}(k r) r^{-1} d r$,
(d) $\left.f_{2}(\mu)=\int_{0}^{\infty} f(r) H_{\mu}^{(2)}(k r) r^{-1} d r\right\}$,
where $J_{\mu}(k r)$ and $Y_{\mu}(k r)$ are Bessel functions of the first and second kinds respectively and $H_{\mu}^{(1)}(k r), H_{\mu}^{(2)}(k r)$ are Bessel functions of the third kind. Snow (1, § VIII (3)) has shown that provided $f(r)$ satisfies a number of welldefined conditions then there exist the following inversion formulæ corresponding to the transforms given in equations (3).

$$
\begin{aligned}
f(r) & =\left[f_{j}, \frac{i}{2} Y_{\mu}\right]=\left[f_{j}, \frac{1}{2} H_{\mu}^{(1)}\right]=\left[f_{j}, \frac{-1}{2} H_{\mu}^{(2)}\right],
\end{aligned} \begin{array}{ll}
-\delta<\mu_{1}<\infty & (4 a, b, c) \\
& =\left[f_{y}, \frac{i}{2} J_{\mu}\right]=\left[f_{y}, \frac{i}{2} H_{\mu}^{(1)}\right]=\left[f_{y}, \frac{i}{2} H_{\mu}^{(2)}\right],
\end{array} \begin{array}{ll}
-\delta<\mu_{1}<\delta & (5 a, b, c) \\
& =\left[f_{1}, \frac{1}{4} H_{\mu}^{(1)}\right]=\left[f_{1}, \frac{1}{2} J_{\mu}\right]=\left[f_{1}, \frac{i}{2} Y_{\mu}\right]
\end{array}
$$

$$
\begin{aligned}
&=\left[f_{1}, \frac{1}{4 i} e^{i \mu \pi} \sin (\mu \pi) H_{\mu}^{(1)}\right], \quad-\delta<\mu_{1}<\delta \quad(6 a, b, c, d) \\
&=\left[f_{2}, \frac{-1}{4} H_{\mu}^{(2)}\right]=\left[f_{2}, \frac{-1}{2} J_{\mu}\right]=\left[f_{2}, \frac{i}{2} Y_{\mu}\right] \\
&=\left[f_{2}, \frac{1}{4 i} e^{-i \mu \pi} \sin (\mu \pi) H_{\mu}^{(2)}\right],-\delta<\mu_{1}<\delta . \quad(7 a, b, c, d)
\end{aligned}
$$

The value of δ determines the strip or half plane of μ in which the corresponding transform of $f(r)$ is an analytic function of μ. In equation (4) δ is arbitrary and in equations (5), (6) and (7) δ is positive. Some further useful formulæ given by Snow are

$$
\begin{array}{rlrl}
{\left[f_{j}, J_{\mu}\right]} & =0, & -\delta<\mu_{1}<\infty & (8) \\
{\left[f_{1}, H_{\mu}^{(2)}\right]=\left[f_{2}, H_{\mu}^{(1)}\right]=\left[f_{y}, Y_{\mu}\right]} & =0, & -\delta<\mu_{1}<\delta & (9 a, b, c) \\
{\left[f_{1}, g(\mu) H_{\mu}^{(2)}\right]=\left[f_{2}, g(\mu) H_{\mu}^{(1)}\right]=0,} & -\delta<\mu_{1}<\delta & (10 a, b) \\
{\left[f_{1}, g(\mu) e^{i \mu \pi} H_{\mu}^{(1)}\right]=\left[f_{2}, g(\mu) e^{-i \mu \pi} H_{\mu}^{(2)}\right]} & =0, & -\delta<\mu_{1}<\delta & (11 a, b)
\end{array}
$$

where $g(\mu)$ is an even function of μ.
The imaginary axis is a possible path for the integrals $(5,6,7,9,10,11)$ and also for the integrals (4) and (8) when $\delta>0$. In some cases the integrals may be reduced to those along the upper half of this axis. For example in equation ($6 d$) $e^{i \mu \pi} \sin \mu \pi H_{\mu}^{(1)}(k r)$ is an even function of μ and taking the path $\mu=0+i \mu_{2}=i \lambda$ we have

$$
\begin{equation*}
f(r)=-\frac{1}{2} \int_{0}^{\infty} \lambda e^{-\lambda \pi} \sinh (\lambda \pi) H_{i \lambda}^{(1)}(k r) d \lambda \int_{0}^{\infty} f(\xi) H_{i \lambda}^{(1)}(k \xi) \xi^{-1} d \xi \tag{12}
\end{equation*}
$$

Similarly (7d) may be reduced to

$$
\begin{equation*}
f(r)=-\frac{1}{2} \int_{0}^{\infty} \lambda e^{\lambda \pi} \sinh (\lambda \pi) H_{i \lambda}^{(2)}(k r) d \lambda \int_{0}^{\infty} f(\xi) H_{i \lambda}^{(2)}(k \xi) \xi^{-1} d \xi \tag{13}
\end{equation*}
$$

It is also possible to express the above results in terms of the modified Bessel functions $I_{\lambda}(z)$ and $K_{\lambda}(z)$. If, for example, we set $k=i \eta$ in equation (4b) we find

$$
\begin{equation*}
f(r)=\frac{1}{\pi i} \int_{\mu_{1}-i \infty}^{\mu_{1}+i \infty} \mu K_{\mu}(\eta r) d \mu \int_{0}^{\infty} f(\xi) I_{\mu}(\eta \xi) \xi^{-1} d \xi \tag{14}
\end{equation*}
$$

Examples of other formulæ which may be obtained in a similar fashion are

$$
\begin{align*}
f(r) & =\frac{i}{\pi} \int_{\mu_{1}-i \infty}^{\mu_{1}+i \infty} \mu I_{-\mu}(\eta r) \Phi(\mu) d \mu \tag{15}\\
& =\frac{1}{\pi i} \int_{\mu_{1}-i \infty}^{\mu_{1}-i \infty} \mu I_{\mu}(\eta r) \Phi(\mu) d \mu . . \tag{16}
\end{align*}
$$

$$
\begin{align*}
& \left.=\frac{i}{\pi^{2}} \int_{\mu_{1}-i \infty}^{\mu_{1}-i \infty} \mu \sin (\mu \pi) K_{\mu}(\eta r) \Phi \mu\right) d \mu \tag{17}\\
& =\frac{2}{\pi^{2}} \int_{0}^{\infty} \lambda \sinh (\lambda \pi) K_{i \lambda}(\eta r) \Phi(i \lambda) d \lambda . \tag{18}
\end{align*}
$$

where

$$
\Phi(\mu)=\int_{0}^{\infty} f(\xi) K_{\mu}(\eta \xi) \xi^{-1} d \xi
$$

Kontorovich and Lebedev (2) first reported formulæ ($7 b, d$) and Lebedev (3), (4), (5) has given formulæ ($6 b, d$), (14) and (18). Turner (6), Wells and Leitner (7) and Lowndes (8) have applied formula (16) to solve certain diffraction problems.

2. General Parseval Relation

In this section we obtain formally a general Parseval relation for the transform pair given by equations (1) and (2).

If $f_{g}(\mu)$ and $h_{g}(\mu)$ are Kontorovich-Lebedev transforms of the functions $f(r)$ and $h(r)$ and if L be the path of integration over which the inversion formulæ for $f(r)$ and $h(r)$ are defined then

$$
\begin{equation*}
\int_{L} \mu \psi(\mu) f_{g}(\mu) h_{g}(\mu) d \mu=\int_{L} \mu \psi(\mu) f_{\theta}(\mu) d \mu \int_{0}^{\infty} h(r) G_{\mu}(k r) r^{-1} d r \tag{19}
\end{equation*}
$$

by the definition of $h_{g}(\mu)$. Assuming that an interchange of the orders of integration is permissible we have

$$
\begin{equation*}
\int_{L} \mu \psi(\mu) f_{g}(\mu) h_{g}(\mu) d \mu=\int_{0}^{\infty} h(r) r^{-1} d r \int_{L} \mu \psi(\mu) f_{g}(\mu) G_{\mu}(k r) d \mu . \tag{20}
\end{equation*}
$$

If we now define $\psi(\mu)$ such that

$$
\begin{equation*}
\int_{L} \mu \psi(\mu) f_{g}(\mu) G_{\mu}(k r) d \mu=\int_{L} \mu f_{g}(\mu) M_{\mu}(k r) d \mu=f(r) \tag{21}
\end{equation*}
$$

we find that the general Parseval relation is

$$
\begin{equation*}
\int_{L} \mu \psi(\mu) f_{g}(\mu) h_{g}(\mu) d u=\int_{0}^{\infty} f(r) h(r) r^{-1} d r \tag{22}
\end{equation*}
$$

3. Particular Parseval Relations

The particular Parseval relations are characterised by the function $\psi(\mu)$ and the path of integration L. These are listed in table 1 for some of the transforms defined in § $\mathbf{1}$ and they are derived by means of the general method outlined in § 2.

To obtain the Parseval relation for the transform ($6 b$) for example, we proceed in the following way. Since

$$
f(r)=\left[f_{1}, \frac{1}{2} J_{\mu}(k r)\right]
$$

we have, by equation (21), to find a function $\psi(\mu)$ such that

$$
\begin{equation*}
\int_{L} \mu f_{1}(\mu) \psi(\mu) H_{\mu}^{(1)}(k r) d \mu=\frac{1}{2} \int_{L} \mu f_{1}(\mu) J_{\mu}(k r) d \mu \tag{23}
\end{equation*}
$$

where L is the path ($\mu_{1}-i \infty, \mu_{1}+i \infty$).
Table 1

Equation Number	$\psi(\mu)$	L
$6 \frac{1}{a, b, c}$	$\frac{1}{4}$	
d	$\frac{1}{4 i} e^{i \mu \pi} \sin \mu \pi$	$\left(\mu_{1}-i \infty, \mu_{1}+i \infty\right)$
$7 \frac{-\frac{1}{4}}{a, b, c}$	$\frac{1}{4 i} e^{-i \mu \pi} \sin \mu \pi$	
d	$-\frac{1}{2} e^{-\lambda \pi} \sinh \lambda \pi$	$(0, \infty)$
12	$-\frac{1}{2} e^{\lambda \pi} \sinh \lambda \pi$	$\left(\mu_{1}-i \infty, \mu_{1}+i \infty\right)$
$15,16,17$	$\frac{i}{\pi^{2}} \sin \mu \pi$	$(0, \infty)$
18	$\frac{2}{\pi^{2}} \sinh \lambda \pi$	

Now

$$
2 J_{\mu}(k r)=H_{\mu}^{(1)}(k r)+H_{\mu}^{(2)}(k r)
$$

and therefore substituting for $H_{\mu}^{(1)}(k r)$ in the left-hand side of equation (23) we have

$$
\begin{align*}
& \int_{L} \mu f_{1}(\mu) \psi(\mu) H_{\mu}^{(1)}(k r) d \mu=2 \int_{L} \mu f_{1}(\mu) \psi(\mu) J_{\mu}(k r) d \mu \\
&-\int_{L} \mu f_{1}(\mu) \psi(\mu) H_{\mu}^{(2)}(k r) d \mu \tag{24}
\end{align*}
$$

Equation (24) reduces to (23) if we choose $\psi=\frac{1}{4}$ since, in this case, by equation (9a) the second integral on the right-hand side of (24) is zero.

In the following section a number of integrals will be evaluated with the aid of two of the Parseval relations indicated in table 1.

4. Evaluation of Integrals

Consider the transforms given in equations (13) and (18), i.e.

$$
\begin{align*}
& F_{1}(\mu)=\int_{0}^{\infty} f(r) H_{i \mu}^{(2)}(r) r^{-1} d r \tag{25}\\
& F_{2}(\mu)=\int_{0}^{\infty} f(r) K_{i \mu}(r) r^{-1} d r \tag{26}
\end{align*}
$$

where for simplicity we have taken $k=1, \eta=1$.
We shall use the following transform pairs

$$
\begin{array}{ll}
f(r)=\frac{(\alpha r)^{\frac{1}{2}}}{\pi(\alpha+r)} e^{-i(\alpha+r)}, & F_{1}(\mu)=\operatorname{sech}(\mu \pi) H_{i \mu}^{(2)}(\alpha) \ldots \\
f(r)=\frac{1}{2} \exp \left\{\frac{-r}{2}\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+\frac{\alpha \beta}{r^{2}}\right)\right\}, & F_{2}(\mu)=K_{i \mu}(\alpha) K_{i \mu}(\beta) \ldots \ldots \ldots \\
f(r)=\frac{2}{\pi^{2}}\left(\frac{\pi r}{2}\right)^{\frac{1}{2}} e^{-\phi r}, & F_{2}(\mu)=\operatorname{sech}(\mu \pi) P_{-\frac{1}{2}+i \mu}(\phi) \\
f(r)=\frac{\alpha}{4(2 \pi r)^{\frac{1}{2}}} \exp \left(-r-\frac{\alpha^{2}}{8 r}\right), & F_{2}(\mu)=K_{2 i \mu}(\alpha) \ldots \ldots \ldots \ldots \\
f(r)=\frac{(\alpha r)^{\frac{1}{2}}}{\pi(\alpha+r)} e^{-(\alpha+r)}, & F_{2}(\mu)=\operatorname{sech}(\mu \pi) K_{i \mu}(\alpha), \ldots
\end{array}
$$

where $P_{\lambda}(z)$ is the Legendre function of the first kind. The result (27) is given in (9, p. 381) and the results (28) to (31) can be found in (9, pp. 175-177).

Consider the integral

$$
\begin{equation*}
I_{1}=\frac{1}{2} \int_{0}^{\infty} \mu e^{\mu \pi} \operatorname{sech}(\mu \pi) \tanh (\mu \pi) H_{i \mu}^{(2)}(\alpha) H_{i \mu}^{(2)}(\beta) d \mu \tag{32}
\end{equation*}
$$

Using the Parseval relation given by (13, table 1), i.e.
$\cdot \frac{1}{2} \int_{0}^{\infty} \mu \sinh (\mu \pi) e^{\mu \pi} F_{1}(\mu) H_{1}(\mu) d \mu=-\int_{0}^{\infty} f(r) h(r) r^{-1} d r$
and putting

$$
F_{1}(\mu)=\operatorname{sech}(\mu \pi) H_{i \mu}^{(2)}(\alpha), \quad H_{1}(\mu)=\operatorname{sech}(\mu \pi) H_{i \mu}^{(2)}(\beta)
$$

we see from the results (27) that

$$
\begin{align*}
I_{1} & =\frac{1}{2} \int_{0}^{\infty} \mu e^{\mu \pi} \operatorname{sech}(\mu \pi) \tanh (\mu \pi) H_{i \mu}^{(2)}(\alpha) H_{i \mu}^{(2)}(\beta) d \mu \\
& =-\frac{(\alpha \beta)^{\frac{1}{2}}}{\pi^{2}} e^{-i(\alpha+\beta)} \int_{0}^{\infty} \frac{e^{-i 2 r}}{(\alpha+r)(\beta+r)} d r \\
& =-\frac{(\alpha \beta)^{\frac{1}{2}}}{\pi^{2}}\left\{\frac{e^{i(\alpha-\beta)}}{\alpha-\beta} E i(-i 2 \alpha)+\frac{e^{i(\beta-\alpha)}}{\beta-\alpha} E i(-i 2 \beta)\right\} . \tag{33}
\end{align*}
$$

J. S. LOWNDES

where

$$
E i(-i x)=-\int_{x}^{\infty} \frac{e^{-i \lambda}}{\lambda} d \lambda
$$

A second integral is

$$
\begin{equation*}
I_{2}=\frac{2}{\pi^{2}} \int_{0}^{\infty} \mu \operatorname{sech}(\mu \pi) \tanh (\mu \pi) P_{-\frac{1}{2}+i \mu}(\phi) K_{i \mu}(\alpha) d \mu \tag{34}
\end{equation*}
$$

Setting

$$
F_{2}(\mu)=\operatorname{sech}(\mu \pi) P_{-\frac{1}{2}+i \mu}(\phi), \quad H_{2}(\mu)=\operatorname{sech}(\mu \pi) K_{i \mu}(\alpha)
$$

we find from equations (29) and (31) that

$$
f(r)=\frac{2}{\pi^{2}}\left(\frac{\pi r}{2}\right)^{\frac{1}{2}} e^{-\phi r}, \quad h(r)=\frac{(r \alpha)^{\frac{1}{2}}}{\pi(r+\alpha)} e^{-(r+\alpha)}
$$

Hence, using the Parseval relation (18, table 1) we have

$$
\begin{align*}
I_{2} & =\frac{2}{\pi^{2}} \int_{0}^{\infty} \mu \sinh (\mu \pi) F_{2}(\mu) H_{2}(\mu) d \mu \\
& =\frac{2}{\pi^{2}}\left(\frac{\alpha}{2 \pi}\right)^{\frac{1}{2}} e^{-\alpha} \int_{0}^{\infty} \frac{e^{-r(\phi+1)}}{r+\alpha} d r=-\frac{2}{\pi^{2}}\left(\frac{\alpha}{2 \pi}\right)^{\frac{1}{2}} e^{\alpha \phi} E i[-\alpha(\phi+1)] \ldots \ldots \tag{35}
\end{align*}
$$

which is in agreement with a result given in (10).
Other integrals which may be evaluated using the Parseval relation for the transform (18) are as follows:

$$
\begin{equation*}
I_{3}=\frac{2}{\pi^{2}} \int_{0}^{\infty} \mu \tanh (\mu \pi) P_{-\frac{1}{2}+i \mu}(\phi) K_{i \mu}(\alpha) K_{i \mu}(\beta) d \mu=\left(\frac{2 \alpha \beta}{z \pi^{3}}\right)^{\frac{1}{2}} K_{\frac{1}{2}}(z) \ldots \tag{36}
\end{equation*}
$$

where $z^{2}=\alpha^{2}+\beta^{2}+2 \alpha \beta \phi$.

$$
\begin{equation*}
I_{4}=\frac{2}{\pi^{2}} \int_{0}^{\infty} \mu \sinh (\mu \pi) K_{2 i \mu}(\alpha) K_{i \mu}(\dot{\beta}) K_{i \mu}(\sigma) d \mu=\frac{\alpha}{4 y} \exp \left[-\frac{(\sigma+\beta)}{2 \sqrt{\sigma \beta}} y\right] \tag{37}
\end{equation*}
$$

where $y^{2}=4 \sigma \beta+\alpha^{2}$. The values for I_{3} and I_{4} are in agreement with results given in (9).

$$
\begin{equation*}
I_{5}=\frac{2}{\pi^{2}} \int_{0}^{\infty} \mu \sinh (\mu \pi) K_{i \mu}(\alpha) K_{i \mu}(\beta) K_{i \mu}(x) K_{i \mu}(y) d \mu=\frac{1}{2} K_{0}(R) \tag{38}
\end{equation*}
$$

where

$$
R^{2}=(\alpha \beta+x y)\left[\frac{1}{\alpha \beta}\left(\alpha^{2}+\beta^{2}\right)+\frac{1}{x y}\left(x^{2}+y^{2}\right)\right]
$$

$$
\begin{equation*}
I_{6}=\frac{2}{\pi^{2}} \int_{0}^{\infty} \mu \tanh (\mu \pi) P_{-\frac{1}{2}+i \mu}(\phi) K_{2 i \mu}(\alpha) d \mu=\frac{\alpha}{2 \pi^{2}} K_{0}\left[\alpha\left(\frac{\phi+1}{2}\right)^{\frac{1}{2}}\right] \tag{39}
\end{equation*}
$$

The integral I_{3} is evaluated using the transform pairs (28) and (29), I_{4} using the pairs (28) and (30), I_{5} using the pair (28) and I_{6} using the pairs (29) and (30).

REFERENCES

(1) C. Snow, Hypergeometric and Legendre Functions etc., N.B.S. Appl. Maths. Series 19 (1952).
(2) M. J. Kontorovich and N. N. Lebedev, J. Phys. U.S.S.R., 1 (1939), 229.
(3) N. N. Lebedev, (Doklady), Akad. Sci. U.S.S.R. (N.S.), 52 (1946), 655.
(4) N. N. Lebedev, (Doklady), Akad. Nauk. S.S.S.R. (N.S.), 58 (1947), 1007.
(5) N. N. Lebedev, (Doklady), Akad. Nauk. S.S.S.R., Prinkl. Mat. Meh. 13, (1949), 465.
(6) R. D. Turner, Quart. Appl. Math., 14 (1956), 63.
(7) C. P. Wells and A. Leitner, Quart. Appl. Math., 15 (1958), 430.
(8) J. S. Lowndes, Proc. Edin. Math. Soc., 11, 3 (1959), 135.
(9) Erdelyi et al., Tables of Integral Transforms, Vol. 2 (McGraw-Hill, 1954).
(10) J. S. Lowndes, Siam Review (April, 1961).

Royal College of Advanced Technology
Salford 5, Lancashire

