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Abstract

In this paper, we consider the SL(2) analogue of two well-known theorems about
period integrals of automorphic forms on GL(2): one due to Harder–Langlands–
Rapoport about non-vanishing of period integrals on GL2(AF ) of cuspidal automorphic
representations on GL2(AE) where E is a quadratic extension of a number field F ,
and the other due to Waldspurger involving toric periods of automorphic forms on
GL2(AF ). In both these cases, now involving SL(2), we analyze period integrals on global
L-packets; we prove that under certain conditions, a global automorphic L-packet which
at each place of a number field has a distinguished representation, contains globally
distinguished representations, and further, an automorphic representation which is
locally distinguished is globally distinguished.
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1. Introduction

Let F be a number field and AF its adèle ring. Let G be a reductive algebraic group over F with
center Z, and H a reductive subgroup of G over F containing Z. For an automorphic form φ on
G(AF ) on which Z(AF ) acts trivially, the period integral of φ with respect to H is defined to
be the integral (when convergent, which is the case if φ is cuspidal and H(F )Z(AF )\H(AF ) has
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finite volume)

P(φ) =
∫
H(F )Z(AF )\H(AF )

φ(h) dh,

where dh is the natural measure on H(F )Z(AF )\H(AF ).
An automorphic representation Π of G(AF ) is said to be globally distinguished with respect

to H if this period integral is nonzero for some φ ∈Π. More generally, if χ is a one-dimensional
representation of H(AF ) trivial on H(F ) such that Z(AF ) acts trivially on φ(h)χ−1(h), and∫

H(F )Z(AF )\H(AF )
φ(h)χ−1(h) dh

is nonzero for some φ ∈Π, then Π is said to be χ-distinguished with respect to H.
The corresponding local notion is defined as follows. If Πv is an irreducible admissible

representation of G(Fv), Πv is said to be locally distinguished with respect to H(Fv) if it admits
a non-trivial H(Fv)-invariant linear form. Distinction with respect to χv, a character of H(Fv),
is defined in a similar manner.

It is obvious that if Π =⊗vΠv is globally distinguished with respect to H(AF ), then each
Πv is locally distinguished with respect to H(Fv). Indeed, the period integral ‘restricted’ to Πv

is a non-trivial H(Fv)-invariant linear form. The local-global question asks the converse: if Π is
such that each Πv is locally distinguished, is Π globally distinguished? It seems best to break
this question into several parts.

Question 1. Let G be a reductive group over a local field k, and H a closed subgroup. Then, is
there a criterion in terms of Langlands parameters as to when a representation in an L-packet
of G(k) has an H(k)-invariant linear form? Similarly, if G is a reductive group over a number
field F , with a closed subgroup H, is there a criterion as to when a global L-packet of G(AF ) is
globally distinguished by H(AF )?

It has been suggested by Jacquet, and corroborated in the work of Sakellaridis and
Venkatesh [SV00], that in many cases, such as when H is a spherical subgroup of G,
representations of G(k) which are distinguished by H(k) arise as functorial lifts from a group
GH to G through a mapping of L-groups LGH −→ LG; the complete picture of distinguished
representations of G(k) is then a refinement of this condition on L-parameters. For example,
for the embedding SOn ↪→ SOn × SOn+1 as studied in [GGP12, GP92], there are no conditions
on the parameters involved, i.e., LGH = LG, but there are conditions on certain epsilon factors
in the local case, and on L-values at s= 1/2 in the global case.

The work of Sakellaridis and Venkatesh in [SV00] is about the Plancherel decomposition of
L2(H(k)\G(k)), so although it does not answer exactly this question about classifying irreducible
admissible representations of G(k) which are distinguished by H(k), it is still closely related.
There are global analogues too in these works.

Our work presumes an answer to Question 1, and indeed in the cases that we study, the
answer to Question 1 has been known for a long time. We refer to § 2.2 for the case dealt with by
Harder–Langlands–Rapoport in the local and global cases. In the case dealt with by Waldspurger
for toric integrals for GL2, LGH = LG, but there are finer arithmetic invariants, certain L and ε
factors, that we will come to later.

Given that one is supposed to know the answer to Question 1, we are trying in this paper to
ask a local-global question.
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Question 2. Let Π =⊗vΠv be a cuspidal automorphic representation of G(AF ) such that
each of the representations Πv of G(Fv) is distinguished by H(Fv). Is there an automorphic
representation, say Π′, in the global L-packet of G(AF ) determined by Π which is globally
distinguished by H(AF )?

If we take it that the answers to the local and global parts in Question 1 are in terms of the
Langlands parameters associated with Π =⊗Πv to factor through LGH −→ LG, we are led to
questions about local versus global factoring of parameters through this mapping of L-groups.

The authors admit that they have not seen any general context, say for representations
of an abstract group W , with subgroups Wv which generate W , where one wants to force a
representation of W with values in LG to be conjugated to lie inside LGH , under the map
LGH −→ LG, given that the representation of W restricted to Wv can be conjugated to lie
inside LGH ; this is exactly what we will achieve in the SL(2) analogue of the case dealt with
by Harder–Langlands–Rapoport, although, as there is no template for this work (of forcing
representations to lie inside a subgroup through local conditions), we have to content ourselves
with a sample theorem in which we restrict either the global representation to be non-CM, or the
local representation to be a discrete series of a certain kind. In fact, this paper emphasizes the role
that a discrete series local component of an automorphic representation might make to a global
result: a local condition with a global effect, and we also know that the global result fails without
having some local conditions [AP06, Theorem 8.2].

Since Question 2 is about an L-packet, one might expect, besides the parameter to factor
through LGH −→ LG, some L-value too to intervene in the answer to this question. (Some
L-values, such as having a pole at s= 1, have an interpretation in terms of the Langlands
parameters, whereas some other L-values, such as vanishing or non-vanishing at s= 1/2, do
not!)

In the case studied by Harder–Langlands–Rapoport, there are conditions on the Langlands
parameter, whereas in the work of Waldspurger [Wal85], as generalized in [GP92, GGP12], there
are no conditions on the parameters involved, but there are conditions on L-values at s= 1/2.

If no automorphic member of the global L-packet determined by Π is globally distinguished,
say for reasons of an L-value, we do not need to proceed any further in this quest in the global
L-packet determined by Π. So we assume that there is a member in the L-packet determined by
Π which is globally distinguished, which we can then assume to be Π itself in our further study.

Question 3. Suppose Π =⊗vΠv is an automorphic representation of G(AF ) such that Π is
globally distinguished by H(AF ). Let Π′ =⊗vΠ′v be an automorphic representation of G(AF ) in
the same L-packet as Π such that Π′v is locally distinguished by H(Fv) at all the places of F .
Then is Π′ globally distinguished by H(AF )?

This is the local-global question referred to in the title of this paper, and which being a
question about an individual automorphic representation, and not a question about an L-packet,
is not governed by an L-value, but keeping the parametrization of automorphic representations
in mind (due to Labesse–Langlands for SL2, and then Langlands, Kottwitz, and Arthur), should
be related to a certain finite group of connected components of an appropriate representation
(of the Langlands group). However, in the examples we deal with in this paper, the local-global
principle turns out to be true.

The aim of this work is to initiate such a finer study in the global context of some low rank
cases in detail, by varying the themes already studied in the literature. In this work we will
consider Questions 2 and 3 above for two basic cases. These two cases will be variations on
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two rather well-studied examples where we change the groups involved slightly, allowing us to
consider non-trivial local and global L-packets.

The first example is one of (GL2(E),GL2(F )) where E/F is a quadratic extension of either
local or global fields. This came up in the seminal work of Harder et al. [HLR86] which was later
pursued by Flicker and Hakim [Fli88, Fli91, Hak91]. Global distinction here is characterized by
an L-function, the Asai L-function, having a pole at s= 1. We will analyze Questions 2 and 3
for the related pair (SL2(E), SL2(F )). The starting point of this investigation is an elementary
observation that an automorphic representation of GL2(AE) has a non-trivial period integral on
SL2(AF ) if and only if it is χ ◦ det-distinguished with respect to GL2(AF ) for a Grössencharacter
χ of A×F /F

×, which is then a condition on the Asai L-function twisted by χ−1 to have a pole at
s= 1. This allows conclusions about L-packets of automorphic representations of SL2(AE), but
making conclusions about individual automorphic representations of SL2(AE) is subtler.

The second example that we will consider in this paper is related to the celebrated work of
Waldspurger [Wal85]. HereG= GL2(F ), or more generally the invertible elements of a quaternion
algebra over F , and H is the torus defined by a quadratic algebra E/F . In this case, π is
globally χ-distinguished for a Grössencharacter χ : A×E/E

×→ C× if and only if each πv is locally
χv-distinguished and L(1

2 , BC(π)⊗ χ−1) 6= 0, where BC(π) denotes the base change lift of π to
GL2(AE). The local picture is well understood by the work of Saito and Tunnell [Sai93, Tun83],
and involves certain local epsilon factors. We will analyze Questions 2 and 3 above for the related
pair (SL2(F ), E1) where E1 is the subgroup of E× of norm one elements. It may be noted that
there are many non-conjugate embeddings of E1 inside SL2(F ); we will fix one such embedding;
our answers do not depend on this initial fixing of an embedding of E1 inside SL2(F ).

In the first example, (GL2(E),GL2(F )), the local-global principle almost holds. If each πv
is locally distinguished, then π is either globally distinguished or is globally distinguished with
respect to the quadratic character ω associated to E/F [HLR86]. Thus, if each πv is distinguished
and if at least one πv is not ωv-distinguished, then π is globally distinguished. In particular, if
πv is a square integrable representation at least at one place v of E which is inert over F , then
π is globally distinguished if and only if it is locally distinguished. This follows since a discrete
series representation of GL2(Ev), once distinguished by GL2(Fv), cannot be ωv-distinguished.

In [AP06] we had constructed an example of an automorphic representation Π on SL2(AE)
where each Πv is a locally distinguished representation of SL2(Ev) but no member of the L-
packet of Π is globally distinguished. In this paper, we give a positive answer to Question 2 in
some situations, but have not succeeded in getting a complete understanding of it.

Theorem 1.1. Let Π be a cuspidal representation of SL2(AE). If Π appears in the restriction of
a CM representation of GL2(AE), assume that there is at least one square integrable component
at a place of E which is inert over the corresponding place v0 of F . In the CM case, assume
that either Π is CM by three distinct quadratic extensions of E, or alternatively if it is CM
by a unique quadratic extension of E, then at the place v0, the local component is also CM by
a unique quadratic extension of Ev0 (or more generally, it is CM only by quadratic extensions
which are Galois over Fv0). Suppose each Πv is distinguished by SL2(Fv). Then there is a cuspidal
representation in the L-packet of Π which is distinguished by SL2(AF ).

Question 3 has a complete answer in the following theorem.

Theorem 1.2. Let Π be a cuspidal representation of SL2(AE) which is globally distinguished
by SL2(AF ). Let Π′ =⊗vΠ′v be an automorphic representation of SL2(AE) in the same L-packet
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as Π such that Π′v is locally distinguished by SL2(Fv) at all the places of F . Then Π′ is globally
distinguished by SL2(AF ).

A key ingredient in the proof of Theorem 1.1 is the multiplicity one theorem for automorphic
representations of SL2(AF ) due to [Ram00], whereas Theorem 1.2 is proved via an exact
determination of the fibers of the Asai lift from automorphic representations on GL2(AE)
to automorphic representations on GL4(AF ), completing an earlier work of Krishnamurthy
in [Kri03].

In the example considered by Waldspurger, (GL2(F ), E×), unlike in the first example, there
is a genuine global obstruction to global distinction, and this is the vanishing of the central value
of the base change L-function. In our study of the pair (SL2(F ), E1), we are naturally led to
some questions about L-functions.

According to a well-known result of Friedberg and Hoffstein [FH95], for an automorphic
representation π on GL2(AF ), there are infinitely many quadratic characters η, with prescribed
local behaviour at finitely many places, such that the twisted L-values, L(1

2 , π ⊗ η), are nonzero,
provided the global root number ε(1

2 , π) is 1, possibly after twisting π by a quadratic character
(see also [Jac87]). This latter condition on the global root number of π is automatic if π has at
least one square integrable component [Wal91]. For the analysis of the special linear analogue
of the second example, one needs to understand (a special case) of the following simultaneous
non-vanishing problem, stated as a conjecture.

Conjecture 1.3. Let π1 and π2 be two cuspidal representations of GL2(AF ). Let η be a
quadratic character such that

ε(1
2 , πi ⊗ η) = 1

for those πi which are self-dual among {π1, π2}. Then there are infinitely many quadratic
characters η′, which agree with η at any finitely many prescribed places of F , such that

L(1
2 , π1 ⊗ η′) 6= 0 6= L(1

2 , π2 ⊗ η′).

Assuming the conjecture, we give a positive answer to Question 2 in this case, once again
assuming that a local component is discrete series.

Theorem 1.4. Let D be a quaternion algebra over a number field F , with E a quadratic
subfield of D. Let Π =⊗vΠv be a cuspidal representation of SL1(D)(AF ) with at least one
square integrable component at a place v0 of F ; if E is inert and D is split at v0, we further
assume that v0 is of odd residue characteristic and Πv0 is a supercuspidal representation if v0 is
a finite place of F . If each Πv is distinguished with respect to E1

v , then assuming Conjecture 1.3
holds, there is a cuspidal representation in the L-packet of Π which is distinguished with respect
to A1

E .

We have also achieved a positive answer to Question 3, assuming Conjecture 1.3, but only in
the case when the global L-packet associated to the automorphic representation Π is finite. In the
more general case, we need a finer version of Conjecture 1.3, for which we refer the reader to
§ 11.

We end the introduction by noting the role played by analytic number theory (simultaneous
non-vanishing of central L-values in this case) in questions on automorphic representations;
whether one implies the other, or the other way around, only time will tell.
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2. Preliminaries

This section summarizes some of the key results that we make heavy use of throughout this
paper.

2.1 Langlands correspondence, and CM forms

For a local field F , the local Langlands correspondence gives a bijection of the set of isomorphism
classes of irreducible admissible complex representations of GLn(F ), and the set of isomorphism
classes of n-dimensional semi-simple complex representations of the Weil–Deligne group W ′F =
WF × SL2(C); the bijection preserves L and ε-factors of pairs of representations, the details of
which we will not go into. The local Langlands correspondence was established for GL2(F ) by
Phil Kutzko, and in general by Harris and Taylor, and also by Henniart. If a representation Σ
of W ′F of dimension n is associated to an irreducible admissible representation π of GLn(F ),
then Σ is often referred to as the Langlands parameter of π. For n= 1, the local Langlands
correspondence is nothing but the local classfield theory which identifies characters of F× to
characters of W ab

F , where W ab
F is the maximal abelian quotient of WF .

An irreducible admissible representation of GL2(F ) is said to be CM if its Langlands
parameter is induced from a character of a quadratic extension of F ; such representations
are often referred to as automorphically induced from a character of a quadratic extension.
A representation π of GL2(F ) is CM if and only if it has a non-trivial self-twist by a character
of F×; i.e., there is a character ω 6= 1 of F× such that π ⊗ ω ∼= π.

For a number field F , an automorphic representation π of GL2(AF ) is said to be CM if
it has a non-trivial self-twist by a Grössencharacter, say ω, of A×F /F

×. The character ω is
of order 2, and defines a quadratic extension E of F . Associated to such a CM automorphic
representation π of GL2(AF ), there is a Grössencharacter χ of A×E/E

× (which is unique up
to Galois conjugation) with L(s, χ) = L(s, π). The automorphic representation π is said to be
automorphically induced from this Grössencharacter χ of A×E/E

×. It can be proved that the
restriction of the two-dimensional representation of the global Weil group WF defined by IndWF

WE
χ

to various decomposition groups is nothing but the Langlands parameters of various components
of π.

In this paper, we will have many occasions to use the Asai lift of representations of GL2(E),
where E is a quadratic extension of a local field F , to representations of GL4(F ). This is most
easily defined using the local Langlands correspondence on the Weil group side where there is
a group theoretic generality, called ‘tensor induction’, which constructs from an n-dimensional
representation of a subgroup H of index m in a group G, a representation of G of dimension nm.
This definition is recalled in § 6. The representation of GL4(F ) constructed using a representation
π of GL2(E) is called the Asai lift of π, and denoted by As(π).

If F is a number field, and E a quadratic extension of F , and π an automorphic representation
of GL2(AE), local Asai lifts from GL2(Ev) to GL4(Fv) patch together to give an automorphic
representation of GL4(AF ), denoted again as As(π) [Kri03].

In the theory of automorphic representations, the notion of base change, which for
representations of the Weil group corresponds to restriction to subgroups, plays a very central
role; it does so in our work too. We will say nothing more about it, except that the notation will
be BC(π) for the base change of a representation of GLn(F ) to GLn(E); the notation BC will
not specify n, or the fields E and F , which can be either local or global; all these will be clear
from the context.
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2.2 Distinction for (GL2(E), GL2(F ))
Let E/F be a quadratic extension of local or global fields. Let σ be the non-trivial element of
the Galois group Gal(E/F ). The quadratic character of F× (or of A×F /F

× in the global case)
associated to E/F by class field theory is denoted by ω

E/F
. Consider the symmetric space (G, H)

where G is either the local group GL2(E) (or the adelic group GL2(AE)) and H is the fixed points
of σ.

Let π be an irreducible admissible representation of GL2(E) (or on a cuspidal automorphic
representation of GL2(AE)). Let π∨ and πσ respectively denote the contragredient and the Galois
conjugate of π. The central character of π is denoted by ωπ.

Suppose π is distinguished with respect to H. Then ωπ is trivial on F× (or on A×F ). The
following two propositions have their roots in the work of Harder–Langlands–Rapoport [HLR86].

Proposition 2.1. Assume ωπ|F× = 1 in the local case. Then π∨ ∼= πσ if and only if π is
distinguished or ω

E/F
-distinguished with respect to H.

The following is a closely related result.

Proposition 2.2. Assume ωπ|F× = 1 in the local case. Then, π is distinguished with respect to
H if and only if the Asai L-function L(s,As(π)) has a pole at s= 0 (s= 1 in the global case).

Remark. Both Propositions 2.1 and 2.2 are true for GL(n) with the added assumption in the
local case that π is a discrete series representation (in which case incidentally the condition
ωπ|F× = 1 is also redundant) [AKT04, Fli88, Fli91, Hak91, Kab04].

Next we state a theorem of Flicker and Hakim [FH94, Theorem 0.3], which generalizes an
earlier result of Jacquet-Lai [JL85], according to which the Jacquet–Langlands correspondence
preserves distinction.

Proposition 2.3 (Flicker–Hakim). Let D be a quaternion algebra over a number field F . Let
π be a cuspidal representation of D×(AE) and let πJL be its Jacquet–Langlands correspondent
on GL2(AE). Then π is D×(AF )-distinguished if and only if πJL is GL2(AF )-distinguished and
for each place v of F where D is ramified, and E is inert, if πv is a principal series, it is of the
form Ps(µ−1, µσ).

There is a local analogue of the above result proved independently by Hakim [Hak91] and
the second author [Pra92], which we recall below.

Proposition 2.4. Let E be a quadratic extension of a local field F , and D the quaternion
division algebra over F . A discrete series representation π of GL2(E) is distinguished by GL2(F )
if and only if it is distinguished by D×.

2.3 Multiplicity one for SL(2)
A crucial ingredient in several of our arguments in this paper is the following theorem of
Ramakrishnan [Ram00, Theorem 4.1.2]. It is usually referred to in the literature as ‘multiplicity
one for SL(2)’ since the multiplicity freeness of L2

0(SL2(F )\SL2(AF )) is a consequence of this
result by the work of Labesse–Langlands on the stable trace formula for SL(2) [LL79].

Theorem 2.5 (Multiplicity one for SL(2)). Let π, π′ be cuspidal automorphic representations
of GL2(AF ). Suppose for almost all v,

Ad(πv)∼= Ad(π′v).
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Then there exists a Grössencharacter χ of A×F /F
×, which is unique if π is not CM, such that

π′ ∼= π ⊗ χ.

Remark. In this paper, we will mostly use the equivalent formulation: if πv and π′v are twists of
each other by a character for almost all places v of F , then they are twists of each other by a
Grössencharacter.

2.4 Toric periods for GL(2)
In analyzing the toric periods for SL1(D) where D is a quaternion division algebra over F , our
central tool is the well-known theorem of Waldspurger [Wal85, Theorem 2, p. 221], which we
now state.

Theorem 2.6 (Waldspurger). Let D be a quaternion algebra over F , and let π be a cuspidal
automorphic representation of D×(AF ). Let E be a quadratic extension of F contained in D. Let
T = E× be the maximal torus of D× defined over F by E. Let Ω be a character of T (F )\T (AF )
such that Ω|

Z(AF ) = ωπJL . Then there exists φ ∈ π such that∫
T (F )Z(AF )\T (AF )

φ(h)Ω−1(h) dh 6= 0

if and only if:

(i) for every place v of F , HomT (Fv)(πv, Ωv) 6= 0;

(ii) L(1
2 , BC(π)⊗ Ω−1) 6= 0 (here BC(π) denotes the base change of π to GL2(AE)).

Using a local theorem due to Saito–Tunnell to which we will turn soon, Theorem 2.6 can be
reformulated as follows.

Theorem 2.7 (Waldspurger). Let E/F be a quadratic extension of number fields. Let π be a
cuspidal automorphic representation of GL2(AF ). Let Ω be a Grössencharacter of A×E/E

× such
that Ω|

A×
F

= ωπ. Then there exists a quaternion algebra D over F containing E such that∫
E×A×F \A

×
E

φ(h)Ω−1(h) dh 6= 0

for a φ ∈ πD if and only if L(1
2 , BC(π)⊗ Ω−1) 6= 0. Here, πD is the Jacquet–Langlands

correspondent of π.

The local analogue of Waldspurger’s result is the following theorem of Saito and
Tunnell [Sai93, Tun83].

Proposition 2.8 (Saito–Tunnell). Let E/F be a quadratic extension of local fields. Let π be
an irreducible admissible representation of GL2(F ). If π is in the discrete series, let π′ denote the
corresponding irreducible representation of D×. Let Ω be a character of E× such that Ω|

F×
= ωπ.

Then:

(i) dimC HomE×(π, Ω) + dimC HomE×(π′, Ω) = 1;

(ii) HomE×(π, Ω) 6= 0 ⇐⇒ ε(1
2 , BC(π)⊗ Ω−1, ψ′) = 1,

HomE×(π′, Ω) 6= 0 ⇐⇒ ε(1
2 , BC(π)⊗ Ω−1, ψ′) =−1.

Here, we take π′ = {0} if π is a principal series representation, and ψ′ is any non-trivial character
of E which is trivial on F .
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Remark. Suppose Ω factors through the norm, say Ω = α ◦ Nm. Assume also that ωπ = 1 (and
thus α2 = 1). Then,

ε(BC(π)⊗ Ω−1, ψ′) = ω
E/F

(−1)ε(π ⊗ α)ε(π ⊗ αω
E/F

). (1)

Here and elsewhere, ε(π) = ε(1
2 , π, ψ), where ψ is any non-trivial additive character of F .

3. Period integral for GL2 versus SL2

Suppose that π̃ is a cuspidal automorphic representation of GL2(AE) where E is a quadratic
extension of a number field F . In this section, we write down an integral formula relating the
period integral of automorphic functions in π̃ along SL2(AF ) versus a similar period integral
on GL2(AF ); this was considered in [AP06, § 3]. It allows one to prove that distinction by
SL2(AF ) of an automorphic representation of GL2(AE) with trivial central character restricted
to A×F is the same as being ω-distinguished for a quadratic character ω : A×F /F

×→ C× (see
[AP06, Proposition 3.3]). We note, as has been observed in [AP06, § 3], that an automorphic
representation of GL2(AE) with non-trivial period integral on SL2(AF ) has a twist whose central
character restricted to A×F is trivial.

Before we proceed, note that if χ is a character of k× we often abuse notation and continue
to denote by χ, the character χ ◦ det of GLn(k).

The following is [AP06, Proposition 3.2], and is a simple consequence of elementary Fourier
analysis.

Proposition 3.1. Let E be a quadratic extension of a number field F . Let φ be a cusp form
on GL2(AE) with central character which is trivial when restricted to A×F . Then∫

SL2(F )\SL2(AF )
φ(g) dg =

∑
ω

∫
GL2(F )A×F \GL2(AF )

φ(g)ω(det g) dg

where the sum on the right-hand side of the equality sign is over all characters ω : A×F /F
×→

{±1}.

Consequently, we have the following proposition (see [AP06, Proposition 3.4]).

Proposition 3.2. Let π̃ be a cusp form on GL2(AE) which is distinguished by SL2(AF ). Then
there is a Grössencharacter η of A×F /F

× such that π̃ is η-distinguished for GL2(AF ). Conversely
if π̃ is η-distinguished for some Grössencharacter η of A×F /F

×, then π̃ is SL2(AF )-distinguished.
Hence there is a member of the L-packet of automorphic representations of SL2(AE) determined
by π̃ which is globally SL2(AF )-distinguished.

The following proposition relates period integrals over A1
E of automorphic forms of GL2(AF )

with period integrals over A×E . We omit the simple proof based on elementary Fourier analysis.

Proposition 3.3. Let E be a quadratic extension of a number field F . Let φ be a cusp form
on GL2(AF ) with trivial central character. Then∫

E1\A1
E

φ(g) dg =
∑
η

∫
E×A×F \A

×
E

φ(g)η(g) dg

where the sum on the right-hand side of the equality sign is over all characters η of the compact
abelian group E×A×FA1

E\A
×
E = E×A×FA×2

E \A
×
E .
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As a consequence, we have the following proposition.

Proposition 3.4. If π̃ is a cusp form on GL2(AF ) which is distinguished by A1
E , then there

is a Grössencharacter η of A×E/E
× such that π̃ is η-distinguished for A×E . Conversely if π̃ is

η-distinguished for some Grössencharacter η of A×E/E
×, then π̃ is A1

E-distinguished. Hence there
is a member of the L-packet of automorphic representations of SL2(AF ) determined by π̃ which is
globally A1

E-distinguished.

Remark. In Propositions 3.2 and 3.4, we have not assumed any condition on the central
character of π̃. This is because the necessary condition on the central character in order to
apply Propositions 3.1 and 3.3 respectively is automatic, after twisting by a Grössencharacter if
necessary, by the assumption on distinction [AP06, Lemma 3.3].

4. Distinction as a functorial lift

In this section, we recast the well-known criterion (Proposition 2.1) about distinction of GL2(E)
representations to SL2(E) in terms of the Langlands parameters. Because of Propositions 2.3
and 2.4, exactly the same criterion holds for a quaternion division algebra, but for the sake of
simplicity of notation, we state the following theorem only for GL(2).

Theorem 4.1. Let E/F be a quadratic extension of non-Archimedean local fields. Then, an
irreducible admissible representation π of GL2(E) is distinguished by SL2(F ) if and only if it
belongs to the twisted base change map; i.e., a character twist of π is a base change from GL2(F ).
Exactly the same conclusion holds about global distinction of automorphic representations of
GL2(AE) with respect to SL2(AF ) when E/F is a quadratic extension of number fields.

Proof. We will write the argument below assuming E/F is a quadratic extension of local fields,
but the same argument works verbatim for number fields.

Let TBC denote the base change map from irreducible admissible representations of GL2(F )
to irreducible admissible representations of GL2(E), both considered up to twists by characters.
Thus, any representation in the image of TBC is of the form BC(π′)⊗ χ for a representation π′

of GL2(F ) and a character χ of E×.
We claim that the representation π of GL2(E) is distinguished by GL2(F ) with respect to a

character η of F× if and only if π is in the image of the twisted base change map. Since we are
looking at representations modulo character twists, we can assume that η = 1, thus we assume
that π itself is distinguished, and therefore it follows that:

ωπ|F× = 1 and π∨ ∼= πσ.

If we write ωπ = µ−1µσ for a character µ of E×, then π∨ ∼= πσ implies that π ⊗ µ is Galois stable
and hence π is in the image of TBC.

Conversely, if π is of the form BC(π′)⊗ χ, then we prove that π is SL2(F )-distinguished.
Without loss of generality, assume that π = BC(π′).

Let ω′ be the central character of π′, and let ω̃ be an extension of ω′ to E×. Then ωπ = ω̃ · ω̃σ,
from which it can be checked that the representation π′′ = π ⊗ ω̃−1 has the property π′′∨ ∼= π′′σ

and that the central character of π′′ restricted to F× is trivial. This shows that π′′ is either
distinguished or ω

E/F
-distinguished by GL2(F ), hence π is η-distinguished for some character η

of F×. 2
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This theorem allows one to interpret distinction in terms of existence of lifts,

PGL2(C)×WF
_�

��
W ′F

44jjjjjjjjjj // (PGL2(C)× PGL2(C)) o Gal(E/F )

where in the case that F is a local field, W ′F =WF × SL2(C) is the Weil–Deligne group, and if F
is a global field, W ′F needs to be replaced by the conjectural Langlands group whose irreducible n-
dimensional complex representations classify cuspidal automorphic representations of GLn(AF ).

In the above picture, one could also ask the finer question about the number of distinct
lifts of a given Langlands parameter, and it turns out that this question too has a nice answer:
it is the dimension of the space of SL2(F )-invariant linear forms on an irreducible admissible
representation of SL2(E) with the given Langlands parameter [Pra00].

Observe that, in this language, the analogous question about lifts in the untwisted diagram

PGL2(C)×WF
_�

��
W ′F

44jjjjjjjjjj // (PGL2(C)× PGL2(C))×Gal(E/F )

locally asks if two representations of GL2(F ) are character twists of each other, and globally if
they are twists of each other by a Grössencharacter of A×F /F

×; thus in this case, a theorem of
Dinakar Ramakrishnan (cf. Theorem 2.5) guarantees that local lifts in the above diagram imply
a global lift, whereas a theorem, or rather a construction, of Blasius [Bla94] proves that existence
of local lifts does not guarantee a global lift when PGL2(C) is replaced by PGLn(C).

5. Distinction in an L-packet for the pair (SL2(E), SL2(F ))

In this section, we prove Theorem 1.1, which we restate here.

Theorem 1.1. Let Π be a cuspidal representation of SL2(AE). If Π appears in the restriction of
a CM representation of GL2(AE), assume that there is at least one square integrable component
at a place of E which is inert over the corresponding place v0 of F . In the CM case, assume
that either Π is CM by three distinct quadratic extensions of E, or alternatively if it is CM
by a unique quadratic extension of E, then at the place v0, the local component is also CM by
a unique quadratic extension of Ev0 (or more generally, it is CM only by quadratic extensions
which are Galois over Fv0). Suppose each Πv is distinguished with respect to SL2(Fv). Then there
is a cuspidal representation in the L-packet of Π which is distinguished with respect to SL2(AF ).

Proof of Theorem 1.1. Let Π =⊗vΠv be a cuspidal representation of SL2(AE) with each Πv

distinguished by SL2(Fv); here v runs over the set of all places of F , and Πv are irreducible
representations of Ev = E ⊗F Fv. Let Π̃ =⊗vΠ̃v be a cuspidal representation of GL2(AE)
containing Π. We claim that there is a Grössencharacter χ of A×E/E

× such that

Π̃σ ∼= Π̃∨ ⊗ χ.

To this end, observe that since for each v, the representation Π̃v of GL2(Ev) is given to be
SL2(Fv)-distinguished, there is a character ηv of F×v such that Π̃v is η−1

v -distinguished with
respect to GL2(Fv). Furthermore, if η̃v denotes an extension of ηv to E×v , then Π̃v ⊗ η̃v is
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distinguished with respect to GL2(Fv), and this implies that (cf. Proposition 2.1)

(Π̃v ⊗ η̃v)∨ ∼= (Π̃v ⊗ η̃v)σ,

or
Π̃σ
v
∼= Π̃∨v ⊗ ηv ◦ Nm.

By the theorem of Ramakrishnan (cf. Theorem 2.5), if two automorphic representations of
GL2(AE) are locally twists of each other at all places of a number field E, then they are globally
twists of each other by a Grössencharacter χ on A×E/E

×, proving our claim that Π̃σ ∼= Π̃∨ ⊗ χ.
For the proof of Theorem 1.1, it suffices to prove that there is a Grössencharacter χ on A×E/E

×

with χσ = χ, and with Π̃σ ∼= Π̃∨ ⊗ χ, because then one can write χ−1 = µµσ, which means that
(Π̃⊗ µ)σ ∼= (Π̃⊗ µ)∨, and hence Π̃⊗ µ is either GL2(AF )-distinguished, or ω

E/F
-distinguished by

GL2(AF ). This means that some member in the global L-packet determined by the automorphic
representation Π of SL2(AE) has a non-trivial period integral on SL2(AF ).

We first treat the case when Π̃ is non-CM. In this case, Π̃σ ∼= Π̃∨ ⊗ χ implies Π̃σ ∼= Π̃∨ ⊗ χσ,
and therefore since Π̃ does not have CM, χσ = χ.

We now assume that Π̃ has CM and that there is a place of F inert in E, say v0 in E,
such that Π̃v0 is square integrable. Suppose the assertion of the theorem is not true. Then
Π̃σ ∼= Π̃∨ ⊗ χ with χ 6= χσ. Let Σ be the two-dimensional representation of WE associated to the
CM representation Π̃. The isomorphism Π̃σ ∼= Π̃∨ ⊗ χ translates into Σ̃σ ∼= Σ̃∨ ⊗ χ, and it is this
isomorphism of two-dimensional representations of WE that we will analyze. This isomorphism
gives us,

Σ⊗ Σσ ∼= χ⊕ χσ ⊕ ρ,
for a certain two-dimensional representation ρ of WE which is invariant under σ. We will now
look at the above decomposition at the place v0 of E:

Σv0 ⊗ Σσ
v0
∼= χv0 ⊕ χσv0 ⊕ ρv0 .

Note that χv0 6= χσv0 , since Π̃v0 is square integrable and thus corresponds to an irreducible
representation Σv0 of WEv0

, and therefore each character in the decomposition of Σv0 ⊗ Σσ
v0

appears with multiplicity 1 by Schur’s lemma, forcing χv0 6= χσv0 .
If Π̃ has CM by three quadratic extensions, then Σ has self-twists by three quadratic

characters, forcing Σ⊗ Σσ, which contains a character, to be a sum of four characters permuted
amongst themselves by σ. Therefore, ρ is a sum of two characters which we assume is of the
form µ⊕ µσ with µ 6= µσ, as the other possibilities create a σ-invariant character of A×E/E

×. But
again by Schur’s lemma, we must have µv0 6= µσv0 , which is contradictory to our assumption of
having a σ-invariant character inside Σv ⊗ Σσ

v at all places v of E, completing the proof of the
theorem when Π̃ has CM by three quadratic extensions.

Since
Σv0 ⊗ Σσ

v0

contains a σ-invariant character, and χv0 6= χσv0 , in the decomposition

Σv0 ⊗ Σσ
v0
∼= χv0 ⊕ χσv0 ⊕ ρv0

ρv0 must be a sum of two σ-invariant characters, say ρv0 = µ1 + µ2, thus,

Σv0 ⊗ Σσ
v0
∼= χv0 ⊕ χσv0 ⊕ µ1 ⊕ µ2.

This clearly implies that Σv0 has self-twist by µ1/µ2 which is σ-invariant, as well as by χv0/µ1

which is not σ-invariant.
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This restricts possibilities regarding Πv0 , proving the theorem if Πv0 has CM either by a
unique quadratic extension of Ev0 , or by three quadratic extensions of Ev0 which are all Galois
over Fv0 . 2

6. Tensor induction, or Asai lift

In the study of automorphic representations of GL2(AE) which are distinguished by GL2(AF ),
the Asai lift plays an important role, and it does so in our work on the corresponding questions
for SL2. The specific aim of this section will be to determine the fibers of the Asai lift π̃→As(π̃)
from automorphic representations of GL2(AE) to automorphic representations of GL4(AF ). This
question was discussed by Krishnamurthy in [Kri03]; however, in the case where it really concerns
us, the case of CM representations of GL2(AE), his result was incomplete exactly in the place
where it matters to us. We have completed his work in this section.1

We begin this section by carefully recalling the notion of tensor induction, also called Asai lift
in a particular case (when the subgroup involved is of index 2), which is a purely group theoretic
notion.

Let H be a subgroup of a group G of finite index n, and G an arbitrary group. Define GG/H
to be the set of all set theoretic maps φ :G→G such that φ(gh) = φ(g) for all g ∈G, h ∈H.
Clearly GG/H is a group with a natural action of G on the left, so we can form the semi-direct
product GG/H oG.

It is easy to prove the following lemma, which is nothing but a form of Frobenius reciprocity
for induced representations in this context.

Lemma 6.1. There exists a natural bijection

Hom (H, G)/∼←→Hom (G, GG/H oG)/∼,

where we consider only those homomorphisms in Hom (G, GG/H oG), whose composition with
the natural map from GG/H oG to G is the identity map from G to G; the equivalence relation
on the left-hand side is conjugation by G, and on the right is conjugation by GG/H .

Now given a representation (π, V ) of G, it gives rise to a representation ⊗G/HV of GG/H
which clearly extends to one of the semi-direct product GG/H oG. Taking G to be GL(V ) with
its natural representation on V , the previous lemma allows one to associate to a representation
(π, V ) of H of dimension d, a representation of G, to be denoted by As(V ), of dimension dn,
called the tensor induction, or the Asai lift of the representation (π, V ) of H.

For a vector space W over C equipped with a quadratic form q on it, there is the notion of
the orthogonal similitude group GO(W ), defined by

GO(W ) = {g ∈GL(W ) | q(gw) = λ(g)q(w)∀w ∈W};

the map g→ λ(g) ∈ C× is a character on GO(W ), called the similitude character. If W is of even
dimension, the special orthogonal similitude group, denoted by GSO(W ), which is the connected
component of identity of GO(W ), is defined by

GSO(W ) = {g ∈GO(W ) | λ(g)dimW/2 = det g}.

The following well-known result lies at the basis of our proof. It can itself be considered
as a local-global principle for orthogonal groups, eventually responsible for multiplicity one

1 There is a recent paper of Krishnamurthy where he too completes his earlier work [Kri12].
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(conjecture) for automorphic representations of orthogonal groups, or more generally any classical
group [Lar94].

Lemma 6.2. Let W be a finite-dimensional vector space over C together with a quadratic form
q on it. Suppose π1 and π2 are two representations of a group G into GO(W ) such that the
similitude characters λ1 and λ2 of π1 and π2 are the same. Then the representations π1 and π2

of G with values in GO(W ) are equivalent, i.e., conjugate in GO(W ), if and only if they are
equivalent in GL(W ).

With these generalities in place, we now come to the special situation afforded by two-dimensional
representations of a subgroup N of index 2 in a group G. In this case, we find it more convenient
to use a concrete realization of GO(4, C), which we realize on the space M(2, C) of 2× 2 matrices
with X → detX as the quadratic form. Clearly, (A, B) ∈GL2(C)×GL2(C) acting on M(2, C)
as X →A ·X · tB defines a mapping from GL2(C)×GL2(C) onto GSO(4, C), and the involution
X → tX belongs to O(4, C) but not to SO(4, C). Thus, we have an exact sequence,

1→ C×→ [GL2(C)×GL2(C)] o Z/2→GO(4, C)→ 1,

where C× sits inside GL2(C)×GL2(C) as scalar matrices (z, z−1).
From Lemma 6.1, a representation π1 of N into GL2(C) gives rise to a homomorphism of

G into [GL2(C)×GL2(C)] o Z/2 whose projection to Z/2 is nothing but the natural projection
from G to G/N = Z/2 (cf. Lemma 6.1 and the definition of the Asai lift). It will be convenient
at this point to use the language of cohomology of groups (with non-abelian coefficients). In this
language, we have an exact sequence of G-groups:

1→ C×→GL2(C)×GL2(C)→GSO(4, C)→ 1,

where C× is the G-module on which N operates trivially, and the non-trivial element of G/N
operates on C× by z→ z−1; the group G operates on GL2(C)×GL2(C), and GSO(4, C) via G/N
which acts by permuting the factors in GL2(C)×GL2(C), and by the automorphism X → tX
of M2(C) acting on GSO(4, C) by conjugation. This exact sequence of G-groups gives rise to an
exact sequence of pointed sets:

H1(G, C×)→H1(G,GL2(C)×GL2(C))→H1(G,GSO(4, C)).

Since C× is a central subgroup of GL2(C)×GL2(C) (sitting as scalar matrices (z, z−1)), it follows
that two elements of H1(G,GL2(C)×GL2(C)) have the same image in H1(G,GSO(4, C)) if and
only if they differ by an element of H1(G, C×) (see [Ser02, Part I, § 5, Proposition 42]).

In terms of group cohomology, we have the identifications

Hom [G, [GL2(C)×GL2(C)] o Z/2]
∼

←→H1(G,GL2(C)×GL2(C)),

and
Hom [G,GO(4, C)]

∼
←→H1(G,GSO(4, C)),

where ∼ denotes the equivalence relation on the set of homomorphisms given by conjugation by
GL2(C)×GL2(C) (respectively GSO(4, C)).

It follows that two homomorphisms φ1 and φ2 of G to (GL2(C)×GL2(C)) o Z/2 which give
rise to the same representation of G with values in GO(4, C) differ by an element of H1(G, C×)
which we calculate in the following lemma.

Lemma 6.3. Let N be an index 2 subgroup of a group G. Let C× be the G module on which N
operates trivially, and the non-trivial element of G/N acts on C× by z→ z−1. Then H1(G, C×)
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can be identified to the set of those characters of N with values in C× whose transfer to G is
trivial.

Proof. Note the exact sequence,

0 // H1(G/N, C×) // H1(G, C×) // H1(N, C×)G/N // H2(G/N, C×),

in which G/N = Z/2. From well-known calculations on cohomology of cyclic groups, it is easy
to see that H1(Z/2, C×) = 0, and H2(Z/2, C×) = Z/2. (In this lemma, C× comes equipped with
the action of G/N = Z/2 by z→ z−1.) So, the above exact sequence can be written as:

0 // H1(G, C×) // H1(N, C×)G/N // H2(G/N, C×).

Since N operates trivially on C×, H1(N, C×) is simply the character group of N . The group
G/N operates on H1(N, C×) by sending a character φ ∈H1(N, C×) to the character φg(n) =
g−1φ(gng−1) of N . It follows that H1(N, C×)G/N can be identified to the group of characters φ
of N for which φ−1(n) = φ(g0ng

−1
0 ) where g0 is any element of G not in N ; these are simply the

characters of N which when composed with the transfer map from G/[G, G] to N/[N, N ] are
trivial on N . To get the conclusion of the lemma, we need to prove that among these characters
of N , those which go to 0 under the boundary map H1(N, C×)G/N // H2(G/N, C×), are
exactly those whose transfer to G is trivial (and not just restriction to the subgroup N which
is of index 2). Observe that the transfer map from G to N on elements of G outside N is
simply the squaring map g→ g2. So we need to prove that if a character φ in H1(N, C×)G/N

goes to zero in H2(G/N, C×), then φ(g2
0) = 1 where g0 is any element of G not in N . For this

we need to interpret this boundary map, which is nothing but the push-out diagram under
the homomorphism φ :N → C× of the exact sequence 0→N →G→ Z/2→ 0, thus fits in the
following commutative diagram:

0 // N //

��

G //

��

Z/2

��

// 0

0 // C× // � // Z/2 // 0

To say that the push-out diagram is trivial, i.e., the short exact sequence

0 // C× // � // Z/2 // 0

splits, is clearly equivalent to saying that φ(g0)2 = 1, so the proof of the lemma is completed. 2

In the following proposition, for a character χ of N , let r(χ) be the character of G obtained
from χ using the transfer map from G/[G, G] to N/[N, N ]. (Note that r(χ) is the special case
of the tensor induction corresponding to one-dimensional representations.) The previous lemma
proves the following proposition which is the main result of this section.

Proposition 6.4. Let N be an index 2 subgroup of a group G, and let π1 and π2 be two two-
dimensional representations of N , with As(π1) and As(π2) of dimension 4 their tensor induction
to G. Assume that r(det π1) = r(det π2). Then As(π1)∼= As(π2) if and only if π1

∼= π2 ⊗ χ, or
πσ1
∼= π2 ⊗ χ, for a character χ of N with r(χ) = 1.

Proof. By our assumption on r ◦ det we can appeal to Lemma 6.2 and thus it is enough to check
As(π1) = As(π2) inside GO(4, C). Thus, π2 differs from π1 (or πσ1 , with G/N = 〈σ〉) by an element
of H1(G, C×); the ambiguity in π1 and πσ1 arises since∼ in the identification of H1(G,GSO(4, C))
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with Hom [G,GO(4, C)]/∼ does not capture conjugacy of homomorphisms from G to GO(4, C)
by GO(4, C) but only conjugacy by GSO(4, C). By Lemma 6.3, H1(G, C×) corresponds to a
character χ of N with r(χ) = 1. 2

The abstract group theoretic proof given above for the fibers of the map π→As(π),
yields an exact description of the fibers of the Asai lift from automorphic forms on GL2(AE)
to automorphic forms on GL4(AF ) for CM representations of GL2(AE). Luckily, non-CM
representations were already handled by Krishnamurthy in [Kri03], so this description of the
fibers holds in all cases. Thus, we have the following theorem.

Theorem 6.5. Let π1 and π2 be cuspidal automorphic representations of GL2(AE) such that
their central characters agree on A×F . Then they have isomorphic Asai lifts to GL4(AF ) if and
only if either π1

∼= π2 ⊗ χ or πσ1
∼= π2 ⊗ χ, for a Grössencharacter χ of A×E/E

× with χ|
A×

F

= 1.

The proof of Proposition 6.4 also gives a proof of the following proposition which, however,
we will not have occasion to use.

Proposition 6.6. Let V1, V2, W1, W2 be two-dimensional representations of a group G such
that

V1 ⊗ V2
∼=W1 ⊗W2,

and

det(V1) det(V2) = det(W1) det(W2).

Then there exists a character χ of G such that

V1
∼= χ⊗W1, V2

∼= χ−1 ⊗W2,

or,

V2
∼= χ⊗W1, V1

∼= χ−1 ⊗W2.

Remark. A weaker version of this proposition was proved in [MP00] in which V1 and V2 were
assumed to be non-CM representations, which went into the proof of [Kri03].

Question. Since (U1 ⊗ U2)⊗ U3
∼= U1 ⊗ (U2 ⊗ U3), there is no simple way to generalize the

previous proposition for larger dimensional representations, except possibly when, in the notation
of the proposition, dim V1 and dim V2 are prime. Similarly, since As(U1 ⊗ Uσ2 )∼= As(U1 ⊗ U2),
there is no simple generalization of the proposition about fibers of the Asai lift of two-dimensional
representations except possibly when dealing with representations of prime dimension. We do
not know if in these special cases in which representations involved are of prime dimension, fibers
of Asai lift or of tensor product are as described in Propositions 6.4 and 6.6.

7. Local-global principle for the pair (SL2(E), SL2(F ))

In this section, we work inside an L-packet to prove the local-global principle for automorphic
representations of SL2(AE) with respect to SL2(AF ). This is Theorem 1.2, recalled here for the
convenience of the reader.

Theorem 1.2. Let Π be a cuspidal representation of SL2(AE) which is globally distinguished
by SL2(AF ). Let Π′ =⊗vΠ′v be an automorphic representation of SL2(AE) in the same L-packet
as Π such that Π′v is locally distinguished by SL2(Fv) at all the places of F . Then Π′ is globally
distinguished.
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Before we begin the proof of this theorem, we make a review of the theory of L-packets, both
locally as well as globally for SL2, which is due to Labesse–Langlands [LL79], and also review
some of our own work about distinguished representations relevant to this study [AP03, AP06].

We deal with the pair (SL2(AE), SL2(AF )) in this section, making an essential use of the
theory of Whittaker models, and then in a later section (cf. § 9) observe that some of our work
carries over to the more general situation of the group of norm one elements of a quaternion
algebra.

Note that the group A×E sitting inside GL2(AE) as(
x 0
0 1

)
operates on SL2(AE) via conjugation action, and therefore on the set of isomorphism
classes of representations of SL2(AE). The orbit of Π =⊗Πv, an irreducible representation
of SL2(AE), under the action of A×E is precisely the global L-packet of representations of
SL2(AE) containing Π. Let GΠ ⊂ A×E , GΠ =

∏
Gv be the stabilizer of the isomorphism class

of the representation Π =⊗Πv, where Gv is the stabilizer inside E×v of the isomorphism class of
the representation Πv of SL2(Ev). It can be seen that Gv contains O×v for almost all primes v
of E, where Ov is the ring of integers of Ev, and so GΠ is an open (and hence closed) subgroup of
A×E .

Clearly, the action of E× on SL2(AE) takes automorphic representations of SL2(AE) to
automorphic representations of SL2(AE). Since every cuspidal automorphic representation of
SL2(AE) must have a Whittaker model for a non-trivial character of AE/E, and any two non-
trivial characters of AE/E are conjugate by E×, it follows from the uniqueness of Whittaker
models (for GL2(AE)!) that E× acts transitively on the set of automorphic representations of
SL2(AE) which are in the same L-packet as Π.

There is another way of interpreting GΠ =
∏
Gv. For this, let Π̃ be an automorphic

representation of GL2(AE) containing Π. Then, for a character ω : A×E → C×, Π̃⊗ ω ∼= Π̃ if and
only if ω is trivial on GΠ. This implies that A×E/(E

×GΠ) is a finite group whose character group
is nothing but the finite group of Grössencharacters ω of A×E/E

× such that Π̃⊗ ω ∼= Π̃.
From the previous observations, we note that a representation of SL2(AE) which belongs to

the L-packet determined by Π determines an element of the finite group A×E/(E
×GΠ) (which

is known to be either {1}, Z/2, or Z/2⊕ Z/2), which is trivial if and only if the corresponding
representation is automorphic. This result due to Labesse and Langlands [LL79] remains true
for division algebras, but this simple proof does not work.

We next review the work in [AP03, AP06] relevant to the local-global study of the pair
(SL2(AE), SL2(AF )).

It follows from [AP06, Theorem 4.2] that if Π is globally distinguished by SL2(AF ), then Π
has a Whittaker model with respect to a character ψ : AE/(EAF )→ C×. Conversely, by the same
theorem, if Π has a Whittaker model with respect to ψ : AE/(EAF )→ C×, and some member
in the L-packet determined by Π is globally distinguished, then such a Π is itself globally
distinguished. A similar local result also holds: in a local L-packet of SL2(Ev) where at least
one representation is distinguished by SL2(Fv), the SL2(Fv)-distinguished representations are
precisely those which have a Whittaker model with respect to a non-trivial character of Ev/Fv
(see [AP03, Lemmas 3.1 and 3.2]), hence since F×v acts transitively on non-trivial characters
of Ev/Fv, F×v acts transitively on distinguished members of an L-packet of representations of
SL2(Ev).
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Define groups,

H0 = A×E ,
H1 = A×FGΠ,

H2 = E×GΠ,

H3 = F×GΠ.

From these theorems due to Labesse–Langlands [LL79], and the theorems due to the authors
in [AP03, AP06] we deduce the following.

(i) The set H0 ·Π is the L-packet of representations of SL2(AE) determined by Π.

(ii) The set H1 ·Π is the set of locally distinguished representations in the L-packet of
SL2(AE) determined by Π.

(iii) The set H2 ·Π is the set of automorphic representations in the L-packet of SL2(AE)
determined by Π.

(iv) The set H3 ·Π is the set of globally distinguished representations in the L-packet of
SL2(AE) determined by Π.

Clearly H1 ∩H2 contains H3, and (H1 ∩H2)/H3 measures the obstruction to locally
distinguished automorphic representations to be globally distinguished; equivalently, a locally
distinguished automorphic representation Π of SL2(AE) determines an element hΠ of H1 ∩H2

such that Π is globally distinguished if and only if hΠ ∈H3. We will in fact prove that
(H1 ∩H2)/H3 is trivial by proving that its character group is trivial.

Let X(A) denote the character group of a locally compact abelian group A.
Noting that (H1 ∩H2)/H3 is nothing but the kernel of the map,

H1/H3→H0/H2,

the character group of (H1 ∩H2)/H3 is the cokernel of the natural map

X(H0/H2)→X(H1/H3).

We note that the mapping of the character groups is simply the map taking a character α of H0

which is trivial on H2 to its restriction to H1; note that since α is trivial on H2, it is in particular
trivial on H3 which is a subgroup of H2.

Theorem 7.1. The group (H1 ∩H2)/H3, which measures the difference between locally
distinguished automorphic representations of SL2(AE) and globally distinguished automorphic
representations of SL2(AE), is trivial.

Proof. We will prove that (H1 ∩H2)/H3 is trivial by proving that its character group is trivial.
From the analysis above, it suffices to prove the surjectivity of the natural map

X(H0/H2)→X(H1/H3).

Equivalently, we need to prove that a character of A×F /[F
×(A×F ∩GΠ)], can be extended to a

Grössencharacter of A×E/E
×, which is a self-twist of Π̃, where Π̃ is a cuspidal representation of

GL2(AE) such that Π appears in its restriction to SL2(AE). Without loss of generality, we may
also assume that Π̃ is globally distinguished with respect to GL2(AF ) (cf. Proposition 3.2).

Let χ be a character of A×F /[F
×(A×F ∩GΠ)], thought of as a character of A×F /[A

×
F ∩GΠ]. Since

A×F /[A
×
F ∩GΠ] is a subgroup of the discrete group A×E/GΠ, there is a character χ̃ of A×E trivial

on GΠ extending χ. (We will eventually try to get one which is a Grössencharacter.)
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Let As(Π̃) denote the Asai lift of a representation of GL2(AE) to GL4(AF ). By local
considerations, it is clear that

As(Π̃⊗ χ̃)∼= As(Π̃)⊗ χ.
Since χ̃ is trivial on GΠ, Π̃⊗ χ̃= Π̃, and hence

As(Π̃⊗ χ̃)∼= As(Π̃)∼= As(Π̃)⊗ χ.
Now let χ̂ be a character of A×E/E

× extending the character χ of A×F /F
×. We have,

As(Π̃⊗ χ̂) ∼= As(Π̃)⊗ χ
∼= As(Π̃).

Since the Asai lifts of the two automorphic representations Π̃ and Π̃⊗ χ̂ of GL2(AE) to
GL4(AF ) are isomorphic, we can use Theorem 6.5 to conclude a relationship between Π̃ and
Π̃⊗ χ̂. Before we can apply this proposition, we need to check that the two representations Π̃
and Π̃⊗ χ̂ have the same central characters restricted to A×F . But this follows as A×2

E ⊂GΠ, and
hence χ2 = 1.

By Theorem 6.5, there are two cases.

Case 1. There is a character χ1 of A×E/E
× trivial on A×F /F

× such that

Π̃⊗ χ̂∼= Π̃⊗ χ1.

Therefore, Π̃∼= Π̃⊗ (χ−1
1 χ̂). Since χ1 is trivial on A×F /F

×, the character χ−1
1 χ̂ is an extension of

χ to a Grössencharacter on A×E/E
×, which is a self-twist of Π̃, proving the desired statement in

this case.

Case 2. There is a character χ1 of A×E/E
× trivial on A×F /F

× such that

Π̃⊗ χ̂ ∼= Π̃σ ⊗ χ1

∼= Π̃∨ ⊗ χ1

∼= Π̃⊗ (χ1ω
−1

Π̃
),

which again proves the desired statement since ωΠ̃ restricted to A×F is trivial. Note that in
the above we have also used the fact that Π̃ is assumed to be distinguished with respect to
GL2(AF ). 2

Remark. Although Asai lift naturally comes up in questions about distinguished representations
for the pair (GL2(AE),GL2(AF )), its use in the previous theorem is for an entirely different
purpose: to prove that a certain character of A×E can be assumed to be a Grössencharacter when
its restriction to A×F /F

× is known to be a Grössencharacter. In this, the crucial property of the
Asai lift used is the fact that As(Π⊗ χ)∼= As(Π)⊗ χ|A×F , so even if χ is not a Grössencharacter,
since its restriction to A×F is, the Asai lift is an automorphic representation. This is then combined
with the knowledge about fibers of the Asai lift to conclude that χ, or a variant of it, is
automorphic. Later, when we deal with toric period integrals, we will use very similar arguments
using the base change map for a similar effect. Although base change does appear in toric period
questions, it is put to an unrelated use in this paper!

8. Examples

It may be useful to enumerate all the possibilities for the groups which appear in the previous
section, which we do here.
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According to the notation introduced in [AP03, AP06], and the proof of the previous theorem,
we have,

X(H1/H3) ⊂ XΠ̃ = {χ ∈ Â×F /F× | Π̃ is χ-distinguished}

X(H0/H1H2) = YΠ̃ = {χ ∈ Â×E/E× | Π̃⊗ χ= Π̃, χ|A×F = 1}

X(H0/H2) = ZΠ̃ = {χ ∈ Â×E/E× | Π̃⊗ χ= Π̃}.
Further, there is an isomorphism of groups XΠ̃

∼= YΠ̃.
We now enumerate all the possibilities for the groups XΠ̃, YΠ̃, ZΠ̃, and refer the reader

to [AP06, proof of Theorem 6.9].

(i) The representation Π̃ is not CM. In this case, XΠ̃ = YΠ̃ = ZΠ̃ = {1}.

(ii) The representation Π̃ is CM by exactly one quadratic extension of E. In this case,
XΠ̃
∼= YΠ̃ = ZΠ̃

∼= Z/2, and therefore,

XΠ̃

ZΠ̃/YΠ̃

∼= Z/2.

(iii) The representation Π̃ is CM by three quadratic extensions of E, with exactly one Galois
over F . In this case, XΠ̃

∼= YΠ̃
∼= Z/2, and ZΠ̃

∼= Z/2⊕ Z/2 and therefore,

XΠ̃

ZΠ̃/YΠ̃

= {1}.

(iv) The representation Π̃ is CM by three quadratic extensions of E, all Galois over F . In
this case, XΠ̃

∼= YΠ̃ = ZΠ̃
∼= Z/2⊕ Z/2, and therefore,

XΠ̃

ZΠ̃/YΠ̃

∼= Z/2⊕ Z/2.

9. A more general situation

In the context of distinction for the pair (GL2(E),GL2(F )), the most general pair of this kind
that one could consider is (GL1(D)(E),GL1(D)(F )) where D is a quaternion algebra over a
number field F , and E is a quadratic extension of F . In fact it was in the study of distinction for
this pair that the relative trace formula was introduced by Jacquet in collaboration with K. Lai
in [JL85], who dealt with only those quaternion algebras D over F for which D ⊗F E ∼= M2(E);
the more general situation was considered in the paper [FH94]. These papers prove that a cuspidal
representation π of GL1(D)(AE) is globally distinguished by GL1(D)(AF ) if and only if πJL, the
Jacquet–Langlands lift of π to GL2(AE), is globally distinguished by GL2(AF ), together with
the necessary local conditions at places of F where D is ramified, E is inert, and π is a principal
series representation. Thus distinction for these pairs also is dictated by the existence of a pole
at s= 1 of the Asai L-function.

Our work in the previous two sections for the pair (SL2(E), SL2(F )) was a consequence of
this characterization of distinction for GL2(E) representations in terms of the Asai L-function,
and an input on distinction for the pair (SL2(E), SL2(F )) in terms of the Whittaker model with
respect to a character of E trivial on F which was proved in [AP03] in the local case, and [AP06]
in the global case.

In this section we consider distinction for the pair (SL1(D)(AE), SL1(D)(AF )) where D is a
quaternion algebra over a number field F , and E is a quadratic extension of F . At places of F
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where E is inert and D is ramified, we will be dealing with distinction properties for the pair
(SL2(Ev), SL1(Dv)); an added subtlety here is that the embedding of SL1(Dv) in SL2(Ev) is
unique only up to conjugation by GL2(Ev), and there seems no preferred embedding of SL1(Dv)
in SL2(Ev). Thus one must keep in mind that the question about classifying representations of
SL2(Ev) distinguished by SL1(Dv) is meaningless unless there is a way of fixing an embedding
of SL1(Dv) inside SL2(Ev).

Recall that for the pair (SL2(AE), SL2(AF )), our proof of the local-global property depended
on defining the groups,

H0 = A×E ,

H1 = A×FGΠ,

H2 = E×GΠ,

H3 = F×GΠ,

and noting the following.

(i) The set H0 ·Π is the L-packet of representations of SL2(AE) determined by Π.

(ii) The set H1 ·Π is the set of locally distinguished representations in the L-packet of
SL2(AE) determined by Π.

(iii) The set H2 ·Π is the set of automorphic representations in the L-packet of SL2(AE)
determined by Π.

(iv) The set H3 ·Π is the set of globally distinguished representations in the L-packet of
SL2(AE) determined by Π.

Then we proved, via considerations with the Asai lift, specifically determination of the fibers
of the Asai lift, that (H1 ∩H2)/H3 = 1, for which we did not need the interpretation of H3 ·Π
as the set of globally distinguished representations in the L-packet of SL2(AE) determined by
Π; we only needed to know that members of H3 ·Π are globally distinguished.

The groups H0, H1, H2, H3 were defined in the context of (SL2(AE), SL2(AF )) using the
embedding of E×, or of A×E , inside GL2(AE) as the group of diagonal matrices:(

x 0
0 1

)
.

When dealing with SL1(D), this diagonal subgroup does not make sense, but we can instead
replace these by the image of D×(E), respectively D×(Ev), respectively D×(AE) in E×,
respectively E×v , respectively A×E , via the reduced norm mapping. The group GΠ itself may be
defined as the image of the reduced norm mapping of the stabilizer in D×(AE) of a representation
Π of SL1(D)(AE). Thus H0 is the image of D×(AE) in A×E under the reduced norm mapping,
denoted here by det, or rather the image of D×(AE) in A×E multiplied by GΠ inside A×E ; similarly,
H1 = det(D×(AF )) ·GΠ ⊂ A×E , H2 = det(D×(E)) ·GΠ ⊂ A×E , and H3 = det(D×(F )) ·GΠ ⊂ A×E .

In order to analyse the local-global question for (SL1(D)(AE), SL1(D)(AF )) inside an
L-packet containing a globally distinguished representation, we can adopt more or less the
same strategy. But we see from Lemma 9.2 below that H1 ·Π does not capture all the
locally distinguished representations, and thus we cannot proceed along exactly the same
lines. However, we note that (H1 ∩H2)/H3 = 1 proves that locally distinguished representations
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of (SL1(D)(AE), SL1(D)(AF )) appearing in the restriction of a globally distinguished
representation of

D+(AE) = {g ∈D(AE) | det g ∈ A×FA×2
E }

are globally distinguished.
Let Π+ be an automorphic representation of D+(AE) which is globally distinguished with

respect to SL1(D)(AF ). Let Π be an automorphic representation of SL1(D)(AE) which comes in
the restriction of Π+. Observe that:

(i) the set H1 ·Π is the set of all the irreducible components of the restriction of Π+ to
SL1(D)(AE);

(ii) the set H2 ·Π is the set of all automorphic representations belonging to the L-packet of
SL1(D)(AE) determined by Π;

(iii) (H1 ∩H2)/H3 = 1.

The statement (ii) is part of the work of Labesse–Langlands mentioned earlier [LL79].
The proof of (iii) follows the same lines as given earlier for SL2(AE) using the fibers of the Asai

lift, which this time can be considered to be lifting of automorphic representations of D×(AE)
to GL4(AF ) via the intermediary of the Jacquet–Langlands correspondence to GL2(AE). We
note that we also need to use the standard local-global theorem for norms of quaternion division
algebra: an element of F× arises as a norm from D× if and only if it does so locally at all places
of F .

We summarize the above discussion in the following theorem.

Theorem 9.1. Suppose Π+ is an irreducible cuspidal representation of D+(AE) which is
globally SL1(D)(AF ) distinguished. Then the part of the L-packet of SL1(D)(AE) determined by
the restriction of Π+ has the local-global property for SL1(D)(AF ); more precisely, automorphic
representations of SL1(D)(AE) contained in Π+ which are locally distinguished by SL1(D)(AF ),
belong to one orbit under the action of D×(F ).

Now we would like to understand the local-global question for a cuspidal representation Π of
SL1(D)(AE). One important fact which went into our analysis of local-global distinction for the
pair (SL2(AE), SL2(AF )) was that if a representation of GL+

2 (Ev) is distinguished by GL2(Fv)
then it must have a Whittaker model for a character of Ev which is trivial on Fv. This has the
corollary that if two irreducible representations Π1 and Π2 of GL+

2 (Ev) belonging to the same L-
packet are respectively ω1- and ω2-distinguished by GL2(Fv) for two characters ω1, ω2 : F×v → C×,
then Π1

∼= Π2 (although ω1 may not be the same as ω2). This is what allowed us to prove that
representations of SL2(Ev) distinguished by SL2(Fv) belonging to one L-packet are in a single
orbit for the action of GL2(Fv). This property fails for the pair (SL2(Ev), SL1(Dv)) because of
the following lemma.

Lemma 9.2. Let K be a quadratic ramified extension of a non-Archimedean local field k of odd
residue characteristic, and D a quaternion division algebra over k. Let µ be an unramified
character of K× of order 4 with µ2 =: ω. Let GL+

2 (K) = {g ∈GL2(K) | ω(det g) = 1}= {g ∈
GL2(K) | det g ∈ k×K2×}. Then the principal series representation π = Ps(µ, µω) of GL2(K)
decomposes as a sum of two irreducible representations π+ and π− when restricted to GL+

2 (K)
with π+ spherical, i.e., the one which contains a vector fixed under GL2(OK). Fix an embedding
of D× in GL+

2 (K) such that D× ⊂K× ·GL2(OK), then the trivial representation of D× appears
in π+, and the character ωK/k of order 2 of k× associated with K/k, considered as a character
of D× through the reduced norm mapping, appears in π−.
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Proof. It is easy to see that D× operates transitively on P1(K) such that the stabilizer of the
point ∞ in P1(K) is isomorphic to K×, hence by Mackey theory we easily deduce that there are
exactly two one-dimensional representations of D× contained in π, one the trivial character, and
the other which is the character ωK/k of k× considered as a character of D×. We need to decide
which of these characters of D× appear in π+, and which of these characters appear in π−.

Our first task will be to construct an embedding of D× in K× ·GL2(OK) (for K a quadratic
ramified extension of k). For this we fix some notation.

Let $K be a uniformizing element in K, and Ok,OK ,OD be respectively the maximal
compact subrings of k, K, D. Fix an embedding ι :K ↪→D. We will consider OD as a free rank 2
module over OK from the right, and as an OD-module from the left. This gives an embedding
OD ↪→ EndOK

(OD). Since OD is invariant under conjugation by D×, and hence by K×, left
multiplication by K× on OD can be considered to be an inner-conjugation by K× up to an
action of K× on the right:

x · OD = xOdx−1 · x,
therefore K× ⊂D× is contained in K× · EndOK

(OD), and since D× =K×O×D, D× is contained
in K× · EndOK

(OD).
Observe that OD comes equipped with a natural filtration consisting of two-sided ideals:

OD ⊃$KOD ⊃$2
KOD ⊃ · · · such that the successive quotients are modules for OD/$KOD ∼=

Fq2 , if Fq is the residue field of k. We thus have natural maps,

O×D ↪→AutOK
(OD)−→AutOK

(OD/$KOD) = AutFq
(Fq2).

Under the composite map from O×D to AutFq
(Fq2) = GL2(Fq), the image of O×D is clearly

F×q2 acting on Fq2 , giving rise to an embedding F×q2 ↪→GL2(Fq). Further, since multiplication by
x ∈K× on OD on the left is up to a central element conjugation by x on OD, the action of K×

on OD/πKOD is an automorphism of algebras, i.e., an element of the Galois group of Fq2 over
Fq. Thus the image of D× is contained in the normalizer of F×q2 inside GL2(Fq).

Since D× ⊂K× ·GL2(OK), given that π has trivial central character and π+ has a fixed
vector under GL2(Ok), the trivial representation of D× appears in π+. The representation π− is
obtained from π+ by conjugating by the matrix,(

$K 0
0 1

)
,

hence it is clear that π− has a subrepresentation on which

Γ0($) =
{(

a b
c d

)
∈GL2(OK)

∣∣∣∣$K |c
}

acts trivially. This means that π− must contain the Steinberg representation of GL2(Fq), where
Fq is the residue field of K, as the Steinberg is the only non-trivial irreducible representation of
PGL2(Fq) with a vector fixed under the group of upper triangular matrices. Since the Steinberg
representation contains all non-trivial characters of F×q2/F

×
q , the unique non-trivial character of

F×q2/F
×
q of order 2 appears in π−. (This is where we use that q is odd to ensure that F×q2/F

×
q has a

character of order 2.) Since the unique non-trivial character of F×q2/F
×
q of order 2 is left invariant

by the normalizer of F×q2 inside GL2(Fq), we conclude that there is a character of order 2 of
D×/k× appearing in π−, which cannot be anything else but ωK/k. 2

Because of this lemma, the local-global property fails, which we record in the following
proposition.
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Proposition 9.3. Let E be a quadratic extension of a number field F , and D a quaternion
division algebra over F . Then there exists an automorphic representation π of D+(AE) which is
locally distinguished by SL1(D)(AF ), but not globally distinguished in terms of having nonzero
period integral on this subgroup; more precisely, on the π-isotypic piece of the automorphic
representations of D+(AE), the SL1(D)(AF )-period integral is identically zero.

Proof. Let Π̃ be a non-CM cuspidal representation of D×(AE) with unramified principal series
local components at many places where E/F is ramified so that we are in the context of
Lemma 9.2, and the restriction of Π̃ to D+(AE) has more than four direct summands which
are locally distinguished by SL1(D)(AF ). Since a non-CM L-packet is stable, all these direct
summands are automorphic as well. If all these representations were globally distinguished with
respect to SL1(D)(AF ), then, in particular, they will be globally ω-distinguished with respect to
D×(AF ) for certain quadratic characters ω : A×F /F

×→{±1}; these quadratic characters ω are
necessarily distinct by multiplicity one theorem regarding the space of D×(AF )-invariant linear
forms on an irreducible representation of D×(AE). It would then follow that Π̃ is distinguished
by D×(AF ) for more than four Grössencharacters, which is not possible as global distinction
is characterized in terms of the Asai lift of Π̃ to GL4(AF ) to contain a Grössencharacter
as a direct summand, and so Π̃ can be ω-distinguished for at most four Grössencharacters
ω : A×F /F

×→ C×. 2

On the positive side, we have the following result.

Proposition 9.4. Let E be a quadratic extension of a number field F , and D a quaternion
division algebra over F . Let Π be an automorphic representation of D+(AE) which is locally
distinguished by D×(AF ) by a Grössencharacter ω : A×F /F

×→ C×. Then if Π has a discrete
series local component, it is globally distinguished in terms of having nonzero period integral on
this subgroup with respect to the character ω.

Proof. Let Π̃ be an automorphic representation ofD×(AE) containing Π. Since Π and hence Π̃ are
locally ω-distinguished, by the local result due to Hakim [Hak91], and the second author [Pra92]
(cf. Proposition 2.4), Π̃JL is locally ω-distinguished with respect to GL2(AF ) as well. This means
that Π̃JL is (globally) ω-distinguished with respect to GL2(AF ) (this is where we use Π having
a discrete series local component, otherwise the conclusion is either ω-distinguished or ω · ω

E/F
-

distinguished), and hence, by the global result (cf. Proposition 2.3) Π̃ is ω-distinguished with
respect to D×(AF ). (Since Π̃ is locally ω-distinguished, the necessary local condition to apply
Proposition 2.3 on principal series component of Π̃JL to be Ps(µ−1, µσ) at places of F at which
D is ramified and E is inert is satisfied.)

Now by the multiplicity one theorem about the space of D×(Fv)-invariant forms on an
irreducible representation of D×(Ev), it follows that Π itself is ω-distinguished, completing the
proof of the proposition. 2

Thus the proof of Proposition 9.4 says that the problem in the failure of the local-global
principle in Proposition 9.3 is one of patching local characters of F×v into a Grössencharacter on
A×F /F

×. We can capture this more precisely as follows.
To an automorphic representation Π =⊗Πv of D×(AE), define local groups Sv consisting of

characters ωv of F×v such that Πv is ωv-distinguished with respect to the subgroup D×(Fv). We
know that Sv is a finite set consisting of at most four elements, and that for most places v of F ,
there is an unramified character in Sv, and there are at most two unramified characters in Sv
which, if there are two, are twists of each other by ωEv/Fv

. So the previous proposition can also
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be stated as saying that an automorphic representation Π of D×(AE) is globally distinguished
by SL1(D)(AF ) if and only if there is a Grössencharacter ω =

∏
ωv : A×F /F

×→ C× such that ωv
belongs to Sv for all places v of F .

10. Distinction in an L-packet for the toric period

In this section we prove Theorem 1.4 which we recall again here.
Since multiplicity one theorem is not true for automorphic representations of SL1(D)(AF ),

a small care is needed in the following theorem in defining ‘an L-packet of automorphic
representations on SL1(D)(AF )’ by which we will mean the automorphic representations on
SL1(D)(AF ) obtained by restricting one from D×(AF ).

Theorem 1.4. Let D be a quaternion algebra over a number field F , with E a quadratic
subfield of D. Let Π =⊗vΠv be a cuspidal representation of SL1(D)(AF ) with at least one
square integrable component at a place v0 of F ; if E is inert and D is split at v0, we further
assume that v0 is of odd residue characteristic and Πv0 is a supercuspidal representation if v0 is
a finite place of F . If each Πv is distinguished with respect to E1

v , then assuming Conjecture 1.3
holds, there is a cuspidal representation in the L-packet of Π which is distinguished with respect
to A1

E .

Let Π̃ =⊗Π̃v be a cuspidal representation of D×(AF ) containing Π =⊗Πv. We assume that
each Πv is distinguished with respect to E1

v , the group of norm one elements of E×v . We assume,
without loss of generality, that the central character of Π̃ is trivial. Since Πv and hence Π̃v

is distinguished with respect to E1
v , Π̃v is αv-distinguished with respect to E×v , where αv is a

character of E×v /F
×
v E

1
v , hence there is a quadratic character βv of F×v such that Π̃v is βv ◦ Nm-

distinguished with respect to E×v . Since being distinguished is no condition at places v of F
where Π̃v is a principal series representation, so at all but finitely many places of F , we can
assume that Π̃v is βv ◦ Nm-distinguished at all places v of F for a Grössencharacter β of A×F /F

×

with β2 = 1.
The proof of Theorem 1.4 will depend on two technical lemmas, one local and the other global.

The local lemma allows one to twist a representation Π̃0 of GL2(F0) by a quadratic character
χ0 to change epsilon factor ε(Π̃0) to ε(Π̃0 ⊗ χ0) so that the global epsilon factor ε(Π̃⊗ χ) can
be assumed to be 1 if the original ε(Π̃) was −1; this then allows one to appeal to Conjecture 1.3
about simultaneous non-vanishing of two L-values. An added subtlety that we must deal with
is that in changing the sign of ε(Π̃0) to ε(Π̃0 ⊗ χ0), such quadratic characters must appear in
the representation Π̃0 at that place, so by the theorem of Saito–Tunnell, some other epsilons
must be controlled. This is where existence of a discrete series component of the automorphic
representation is used.

Lemma 10.1. Let Π̃ =⊗Π̃v be an automorphic representation of D×(AF ) with trivial central
character. Let E be a quadratic extension of F contained in D with ω

E/F
=
∏
ωv the associated

Grössencharacter of A×F /F
×. Assume that Π̃ has at least one square integrable component at

a place v0 of F ; if E is inert and D is split at v0, we further assume that v0 is of odd residue
characteristic and Π̃v0 is a supercuspidal representation if v0 is a finite place of F . Assume that
Π̃ is locally distinguished by the character β ◦ Nm of A×E for a quadratic Grössencharacter β of
A×F /F

×. Then there is a Grössencharacter η of A×F /F
× with η2 = 1, such that

ε(Π̃⊗ η) = 1 = ε(Π̃⊗ ω
E/F

η), (2)
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and furthermore,

ε(Π̃v ⊗ ηv)ε(Π̃v ⊗ ωvηv) = ε(Π̃v ⊗ βv)ε(Π̃v ⊗ ωvβv) (3)

for all v. Moreover, η can be made to agree with β at finitely many prescribed places other
than v0.

Before we proceed to prove this lemma, we fix some more notation, and prove a few
intermediate results. Some of this notation, as well as the proofs that follow, is due to one
of the referees of this paper.

Let F0 be a local field, and E0 a separable quadratic extension of F0, with ωE0/F0
the

corresponding quadratic character of F×0 . Let π be a discrete series representation of GL2(F0)
with ωπ = 1. For ν =±1, let

Xν =Xν
π = {α : F×0 →{±1} | ε(π ⊗ α) = να(−1)ε(π)}.

Then, we have the following proposition (see [Wal91]).

Proposition 10.2. If π is a discrete series representation of PGL2(F0), then Xν 6= ∅ for ν =±1.

Now, for ν, ν ′ ∈ {±1}, let

Xν,ν′ =Xν,ν′

π = {α ∈Xν | αω
E0/F0

∈Xν′}.

We have the following proposition.

Proposition 10.3. The sets Xν,ν′ satisfy the following properties.

(i) The map α 7→ αω
E0/F0

is a bijection between X+− and X−+.

(ii) If X+− = ∅, then both X++ and X−− are non-empty.

(iii) Let α ∈Xνν′ . Then π is α ◦ Nm-distinguished with respect to E× if and only if νν ′ = 1,
and π′, the representation of D×0 associated to π by the Jacquet–Langlands correspondence where
D0 is the unique quaternion division algebra over F0, is α ◦ Nm-distinguished with respect to
E× if and only if νν ′ =−1

Proof. Part (i) is straightforward. Part (ii) follows from part (i), thanks to Proposition 10.2.
Part (iii) follows from Proposition 2.8 together with the identity (1) in the remark following this
proposition. 2

Proposition 10.4. Assume that F0 is either Archimedean, or has odd residue characteristic.
Let π be a discrete series representation of GL2(F0) which is supercuspidal if F0 is non-
Archimedean. Then, if X++ is non-empty, so is X−−, and conversely. In the Archimedean case,
X++ and X−− are both empty sets, and X+− and X−+ are sets with one element.

Proof. The proof of the proposition is rather trivial in the Archimedean case, so we assume
in the rest of the proof that F0 is non-Archimedean. Since F0 has odd residue characteristic,
the number of characters of F×0 of order dividing 2 is four, and further π has a self-twist by a
non-trivial character µ of order 2. Note that α 7→ αµ takes Xν,ν′ to Xνµ(−1),ν′µ(−1).

If µ(−1) = 1, the sets Xν,ν′ are stabilized by multiplication by µ, and hence their cardinalities
are even integers. Given that X++, X+−, X−−, X−+ are disjoint sets of total cardinality 4 with
the cardinalities of X+− and X−+ equal, we easily deduce that it is not possible for X++ to be
non-empty but X−− to be empty, and conversely; here we have also utilized Proposition 10.2.

If µ(−1) =−1, then α 7→ αµ gives a bijection between X++ and X−−, and once again the
proposition follows. 2
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Remark. We are unable to prove Proposition 10.4 in residue characteristic 2 one way or the
other which seems like an interesting exercice dyadiques.

We will need the following local result in order to prove Lemma 10.1.

Lemma 10.5. Let E0 be a separable quadratic algebra over a local field F0, with ω0 as the
corresponding character of F×0 with ω2

0 = 1. Let Π̃0 be an irreducible discrete series representation
of PGL2(F0). If E0 is a quadratic field extension of F0, and if F0 is non-Archimedean, assume
further that it is of odd residue characteristic, and that Π̃0 is a supercuspidal representation. Let
β0 be a quadratic character of F×0 . Then there exists a quadratic character γ0 of F×0 with,

ε(Π̃0 ⊗ γ0)
γ0(−1)

=−ε(Π̃0 ⊗ β0)
β0(−1)

,

and,

ε(Π̃0 ⊗ γ0)ε(Π̃0 ⊗ ω0γ0) = ε(Π̃0 ⊗ β0)ε(Π̃0 ⊗ ω0β0).

Proof. It is convenient to use the sets Xν,ν′ to prove the lemma. By Proposition 10.3(i) and
Proposition 10.4, we know that X+− = ∅ ⇐⇒ X−+ = ∅ and X++ = ∅ ⇐⇒ X−− = ∅, under our
assumptions.

Now if β0 belongs to X+−, then choose γ0 from the non-empty set X−+, and conversely. If
β0 belongs to X−−, then choose γ0 from the non-empty set X++, and conversely, in order to
conclude the lemma. 2

Proof of Lemma 10.1. Since the representation Π̃v of D×v is βv ◦ Nm-distinguished for the
subgroup E×v , by the Saito–Tunnell theorem, we have,

ε(Π̃v ⊗ βv)ε(Π̃v ⊗ ωvβv) = ωv(−1)ωDv
(−1),

where ωDv
(−1) =−1 if Dv is ramified, and ωDv

(−1) = 1 if Dv
∼=M2(Fv). It follows that,

ε(Π̃⊗ β)ε(Π̃⊗ βω) =
∏
v

ωDv
(−1) = 1,

the last equality following from the fact that the number of ramified primes of D is even.
Therefore, if ε(Π̃⊗ β) = 1, then so is ε(Π̃⊗ βω), and η = β has all the desired properties to

apply Conjecture 1.3.
If ε(Π̃⊗ β) =−1, we will use the fact that Π̃ has a square integrable component at v0 to

modify β to construct η such that ε(Π̃⊗ η) = 1 = ε(Π̃⊗ ηω), with

ε(Π̃v ⊗ ηv)ε(Π̃v ⊗ ωvηv) = ε(Π̃v ⊗ βv)ε(Π̃v ⊗ ωvβv)

for all v.
Let γ be a quadratic Grössencharacter of A×F /F

× with γv0 = γ0 as in Lemma 10.5, and which
at the other places v of F where either D or Π̃ is ramified is βv (and no constraints outside the
ramified primes of Π̃). By a well-known calculation about the epsilon factor of principal series
representations of PGL2(Fv), it follows that

ε(Π̃v ⊗ χ)
χ(−1)

= ε(Π̃v),
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for Πv a principal series representation of PGL2(Fv), and χ any character of F×v with χ2 = 1.
Therefore we have,

ε(Π̃⊗ γ) =
∏
v

ε(Π̃v ⊗ γv)
γv(−1)

=−ε(Π̃0 ⊗ β0)
β0(−1)

∏
v 6=v0

ε(Π̃v ⊗ βv)
βv(−1)

=−ε(Π̃⊗ β),

proving Lemma 10.1. 2

Proof of Theorem 1.4. Appealing to Conjecture 1.3, we obtain a Grössencharacter, say η′, of A×F
with (η′)2 = 1, such that:

(i) L(1
2 , Π̃⊗ η

′) 6= 0 6= L(1
2 , Π̃⊗ ωη

′);

(ii) η′ agrees with η at all the places S of F containing the infinite places of F , and the places
of F where Π̃ or D is ramified.

Given this, equation (3) of Lemma 10.1 continues to be satisfied with η′ instead of η at all
places v of F , since outside of S there is no condition, as can be easily checked. Thus, Π̃⊗ η′ is
distinguished with respect to E×v at all the places v. Since L(1

2 , Π̃⊗ η
′) 6= 0 6= L(1

2 , Π̃⊗ ωη
′), the

non-vanishing of the toric period on Π̃⊗ η′ follows by the work of Waldspurger. This is enough
to conclude that there is a member in the L-packet of Π on which the A1

E-period integral is
non-vanishing by Proposition 3.4. This finishes the proof of Theorem 1.4. 2

Remark. One could ask whether it is possible to remove the further technical restrictions at
the discrete series place in Theorem 1.4. This is possible if Π has two discrete series places
and further if D is allowed to vary; i.e., given a cuspidal representation Π of SL1(D)(AF ), with
at least two discrete series components, that is locally distinguished with respect to A1

E , there
exists a quaternion algebra D′ over F containing E such that the L-packet of Π′ is globally A1

E-
distinguished, where the L-packet of Π′ is the Jacquet–Langlands correspondent of the L-packet
of Π.

The previous arguments work as well for the split toric period of a cuspidal representation of
SL2(AF ). In fact, in this case, since ω

E/F
= 1, there are not two L-values to control, but a single

one, whose non-vanishing is the main theorem of the paper of Friedberg and Hoffstein [FH95]
which we recall presently, so we do not need to resort to Conjecture 1.3 in the split toric case,
and we obtain an unconditional theorem.

Theorem 10.6 (Friedberg–Hoffstein). Let π be a cuspidal representation of GL2(AF ). If π is
self-dual, let η be a quadratic character such that

ε(π ⊗ η) = 1.

If π is not self-dual, let η be any quadratic character. Then there are infinitely many quadratic
characters η′ of A×F /F

×, which agree with η at any finitely many prescribed places of F , and
such that

L(1
2 , π ⊗ η

′) 6= 0.

Using Theorem 10.6, we obtain the following theorem regarding the period integral on the
split torus. Actually, in this case the local-global principle holds true for individual automorphic
representations, since automorphic representations (in an L-packet) are all F× conjugates of
each other and therefore if the period integral is nonzero on one automorphic representation, it
is nonzero on any other automorphic member of the L-packet. Furthermore, for the split torus,
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there are no local conditions either (of course, the central character must be trivial). Thus we
have the following unconditional theorem.

Theorem 10.7. Let Π =⊗vΠv be a cuspidal representation of SL2(AF ) with trivial central
character contained in an automorphic representation Π̃ =⊗vΠ̃v of GL2(AF ), also with trivial
central character. Suppose either that the global epsilon factor, ε(Π̃) = 1, or that Π has at least
one square integrable component at a place v0 of F . Then, Π is distinguished with respect to
A×F sitting inside SL2(AF ) as the diagonal subgroup

(
x 0
0 x−1

)
, x ∈ A×F .

Remark. We have already mentioned a result of Waldspurger, that for an automorphic
representation Π̃ =⊗vΠ̃v of GL2(AF ) with trivial central character and with at least one square
integrable component at a place v0 of F , there is a character α of A×F /F

× with α2 = 1 such that
the global epsilon factor, ε(Π̃⊗ α) = 1. It may be instructive to recall the proof.

Proof. The proof of this remark is a direct consequence of Proposition 10.2 according to which

ε(π ⊗ µ)
µ(−1)

takes both the values ±1 if π is a discrete series representation of PGL2(Fv0).
If ε(Π̃) = 1, we can take α= 1. Else, ε(Π̃) =−1. In this case, use Proposition 10.2 at the

place v0 of F where π = π0 is given to be a discrete series representation, to change the value of
ε(π ⊗ µ)/µ(−1), so that ε(π ⊗ µ)/µ(−1) =−ε(π). Now let α be a quadratic character of A×F /F

×

which is µ at the place v0 of F , which is equal to 1 at the finite set of places of F where Π is not
a principal series representation. Noting that for π a principal series,

ε(π ⊗ µ)
µ(−1)

= ε(π),

we find that

ε(Π̃⊗ α) =
ε(Π̃⊗ α)
α(−1)

=−ε(Π̃) = 1,

completing the proof of the remark. 2

Remark. Similarly, Proposition 10.2 implies that if we are given two automorphic representations
Π1 and Π2 of PGL2(AF ), such that there are two distinct places v1 and v2 of F such that Π1 at
v1 is a discrete series but Π2 is a principal series at v1, and similarly, Π2 at v2 is a discrete series
but Π1 is a principal series at v2, then there are quadratic characters α of A×F /F

× such that,

ε(Π1 ⊗ α) = ε(Π2 ⊗ α) = 1.

However, if Π1 and Π2 have discrete series components at the same set of primes (or on an empty
set of primes), then this method does not work. In our work, we have to deal with Conjecture 1.3
on simultaneous non-vanishing of twists of L-values for Π1 and Π2 which are themselves twists
of each other, where it may not be possible to use discrete series components to achieve

ε(Π1 ⊗ α) = ε(Π2 ⊗ α) = 1,

as can be seen through simple examples. In Lemma 10.1, we have managed to make two global
epsilon factors 1 after twisting, under the hypothesis of local distinction at all the places of F .
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11. Local-global principle for toric periods

Let E be a quadratic extension of a number field F . Fix an embedding of E× in GL2(F ),
and hence an embedding of E1 into SL2(F ). Let Π =⊗Πv be an automorphic representation of
SL2(AF ). The group A×F sitting inside GL2(AF ) as(

x 0
0 1

)
operates on SL2(AF ) via conjugation action, and therefore on the set of isomorphism classes
of representations of SL2(AF ). The orbit of Π under the action of A×F is precisely the global
L-packet of representations of SL2(AF ) containing Π. Let GΠ ⊂ A×F , GΠ =

∏
Gv, be the stabilizer

of the representation Π =⊗Πv, where Gv is the stabilizer inside F×v of the representation Πv.
The action of F× on SL2(AF ) is transitive on the set of automorphic representations of

SL2(AF ) contained in the global L-packet determined by Π. Clearly if Π has a nonzero period
integral on the given embedding of E1(AF ) in SL2(AF ), then so will all its conjugates under
N(E×). If we can prove that these are the only automorphic representations of SL2(AF ) which
have local periods with respect to E1(Fv) for all places v of F , we will have proved the local-
global principle for toric periods. However, the proof in the toric case will not be so simple, and
will depend on using another related group GL+

2 (AF ), defined as follows:

GL+
2 (AF ) = {g ∈GL2(AF ) | det g ∈ N(A×E)}.

We will prove that the part of the L-packet of SL2(AF ) determined by the restriction of an
irreducible automorphic representation Π+ of GL+

2 (AF ) has the local-global property if Π+ is
globally distinguished by a quadratic character of A×F .

Theorem 11.1. Suppose Π+ is an irreducible cuspidal representation of GL+
2 (AF ) which is

globally A×E distinguished by a quadratic character ω of A×F /F
×; i.e., by the character ω ◦ N of

A×E/E
×. Then any automorphic representation of SL2(AF ) contained in the restriction of Π+

has nonzero period integral on A1
E/E

1.

Proof. Define groups analogous to the ones defined in § 7:

H0 = A×F ,
H1 = N(A×E)GΠ,

H2 = F×GΠ,

H3 = N(E×)GΠ.

Let Π be an automorphic representation of SL2(AF ) contained in Π+ =⊗vΠ+
v which is

globally distinguished by A1
E ; its existence follows from Proposition 3.3. It is clear that

automorphic representations of SL2(AF ) of the form H3 ·Π are globally distinguished by A1
E ,

whereas representations of the form H1 ·Π are all the irreducible components of Π+ restricted
to SL2(AF ), and among these, representations of the form H2 ·Π are automorphic. Thus the
following result proves the theorem. 2

Theorem 11.2. The group (H1 ∩H2)/H3 is trivial.

Proof. We will prove that (H1 ∩H2)/H3 is trivial by proving that its character group is trivial.
Noting that (H1 ∩H2)/H3 is nothing but the kernel of the map,

H1/H3→H0/H2,
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the character group of (H1 ∩H2)/H3 is the cokernel of the natural map

X(H0/H2)→X(H1/H3).

Therefore to prove the theorem, it suffices to prove the surjectivity of the natural map

X(H0/H2)→X(H1/H3).

Equivalently, we need to prove that a character of (N(A×E)GΠ)/[N(E×)GΠ], can be extended to
a Grössencharacter of A×F /F

× which is a self-twist of Π̃.
Since GΠ and hence N(E×)GΠ is an open subgroup of A×F , A×F /[N(E×)GΠ] is a discrete

group, hence a character χ of [N(A×E)GΠ]/[N(E×)GΠ] can be thought of as a character of
A×F /[N(E×)GΠ], so that Π̃∼= Π̃⊗ χ. Our aim is to eventually get one which is a Grössencharacter.

Let BC(Π̃) denote the base change lift of the representation Π̃ of GL2(AF ) to GL2(AE). By
local considerations, it is clear that

BC(Π̃)∼= BC(Π̃⊗ χ)∼= BC(Π̃)⊗ χ ◦ N. (4)

Note that although we do not know that χ is a Grössencharacter on A×F /F
×, but since it

is trivial on N(E×), the character χ ◦ N of A×E is a Grössencharacter on A×E/E
×. Further, the

Grössencharacter χ ◦ N on A×E/E
× is naturally Galois-invariant. Therefore, the Grössencharacter

χ ◦ N on A×E/E
× can be descended to a Grössencharacter, say µ on A×F /F

×, i.e.,

χ ◦ N = µ ◦ N.

So (4) can be rewritten as

BC(Π̃)∼= BC(Π̃⊗ χ)∼= BC(Π̃)⊗ χ ◦ N∼= BC(Π̃)⊗ µ ◦ N∼= BC(Π̃⊗ µ). (5)

This gives
BC(Π̃)∼= BC(Π̃⊗ µ).

Just like the previous case dealing with the Asai lift (cf. Theorem 6.5), appealing now to
the (this time, much better known) theorem about fibers of the base change map, we find that
either:

(i) Π̃∼= Π̃⊗ µ; or
(ii) Π̃⊗ ω

E/F
∼= Π̃⊗ µ.

In case (i), the character µ is trivial on GΠ (by the very definition of GΠ), and since
χ ◦ N = µ ◦ N, we find that χ and µ are the same on the subgroup N(A×E) of A×F , therefore
the character µ on A×F /F

× is the desired extension of the character χ initially defined on
(N(A×E)GΠ)/[N(E×)GΠ].

In case (ii), the character µω
E/F

is trivial on GΠ, and since χ ◦ N = µ ◦ N, we find that χ and
µω

E/F
are the same on the subgroup N(A×E) of A×F , therefore the character µω

E/F
on A×F /F

× is
the desired extension of the character χ initially defined on (N(A×E)GΠ)/[N(E×)GΠ]. 2

It may be useful to isolate a fact of independent interest from the above proof which was
actually the crux of the argument for the proof of Theorem 11.1.

Theorem 11.3. Suppose Π+ is an irreducible cuspidal representation of GL+
2 (AF ). Then

E× ⊂GL+
2 (AF ) acts transitively on the set of automorphic representations of SL2(AF ) contained

in the restriction of Π+.

Theorem 11.1 holds true in the analogous division algebra case, and the proof is the same
after we have noted that the group H0 = A×F , which is used as a subgroup of GL2(AF ), can also
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be treated as a quotient group via the determinant map, and then it once again operates on
SL2(AF ) via conjugation, well-defined up to inner-automorphisms, so also on its representations;
this then allows one to define H0 for D×(AF ) as the image of the reduced norm mapping, and
H1, H2, H3 as subgroups of this norm mapping. The appeal to base change from GL2(AF ) to
GL2(AE) in the previous argument can now be done using Jacquet–Langlands correspondence
from automorphic representations of D×(AF ) to automorphic representations of GL2(AF ) and
then to GL2(AE). We state this as the following theorem.

Theorem 11.4. Let D be a quaternion algebra over a number field F , and E a quadratic
extension of F contained in E. Let D+(AF ) be the subgroup of D×(AF ) consisting of those
elements with reduced norm in N(A×E). Suppose Π+ is an irreducible cuspidal representation
of D+(AF ) which is globally A×E-distinguished by a quadratic character ω of A×F /F

×; i.e., by
the character ω ◦ N of A×E/E

×. Then any isotypical piece of automorphic representations of
SL1(D)(AF ) contained in the restriction of Π+ has a nonzero period integral on A1

E/E
1.

The strategy in the present paper to come to grips with those automorphic representations of
SL2(AF ) in a given global L-packet which have nonzero period integral for a given embedding
of E1(AF ) inside SL2(AF ) is to prove that such global packets which have no local obstructions
for non-vanishing are conjugate to each other by an element of NE× ⊂ F× instead of just being
conjugate by F×, which is the case as they belong to the same L-packet. The following lemma
suggests that this strategy will not succeed in the presence of certain principal series components,
which one may call supersingular primes, being analogues of supersingular primes for elliptic
curves.

Lemma 11.5. Let K be a quadratic unramified extension of a local field k of odd residue
characteristic. Let µ be an unramified character of k× of order 4 with µ2 = ωK/k. Then
the principal series representation π = Ps(µ, µωK/k) of GL2(k) decomposes as a sum of two

irreducible representations π+ and π− when restricted to GL+
2 (k) in which π+ is the one which

is spherical, i.e., contains a vector fixed under GL2(Ok). Fix an embedding of K× in GL+
2 (k)

such that K× ⊂ k× ·GL2(Ok). Then the trivial representation of K× appears in π+, and the
ramified character of order 2 of K×/k× appears in π−.

Proof. Let $ be a uniformizing element in k, and Ok,OK be respectively the maximal compact
subrings of k and K. Since K× ⊂ k× ·GL2(Ok), π+ has trivial central character, and π+ has a
vector fixed under GL2(Ok), the trivial representation of K× appears in π+. The representation
π− is obtained from π+ by conjugating by the matrix,(

$ 0
0 1

)
,

hence it is clear that π− has a subrepresentation on which

Γ0($) =
{(

a b
c d

)
∈GL2(Ok)

∣∣∣∣$|c}
acts trivially. This means that π− must contain the Steinberg representation of GL2(Fq) where
Fq is the residue field of k as the Steinberg is the only non-trivial irreducible representation of
PGL2(Fq) with a fixed vector under the group of upper triangular matrices. Since the Steinberg
representation contains all non-trivial characters of F×q2/F

×
q , the conclusion about the ramified

character of order 2 of K×/k× appearing in π− follows. 2
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It should be noted that for an automorphic representation Π̃ of GL2(AF ) of trivial central
character, at a place v0 of odd residue characteristic where Π̃0 is unramified, the representation Π̃0

decomposes when restricted to GL+
2 (F0) if and only if Π̃0 is as in the previous lemma, i.e.,

the principal series representation π = Ps(µ, µωK/k) with µ2 = ωK/k. These are what are called
supersingular primes in the classical language, and are interpreted by vanishing of the Fourier-
coefficient: av = 0. It is expected that for non-CM modular forms of weight >4, there are only
finitely many supersingular primes (for arbitrary F ); for example, a famous conjecture of Lehmer
asserts that there are no supersingular primes for the Ramanujan Delta function. Thus the
following theorem is not without content, although its applicability at the moment is only
theoretical; besides, its proof also depends on Conjecture 1.3 about simultaneous non-vanishing
of L-values.

Theorem 11.6. Assume Conjecture 1.3. Let Π̃ be an automorphic representation of GL2(AF )
with trivial central character, and with a discrete series local component at an odd place, say
v0, and only finitely many supersingular primes. Then any automorphic representation Π+ of
GL+

2 (AF ) contained in Π̃ which is locally distinguished by E1(AF ) is globally λ-distinguished
for a character λ of A×E/E

×A×F of order 2, and hence by Theorem 11.1, the local-global principle

holds for automorphic representations of SL2(AF ) contained in Π̃ for the subgroup A1
E .

Proof. Let S be a finite set of places containing all ramified places of Π̃, places of residue
characteristic 2, as well as infinite places, and all the supersingular primes which we are assuming
is a finite set. By the remarks above, the representation Π̃v remains irreducible when restricted to
GL+

2 (Fv) for places v outside S. Since Π+ is locally distinguished by E1(AF ), it is λv-distinguished
for some characters λv of F×v of order 62. Globalize these characters λv for v in S to a quadratic
character λ of A×F /F

× for which we then know that Π+ is locally λ-distinguished at all places of F
because of an easy observation that an irreducible principal series representation of PGL2(Fv) is
λv-distinguished for any quadratic character λv of E×v /F

×
v . By Lemma 10.1, there are quadratic

characters η of A×F /F
× matching with λ at places in S\{v0} such that the following global epsilon

factors are 1:

ε(Π̃⊗ η) = ε(Π̃⊗ ηω
E/F

) = 1.

We are then in the context of Conjecture 1.3 which gives a character µ of A×F /F
× of order 2

matching with η at all places of S such that

L(1
2 , Π̃⊗ µ) 6= 0,

L(1
2 , Π̃⊗ µωE/F ) 6= 0.

Since Lemma 10.1 also guarantees

ε(Π̃v ⊗ ηv)ε(Π̃v ⊗ ωvηv) = ε(Π̃v ⊗ λv)ε(Π̃v ⊗ ωvλv)

at each place v of F , by the Saito–Tunnell theorem, we see that Π̃v0 is both ηv0-distinguished and
λv0-distinguished even if ηv0 6= λv0 . By the theorem of Waldspurger, the above non-vanishing of
L-values then implies that Π̃ is globally µ-distinguished. By local multiplicity one, this is enough
to conclude that Π+ is globally µ-distinguished, provided we know that Π+

v0 is µv0-distinguished.
We prove that Π+

v0 is µv0-distinguished by proving that both the characters of E×v /F
×
v E

×2
v appear

on the same component of the restriction of Π̃v to GL+
2 (Fv) (so the possible difference between

µ and λ at v0 has no consequence for the question of distinction), and this follows from the
following lemma. 2
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Lemma 11.7. Let E/F be a quadratic extension of p-adic fields with p odd. Let π+ be
a supercuspidal representation of GL+

2 (F ) of trivial central character which is distinguished
with respect to E1. Additionally, let π̃ be a supercuspidal representation of GL2(F ) which is
distinguished with respect to E× such that π+ occurs in the restriction of π̃ to GL+

2 (F ). Then
the multiplicity of the trivial representation of E1 in π+ is 2.

Proof. Note that since p is odd, we have E×/F×E×2 = Z/2, and we claim that both the
characters of E×/F×E×2 do appear in π̃. By Proposition 10.3(iii), π̃ is α ◦ Nm-distinguished
with respect to E× for a quadratic character α of F× if and only if α ∈Xν,ν′ with νν ′ = 1. Now
by our assumption π̃ is distinguished with respect to E× and therefore we conclude that 1 ∈X++.
By Proposition 10.4, X−− 6= ∅, and we can choose a character γ ∈X−−. It follows that γ ◦ Nm
is the non-trivial character of E×/F×E×2 and that π̃ is γ ◦ Nm-distinguished with respect to
E×. This proves the claim. Thus if π̃ does not split into a direct sum of two representations on
GL+

2 (F ), the assertion of the lemma is obvious.
So we assume that π̃ restricts to π+ ⊕ π− on GL+

2 (F ). We need to show that π+ is µ-
distinguished as well, where µ is the non-trivial character of E×/F×E×2. In this case, π̃
corresponds to a monomial representation of WF of the form IndWF

WE
χ for a character χ : E×→ C×

with χ|
F×

= ω
E/F

. By the extension of the Saito–Tunnell theorem to GL+
2 (F ) due to the second

author [Pra94, Theorem 1.2], what we need to show is that

ε(χµ, ψ) = ε(χ, ψ),

where we take ψ to be a non-trivial character of E/F . Note that we can take ψ to be unramified,
i.e., trivial on OE but not on $−1

E OE .
We will prove the above equality by making use of a theorem of Fröhlich–Queyrut [FQ73,

Theorem 3], according to which ε(τ, ψ) = 1 if τ |
F×

= 1, as well as the behaviour of degree one
epsilon factors under unramified character twists. In the following, f(χ) denotes the conductor
of the multiplicative character χ.

Since χ|
F×

= ω
E/F

, we have

ε(χω̃, ψ) = 1

by the theorem of Fröhlich–Queyrut, where ω̃ denotes an extension of ω
E/F

to E×. Suppose E/F
is unramified. Then, it follows that

ε(χ, ψ) = (−1)f(χ),

as we can choose ω̃ to be unramified. Similarly, we obtain

ε(χµ, ψ) = (−1)f(χµ).

Thus if f(χ)> 1, then f(χµ) = f(χ) and the equality of the epsilon factors follows. The case
f(χ) = 0 does not arise since this would mean that χ= χσ which is not possible since π̃ is
supercuspidal. If f(χ) = 1, we claim that once again f(χµ) = f(χ), as the only other option
is f(χµ) = 0, and this also implies that χ= χσ since µ= µσ by the uniqueness of the quadratic
character of E×/F×E×2.

Now suppose E/F is ramified. This forces µ to be unramified. Therefore,

ε(χµ, ψ) = (−1)f(χ)ε(χ, ψ),

and thus we only need to note that f(χ) is even by our assumptions. Indeed, f(χ) is either even
or 1 since E/F is ramified and χ|

F×
= ω

E/F
, and f(χ) = 1 is ruled out when q ≡ 1 mod 4 since

in this case, χ is forced to be Galois-invariant, hence π̃ cannot be supercuspidal. Also, q cannot
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be 3 mod 4, since in that case π̃ is neither distinguished nor µ-distinguished as can be seen by
an application of the Saito–Tunnell theorem. 2

Note that the above proof goes through and proves an analogous lemma in the division algebra
case except that at the very last step, when E/F is ramified and q ≡ 3 mod 4, ε(χµ, ψ) =−ε(χ, ψ)
if f(χ) = 1. However, for purposes of the local-global principle this is no problem: if a character
χ of F× thought of as a character of E× through the norm mapping appears in a representation
π+ of D+, then clearly so does χω

E/F
(being the same character of E×). For q ≡ 3 mod 4,

ε(π̃ ⊗ χ)
χ(−1)

=−
ε(π̃ ⊗ χω

E/F
)

χ(−1)ωE/F (−1)
.

This gives the required change of sign argument used earlier to prove the local-global principle for
E1(AF ) contained in SL1(D)(AF ), assuming finitely many supersingular primes, Conjecture 1.3
and one odd prime where the representation is discrete series; we omit the details.

Remark. To prove Theorem 11.6 without the finiteness condition on supersingular primes, we
will need a finer version of Conjecture 1.3 which has allowed us the existence of the quadratic
character η at the end of this theorem. The refinement would seek to construct η with prescribed
behaviour inside S, which is unramified at those places outside S where Π is supersingular. This
is because, as we noted earlier, the behaviour of η outside of S and the supersingular primes
does not matter for distinction questions as the representation Πv of GL2(Fv) remains irreducible
when restricted to GL+

2 (Fv). At least in the non-CM case, since the supersingular set is rather
‘thin’, one hopes that this strengthening may be possible.

12. A final remark

The two cases of the local-global principle studied in the paper relied on the Asai lift and
the base change map. One part of the argument had to do with the fibers of these functorial
maps. The other part consisted in proving that for E/F a quadratic extension of number
fields, certain characters of A×E whose restriction to A×F are Grössencharacters are themselves
Grössencharacters, if we know certain properties of these characters under base change or Asai
lift as the case may be. It seems worthwhile to isolate these as questions. Before we do this, it
must be added that at the moment, automorphy of the tensor product Π�Π′, or of the Asai
lift, is known only in certain cases, so either the questions below could be asked for only those
cases, or we should be willing to grant these in general.

Question. Suppose E is a number field, and Π =⊗Πv is an irreducible admissible representation
of GLn(AE), and Π′ =⊗Π′v is an automorphic representation of GLm(AE).

(i) Suppose that Π�Π′ is automorphic. Then is there an automorphic representation Π′′

of GLn(AE) with Π′′ �Π′ ∼= Π�Π′? What are the various automorphic representations Π′′ of
GLn(AE) with this property? (This part of the question generalizes the notion of self-twists of
automorphic representations.)

(ii) Suppose that BC(Π�Π′) is automorphic. Then is there an automorphic representation
Π′′ of GLn(AE) with BC(Π′′ �Π′)∼= BC(Π�Π′)?

(iii) Suppose that As(Π) is automorphic. Then is there an automorphic representation Π′′

of GLn(AE) with As(Π′′)∼= As(Π)? What are the various automorphic representations Π′′ of
GLn(AE) with this property?
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Remark. We remark that Blasius [Bla94] has constructed examples of automorphic
representations Π1 and Π2 on GLn(AF ) which are locally twists of each other at all places
of F , but are not globally twists of each other by a Grössencharacter. This means that the
answer to question (i) above is not always positive. This negative solution to question (i) is
itself rather interesting; however, we are asking if there are ways of making it into a positive
answer, by dictating either local or global conditions on Π′. A very specific suggestion would
be to ask if question (i) has an affirmative answer if we assume that Π′ has a local component
which is a Steinberg representation. We do not know if there are automorphic representations
Π1 and Π2 on GLn(AF ) which are locally twists of each other at all (or, almost all) places of
F , have a Steinberg local component say in Π1, but are not globally twists of each other by a
Grössencharacter.
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