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Abstract. A new family of zerofree region of the Riemann Zeta-function ζ is
identified by using Turán’s (P. Turán, Eine neue Methode inter Analysis und deren
Anwendungen (Akadémiai Kiadó, Budapest, Hungary, 1953); Analytic number theory,
Proc. Symp. Pure Math., vol. XXIV (Amer. Math. Soc. Providence, RI, 1972))
localization criterion linking zeros of ζ with uniform local suprema of sets of Dirichlet
polynomials expanded over the primes. The proof is based on a randomization
argument. An estimate for local extrema for some finite families of shifted Dirichlet
polynomials is established by preliminary considering their local increment properties
by means of Montgomery–Vaughan’s variant of Hilbert’s inequality. A covering
argument combined with Turán’s localization criterion allows to conclude.

2010 Mathematics Subject Classification. Primary: 11M26; Secondary: 26D05,
60G17.

1. Main Result. The question of the existence of an eventual explicit relation
between the zeros of the Riemann Zeta function ζ (s), s = σ + it and the prime
numbers was raised by Landau in [1]. Motivated by Landau’s remark, Turán [3, 4,
Chapters 33–36] had much investigated the connection between zerofree regions of
ζ and local bounds of Dirichlet polynomials expanded over the primes. Among the
several strong localization results stated in [4], the following semi-global criterion
(Theorem 3’) is of particular relevance in the present work.

Turán’s Localization Criterion. Let D be some positive real and 0 < E ≤ 9/10. Suppose
there exist positive reals T, β, 0 < β < 1 such that for T − TE ≤ τ ≤ T + TE, the
inequality

∣∣∣ ∑
N1≤p≤N2

p−iτ
∣∣∣ ≤ c

N log10 N
τβ

, (1.1)

holds for

TD(1−β1/6) ≤ N ≤ N1 < N2 ≤ 2N ≤ TD(1+β1/6),

where c stands for positive numerical, explicitely calculable constant.
Then ζ (s) �= 0 in the parallelogram σ > 1 − β2, T − TE ≤ t ≤ T + TE.
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In this paper, we show by using a local randomization argument that Turán’s [3,
4] approach for localizing zeros of ζ is sufficiently powerful to permit to identify a
completely new semi-global zerofree region.

Our main result states the following:

THEOREM 1.1. Let 0 < α∗ < 1. There exist 1/2 < σ0 < 1, B ≥ 4, ν0 < ∞, such that:
For all ν ≥ ν0, there exists at least α∗ 2Bν+1 indices j for which

ζ (σ + it) �= 0 ∀σ ≥ σ0, ∀t ∈ [22Bν + (j − 1)2Bν−1, 22Bν + j2Bν−1[.

It follows from the proof that any value σ0 > 1 − 1/(19)12 is, for instance, suitable.
The same approach permits to get only slightly better thresholds.

In order to bound |∑N1≤p≤N2
p−iτ | uniformly over a family of suitable segments

[N1, N2] of the real line, we use an approach which can be described as follows. Let
ϕ1, . . . , ϕN be distinct reals. Consider a finite family of Dirichlet polynomials Ps(t) =∑N

n=1 cs
neitϕn , s ∈ S, cs

1, . . . , cs
N being complex numbers. Instead of directly searching a

bound of supS |Ps(t)| uniformly in t over some finite interval L, we operate with the
shifted Dirichlet polynomials,

Ps
θ (t) =

N∑
n=1

cs
nei(θ+t)ϕn , (1.2)

where θ belongs to some fixed interval J. Given some interval L, {Ps
θ (t), s ∈ S, t ∈

L, θ ∈ J} is up to some extent interpreted at an intermediate stage of the proof as
a random process built on J (θ being treated as a random parameter), of which
we estimate the increments by means of variant form of Hilbert’s inequality due to
Montgomery and Vaughan, and next control suprema, namely here supt∈L supS |Ps

θ (t)|,
by using its smoothness properties.

Another step is devoted to carefully adjusting some inherent family of parameters
to apply Turán’s [3, 4] result. Once this is achieved, a family of intervals (Iθ )θ free
of zeros is exhibited. The family is indexed by a measurable set of θ ’s of controlable
positive measure. Finally, a covering argument allows to establish the existence of a
semi-global region. This is the strategy we apply.

2. Local Mean Value Results. In the sequel, the parameter s disappears since
coefficients cs

1, . . . , cs
N used are simple subsets from a fixed set defined later on. Let q

be some positive integer and denote

Eq = {k = (k1, . . . , kN); ki ∈ � ∪ {0} : k1 + . . . + kN = q}.
Let ϕ1, . . . , ϕN be linearly independent reals. Introduce a coefficient of linear spacing
of order q by putting

ξϕ(N, q) = inf
h,k∈Eq

h�=k

∣∣(h1 − k1)ϕ1 + . . . + (hN − kN)ϕN
∣∣.

By assumption ξϕ(N, q) > 0 and ξϕ(N, 1) = inf{|ϕi − ϕj| : i �= j}. In the case ϕn =
log pn, pn denoting the nth consecutive prime, we have the classical estimate ξϕ(N, q) ≥
p−q

N , see proof before (2.13).
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We estimate the local increments of P. defined in (1.2). Let J be a bounded
interval and let |J| denote its length. Let mJ denote the normalised Lebesgue measure
on J. With the notation (1.2), if J = [a, b] then ‖P.(t) − P.(s)‖mJ ,2q and ‖P.(t)‖mJ ,2q

respectively denote

( 1
b − a

∫ b

a

∣∣P(θ + t) − P(θ + s)
∣∣2qdθ

)1/2q
,

( 1
b − a

∫ b

a

∣∣P(θ + t)
∣∣2qdθ

)1/2q
.

Introduce the stationary metric on the real line defined by

d(s, t) = dN(s, t) :=
(

2
N∑

n=1

|cn|2
∣∣ sin

(t − s)ϕn

2

∣∣2

)1/2

.

In the proposition below, ξ is a simpler notation for ξϕ(N, q).

PROPOSITION 2.1. (a) For any reals s and t,

∥∥P.(t) − P.(s)
∥∥

mJ ,2q ≤
(

q! + 2 min(Nq, πq!)
|J|ξ

)1/2q
d(s, t);

and

∥∥P.(t)
∥∥

mJ ,2q ≤
(

q! + 2 min(Nq, πq!)
|J|ξ

)1/2q( N∑
n=1

|cn|2
)1/2

.

By taking J = [−T, T ], t = 0 in the last estimate, we deduce the following.

COROLLARY 2.2. We have the following bound

1
2T

∫ T

−T

∣∣∣ N∑
n=1

cneiθϕn

∣∣∣2q
dθ ≤ q!

(
1 + 2π

Tξϕ(N, q)

)( N∑
n=1

|cn|2
)q

.

In particular,

1
2T

∫ T

−T

∣∣∣ ∑
p≤N

cp

piθ

∣∣∣2q
dθ ≤ q!

(
1 + 2πNq

T

)( ∑
p≤N

|cp|2
)q

.

Now put

B = Bϕ(J, N, q) =
[
q!

(
1 + 2π

|J|ξϕ(N, q)

)]1/2q
.

THEOREM 2.3. Let ϕ̃N = supn≤N |ϕn|. There exists a constant Cq depending on q
only such that for any interval L,

∥∥ sup
t∈L

|P.(t)|
∥∥

mJ ,2q ≤ Cq B max
{

1, |L|ϕ̃N

}1/2q
{[ N∑

n=1

|cn|2
]1/2

+ min
(
|L|, 1

ϕ̃N

)[ N∑
n=1

|cn|2ϕ2
n

]1/2
}
.
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Proof of Proposition 2.1. Let J = [d, d + T ]. Write more shortly ξ = ξϕ(N, q).
Plainly,

(
P(θ + t) − P(θ + s)

)q =
(

N∑
n=1

cneiθϕn
(
eitϕn − eisϕn

))q

=
∑
k∈Eq

q!
k1! . . . kN !

N∏
n=1

ckn
n eiθknϕn

(
eitϕn − eisϕn

)kn
.

Put γn = eitϕn − eisϕn . Thus,∣∣P(θ + t) − P(θ + s)
∣∣2q

=
∑

k,h∈Eq

(q!)2

k1!h1! . . . kN !hN !

N∏
n=1

ckn
n cn

hn eiθ(kn−hn)ϕnγ kn
n γ hn

n

=
∑
k∈Eq

( q!
k1! . . . kN !

)2 N∏
n=1

(|cn||γn|)2kn + R(θ ), (2.1)

where

R(θ ) =
∑
k,h∈Eq

k�=h

( (q!)2

k1!h1! . . . kN !hN !

) N∏
n=1

(cnγn)kn (cnγn)hn eiθ(kn−hn)ϕn . (2.2)

Owing to linear independence,
∑N

n=1(kn − hn)ϕn = 0 iff kn = hn, n = 1, . . . , N. By
integrating

1
T

∫
J

∣∣P(θ + t) − P(θ + s)
∣∣2qdθ =

∑
k∈Eq

( q!
k1! . . . kN !

)2 N∏
n=1

(|cn||γn|)2kn

+
∑
k,h∈Eq

k �=h

(q!)2

k1!h1! . . . kN !hN !

N∏
n=1

(cnγn)kn (cnγn)hn

×
[

ei(d+T)
∑N

n=1(kn−hn)ϕn − eid
∑N

n=1(kn−hn)ϕn

iT(
∑N

n=1(kn − hn)ϕn)

]
. (2.3)

Put

ck =
N∏

n=1

(cnγnei(d+T)ϕn )kn

kn!
, dk =

N∏
n=1

(cnγneidϕn )kn

kn!
, lk =

N∑
n=1

knϕn.

Then

1
T

∫
J

∣∣P(θ + t) − P(θ + s)
∣∣2qdθ

= q!2
∑
k∈Eq

|dk|2 + (q!)2

iT

{ ∑
k,h∈Eq

k �=h

ckch

lk − lh
−

∑
k,h∈Eq

k�=h

dkdh

lk − lh

}
. (2.4)
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Each of the two claimed bounds will now be deduced from either Hilbert’s
inequality or the Cauchy–Schwarz inequality. Recall Hilbert’s inequality [2, p. 138]:

Let λ1, . . . , λN be distinct real numbers, and suppose δ > 0 is chosen so that |λm −
λn| ≥ δ whenever n �= m. Then,

∣∣∣ ∑
1≤m,n≤N

n �=m

xmyn

λm − λn

∣∣∣ ≤ π

δ

( N∑
m=1

|xm|2
)1/2( N∑

n=1

|yn|2
)1/2

. (2.5)

We shall apply it under the following form: Let {xk, yk, k ∈ Eq}. Also, let {λk, k ∈ Eq} be
distinct real numbers such that min{|λk − λh|, k �= h} ≥ δ. Let ν = #{Eq} and consider
a bijection i : {1, . . . , ν} → Eq. By using (2.5)∣∣∣ ∑

k,h∈Eq
k�=h

xkyh

λk − λh

∣∣∣ =
∣∣∣ ∑

1≤u,v≤ν

u �=v

xi(u)yi(v)

λi(u) − λi(v)

∣∣∣
≤ π

δ

( ∑
1≤u≤ν

|xi(u)|2
)1/2( ∑

1≤v≤ν

|yi(v)|2
)1/2

= π

δ

( ∑
k∈Eq

|xk|2
)1/2( ∑

h∈Eq

|yh|2
)1/2

. (2.6)

By applying Hilbert’s inequality to each of the two sums of the right-term in (2.4)
in parenthesis, we obtain

(q!)2

T

∣∣∣∣ ∑
k,h∈Eq

k �=h

ckch

lk − lh
−

∑
k,h∈Eq

k �=h

dkdh

lk − lh

∣∣∣∣ ≤ 2π (q!)2

Tξ

∑
k∈Eq

|dk|2 ≤ 2πq!
Tξ

d(s, t)2q, (2.7)

since

(q!)2
∑
k∈Eq

|dk|2 =
∑

k1+...+kN=q

[ q!
k1! . . . kN !

]2 N∏
n=1

|cnγn|2kn

≤ q!
∑

k1+...+kN=q

q!
k1! . . . kN !

N∏
n=1

|cnγn|2kn = q!
[ N∑

n=1

|cnγn|2
]q

= q!
[ N∑

n=1

|cn|2|eitϕn − eisϕn |2
]q

= q!
[
4

N∑
n=1

|cn|2| sin
(t − s)ϕn

2
|2

]q
= q! d(s, t)2q. (2.8)

Similarly as before,

∑
k∈Eq

( q!
k1! . . . kN !

)2 N∏
n=1

|cn|2kn
∣∣eitϕn − eisϕn

∣∣2kn ≤ q!
[ N∑

n=1

|cnγn|2
]q

= q!d(s, t)2q. (2.9)

By substituting in (2.4), we therefore get

1
T

∫
J

∣∣P(θ + t) − P(θ + s)
∣∣2qdθ ≤ q!

(
1 + 2π

Tξ

)
d(s, t)2q. (2.10)
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Without Hilbert’s inequality, it is possible to arrive to a similar result. We have with
(2.2) and (2.8)

1
T

∫
J

∣∣P(θ + t) − P(θ + s)
∣∣2qdθ ≤ q!d(s, t)2q

+
∑
k,h∈Eq

k �=h

(q!)2

k1!h1! . . . kN !hN !

N∏
n=1

(cnγn)kn (cnγn)hn ·
∣∣∣ eiT

∑N
n=1(kn−hn)ϕn − 1

iT(
∑N

n=1(kn − hn)ϕn)

∣∣∣

≤ q!d(s, t)2q + 2
Tξ

(
2

N∑
n=1

|cn sin
(t − s)ϕn

2
|
)q(

2
N∑

n=1

|cn sin
(t − s)ϕn

2
|
)q

= q!d(s, t)2q + 2
Tξ

(
2

N∑
n=1

|cn sin
(t − s)ϕn

2
|
)2q

≤
(

q! + 2Nq

Tξ

)
d(s, t)2q,

where we used the Cauchy–Schwarz inequality for getting the last estimate. Combining
the two last estimates gives

1
T

∫
J

∣∣P(θ + t) − P(θ + s)
∣∣2qdθ ≤

(
q! + 2 min(Nq, πq!)

Tξ

)
d(s, t)2q. (2.11)

Hence, the first in assertion (a). The same proof also yields mutatis mutandis

1
T

∫
J

∣∣P(θ + s)
∣∣2qdθ ≤

(
N∑

n=1

|cn|2
)q (

q! + 2 min(Nq, πq!)
Tξ

)
. (2.12)

We start with

P(θ + t)q =
(

N∑
n=1

cneiθϕn eitϕn

)q

=
∑
k∈Eq

q!
k1! . . . kN !

N∏
n=1

ckn
n eiθknϕn eitϕnkn

and put this time γn = eitϕn . Then all calculations made after (2.1) remain valid. �
Proof of Corollary 2.2. The first assertion is immediate. As for the second, we have

to estimate

ξϕ(N, q) = inf
h,k∈Eq

h�=k

∣∣(h1 − k1)ϕ1 + . . . + (hN − kN)ϕN
∣∣,

when ϕn = log pn. Let � = h − k and put

P+ =
∏
�n>0

p�n
n , P− =

∏
�n<0

p−�n
n .

Let M be defined by pM ≤ N < pM+1. Note that P+ �= P− by assumption, and
max(P+, P−) ≤ pq

M . Suppose P+ > P−. Then,

∣∣�1ϕ1 + . . . + �NϕN
∣∣= ∣∣ log

N∏
n=1

p�n
n

∣∣= log
P+

P− ≥ log
(
1 + 1

P−
)

≥ log
(

1 + 1

pq
M

)
≥ 1

2pq
M

.
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The case P+ < P− is treated identically. Therefore,

ξϕ(N, q) ≥ 1

2pq
M

. (2.13)

And so it suffices to apply the first estimate to this case. �
Proof of Theorem 2.3. Consider a covering of L with intervals

Ij =
[

j
ϕ̃N

,
j + 1
ϕ̃N

]
j = j1, . . . , j1 + H.

Recall that Pθ (t) = ∑N
n=1 cnei(t+θ)ϕn , and let

Qθ (t) = i
N∑

n=1

cnϕnei(t+θ)ϕn .

Then d
dt Pθ (t) = Qθ (t). Now using the elementary identity f (β) − f (α) = ∫ β

α
f ′(t)dt, for

each t ∈ Ij, we have

|Pθ (t)| ≤ ∣∣Pθ

(
j
ϕ̃

) ∣∣ +
∫ 1/ϕ̃

0
|Qθ

(
j
ϕ̃

+ u
)

|du.

Moreover, using Hölder’s inequality we have

sup
t∈Ij

|Pθ (t)|2q ≤ cq
∣∣Pθ

(
j
ϕ̃

) ∣∣2q + cqϕ̃
1−2q

∫ 1/ϕ̃

0
|Qθ

(
j
ϕ̃

+ u
)

|2qdu.

Then,

sup
t∈L

|Pθ (t)|2q ≤ cq sup
j1≤j≤H

∣∣Pθ

(
j
ϕ̃

) ∣∣2q + cqϕ̃
1−2q

∫ 1/ϕ̃

0
sup

j1≤j≤H
|Qθ

(
j
ϕ̃

+ u
)

|2qdu

≤ cq

H∑
j=j1

∣∣Pθ

(
j
ϕ̃

) ∣∣2q + cqϕ̃
1−2q

∫ 1/ϕ̃

0

H∑
j=j1

|Qθ

(
j
ϕ̃

+ u
)

|2qdu,

and so

sup
t∈L

|Pθ (t)|2q ≤ cq

H∑
j=j1

∣∣Pθ

(
j
ϕ̃

) ∣∣2q + cqϕ̃
1−2q

∫ 1/ϕ̃

0

H∑
j=j1

|Qθ

(
j
ϕ̃

+ u
)

|2qdu.

Now integrating with respect to θ , and using Proposition 2.1 to bound each integral∫
J

∣∣Pθ

(
j
ϕ̃

) ∣∣2qdθ,

∫
J
|Qθ

(
j
ϕ̃

+ u
)

|2qdθ

gives the claimed result. �

3. Proof of Theorem 1.1. The constants appearing in Turán’s [3, 4] result (Section
1) are important. We have therefore explicited all constants appearing in our proof.
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We begin with applying Theorem 2.3 to

P(N1, N2, t) =
∑

N1≤p≤N2

p−it,

where N ≤ N1 < N2 ≤ 2N. We have ϕ̃N ≤ sup{log p, p ≤ 2N} ≤ C log N, and by using
(2.13),

B ≤
(

q!
[
1 + 2πpq

N1

|J|
])1/2q

≤ Cq max
(

1,
Nq

|J|
)1/2q

. (3.1)

Let L be such that |L| ≥ 1. Since π (2x) − π (x) ≤ x
log x for any integer x > 1, we have

π (N2) − π (N1) ≤ π (2N) − π (N) < N/ log N,

∑
N≤p≤2N

log2 p ≤ log2(2N)
∑

N≤p≤2N

1 ≤ N log2(2N)
log N

≤ CN log N.

We get

∥∥∥ sup
t∈L

∣∣P.(N1, N2, t)
∣∣∥∥∥

mJ ,2q
≤ Cq max

(
1,

Nq

|J|
)1/2q

(|L| log N)1/2q
{( N

log N

)1/2

+ 1
log N

( ∑
N≤p≤2N

log2 p
)1/2

}

≤ Cq

(
max

(
1,

Nq

|J|
)

|L| log N
)1/2q( N

log N

)1/2
(3.2)

so that if |J| ≤ Nq,

∥∥ sup
t∈L

∣∣P.(N1, N2, t)
∣∣∥∥

mJ ,2q ≤ Cq
N

(log N)1/2

( |L| log N
|J|

)1/2q
. (3.3)

The remaining part of the proof now consists of carefully adjusting the parameters to
apply Turán’s result (1.1).
Main parameters: (H, δ, q, B, ν, m, α). The constants H, δ, q, α are numerical and fixed.
These will produce the constant c in (1.1). See (3.14).

Let H ≥ 2 be some integer. Put

δ = H − 1
8H

q = 5
1 − 8δ

= 5H.

Then,

0 < δ < 1/8 and q >
4(δ + 1)
1 − 8δ

.

In addition, we set

B = 4qδ + 2(δ + 1),

and note that 2B = 8qδ + 4(δ + 1) < q.
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Now fix some positive integer ν and set

U = 2ν, J = [U2B, 2U2B], L = [UB, 8UB].

Let N = 2m with m ≥ ν. It follows that |J| = U2B ≤ Uq ≤ Nq. Then,

∥∥∥ sup
2m≤N1<N2≤2m+2

sup
t∈L

∣∣P.(N1, N2, t)
∣∣∥∥∥

mJ ,2q
≤ Cq

2m(1+1/q)

m1/2

( |L|m
|J|

)1/2q
. (3.4)

By Minkowski’s inequality∥∥∥ sup
ν≤m≤ν(1+δ)

sup
2m≤N1<N2≤2m+2

sup
t∈L

∣∣P.(N1, N2, t)
∣∣∥∥∥

mJ ,2q

≤
∥∥∥ ∑

ν≤m≤ν(1+δ)

sup
2m≤N1<N2≤2m+2

sup
t∈L

∣∣P.(N1, N2, t)
∣∣∥∥∥

mJ ,2q

≤ Cq

( |L|
|J|

)1/2q ∑
ν≤m≤ν(1+δ)

2m(1+1/q)m1/2q−1/2

≤ Cqν
1/2q−1/2

( |L|
|J|

)1/2q ∑
ν≤m≤ν(1+δ)

2m(1+1/q)

≤ 2Cqν
1/2q−1/22−(B/2q)ν2ν(1+δ)(1+1/q).

Now if U ≤ N ≤ N1 < N2 ≤ 2N ≤ U1+δ, choose ν ≤ m ≤ ν(1 + δ) such that 2m ≤
N < 2m+1. Then 2m ≤ N ≤ N1 < N2 ≤ 2N < 2m+2. Thus,∥∥∥ sup

U≤N≤N1<N2≤2N≤U1+δ

sup
t∈L

∣∣P.(N1, N2, t)
∣∣∥∥∥

mJ ,2q

≤
∥∥∥ sup

ν≤m≤ν(1+δ)
sup

2m≤N1<N2≤2m+2

sup
t∈L

∣∣P.(N1, N2, t)
∣∣∥∥∥

mJ ,2q

≤ 2Cq2ν[(1+δ)(1+1/q)−(B/2q)]ν1/2q−1/2

≤ 2Cq2[1−δ]νν1/2q−1/2 := M, (3.5)

since with our choices (1 + δ)(1 + 1/q) − B/2q = 1 − δ.

Next, let 0 < α < 1 be fixed and set μ(α) = 1/(1 − α)1/(2q). Set

J̃ =
{
θ ∈ J : sup

U≤N≤N1<N2≤2N≤U1+δ

t∈L

∣∣Pθ (N1, N2, t)
∣∣ ≤ μ(α)M

}
.

By the Tchebycheff inequality,

1
|J|λ{J\J̃} ≤ 1

|J|(μM)2q

∫
J

sup
U≤N≤N1<N2≤2N≤U1+δ

t∈L

∣∣Pθ (N1, N2, t)
∣∣2qdθ

≤ μ(α)−2q = 1 − α. (3.6)

Therefore, λ{J̃} ≥ α|J| and for all θ ∈ J̃,

sup
U≤N≤N1<N2≤2N≤U1+δ

t∈L

∣∣Pθ (N1, N2, t)
∣∣ ≤ 2μ(α)Cq2[1−δ]νν1/2q−1/2. (3.7)
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Pick some θ in J̃. Then,

sup
U≤N≤N1<N2≤2N≤U1+δ

τ∈θ+L

∣∣ ∑
N1≤p≤N2

1
piτ

∣∣ ≤ 2μ(α)Cq2ν(1−δ)ν1/2q−1/2

= 2μ(α)CqU1−δ(log U)1/2q−1/2

≤ 2μ(α)Cq
U(log U)1/2q−1/2

Uδ
. (3.8)

But if τ ∈ θ + L, τ ≤ 2U2B + 8UB ≤ 3U2B if U , namely ν is large enough. It follows
that Uδ ≥ Cτ δ/(2B).

Put

b := δ

2B
= δ

8qδ + 4(δ + 1)
.

We have obtained the following:

For all τ ∈ [θ + UB, θ + 8UB] and U ≤ N ≤ N1 < N2 ≤ 2N ≤ U1+δ,

∣∣ ∑
N1≤p≤N2

1
piτ

∣∣ ≤ 2μ(α)Cq
N(log N)1/2q−1/2

τ b
. (3.9)

A family of local zerofree regions: We use secondary parameters: δ0, D, b. Let

T = Tθ = θ + 3
√

θ.

We may assume θ ≥ 1. On the one hand,

T −
√

T = θ + 3
√

θ −
√

θ

√
1 + 3/

√
θ ≥ θ + 3

√
θ − 2

√
θ = θ +

√
θ ≥ θ + UB.

And on the other, since U2B ≤ θ ≤ 2U2B,

T +
√

T = θ + 3
√

θ +
√

θ

√
1 + 3/

√
θ ≤ θ + 5

√
θ ≤ θ + 5

√
2UB ≤ θ + 8UB.

Hence, [T − √
T, T + √

T ] ⊂ θ + L and estimate (3.9) is valid for T − √
T ≤ τ ≤ T +√

T . Further, as

U2B ≤ θ ≤ T = θ + 3
√

θ ≤ 2U2B + 3
√

2UB = U2B[2 + 3
√

2U−B] ≤ 7U2B,

it is also valid in the restricted range of values

T
1

2B ≤ N ≤ N1 < N2 ≤ 2N ≤
(T

7

) 1+δ
2B

. (3.10)

Now select a positive real δ0 such that

0 <
2δ0

1 − δ0
< δ.
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We note that 1 + δ − 1+δ0
1−δ0

= δ − 2δ0
1−δ0

> 0. Choose ν sufficiently large so that

2ν[δ− 2δ0
1−δ0

] ≥ 71+δ. Since 2B > 1, we have

T1+δ− 1+δ0
1−δ0 ≥ 22Bν(1+δ− 1+δ0

1−δ0
) ≥ 2ν[1+δ− 1+δ0

1−δ0
] = 2ν[δ− 2δ0

1−δ0
] ≥ 71+δ,

namely

(T
7

)1+δ

≥ T
1+δ0
1−δ0 .

Next, put

D = 1
2B(1 − δ0)

.

Then (3.10) implies the admissibility of the more suitable field of parameters

TD(1−δ0) = T
1

2B ≤ N ≤ N1 < N2 ≤ 2N ≤ TD(1+δ0) = T
1+δ0

2B(1−δ0) ≤
(T

7

) 1+δ
2B

. (3.11)

Estimate (3.9) then implies

∣∣ ∑
N1≤p≤N2

1
piτ

∣∣ ≤ 2μ(α)Cq
N(log N)1/2q−1/2

τ b
(3.12)

for all τ ∈ [T − T1/2, T + T1/2] and all TD(1−δ0) ≤ N ≤ N1 < N2 ≤ 2N ≤ TD(1+δ0).

Recall that 0 < δ < 1/8 and q = 5
1−8δ

. Thus,

B = 4qδ + 2(δ + 1) <
20δ

1 − 8δ
+ 9

4
= 80δ + 9 − 72δ

4(1 − 8δ)
= 8δ + 9

4(1 − 8δ)
<

5
2(1 − 8δ)

,

and

b = δ

2B
≥ δ(1 − 8δ)

5
.

In order that b1/6 ≥ δ0, it suffices that δ(1−8δ)
5 ≥ (δ/2)6, namely 1 − 8δ ≥ (5/26)δ5, which

is fulfilled if δ < 1/9, for instance, namely recalling that δ = H−1
8H if H < 9, which we

do.
Thus, b ≥ δ6

0 does hold, and (3.12) implies that the inequality

∣∣ ∑
N1≤p≤N2

1
piτ

∣∣ ≤ c
N(log N)1/2q−1/2

τ δ6
0

, (3.13)

with (recalling that μ(α) = 1/(1 − α)1/(2q))

c = 2μ(α)Cq, (3.14)

holds for all τ ∈ [T − T1/2, T + T1/2] and all TD(1−δ0) ≤ N ≤ N1 < N2 ≤ 2N ≤
TD(1+δ0).
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Turán’s [3, 4] result (Section 1) then implies that

ζ (σ + it) �= 0, ∀σ > 1 − δ12
0 , ∀t ∈ [Tθ − T1/2

θ , Tθ + T1/2
θ ]. (3.15)

But this holds for any θ ∈ J̃ (recalling that λ(J̃) ≥ α|J|, J = [22Bν, 22Bν+1]), and for
any ν, assuming this one is large enough, depending on δ, say νδ. We also recall that δ

was fixed from the beginning (see ‘Main parameters’).

REMARK 3.1. Finding one θ in J such that ζ (σ + it) �= 0 for all t in [Tθ − T1/2
θ , Tθ +

T1/2
θ ] and σ > σ0, for some σ0 < 1, can be deduced from Carlson’s estimate on the

number of zeros of the Riemann zeta function. The point here is that we have a
measurable set of values of θ ’s of measure close to the one of J, for which this is valid.
This together with a simple covering argument will permit to exhibit a much bigger
zerofree zone.

A semi-global zerofree region: Let ψ(θ ) = θ + 3
√

θ . The indice ν with ν ≥ νδ being now
temporarily fixed, let J0 =]22Bν, 22Bν+1[\J̃. Using the fact that λ(ψ([a, b])) = (b − a) +
3(

√
b − √

a) ≤ (b − a){1 + 2.2−Bν}, one can show

λ(ψ(J0)) ≤ {1 + 1/2Bν}(1 − α)λ(J). (3.16)

Let η > 0, J0 being an open set, J0 = ∪∞
n=1In, where In are open intervals. Let UN =

∪N
n=1In. Writing U = UN∪· B with B ⊂ ∪∞

n=N+1In, we have

λ(ψ(J0)) ≤ λ
(
ψ(UN)∪· ψ(B)

) ≤ λ(ψ(UN)) +
∞∑

n=N+1

λ(ψ(In))

≤ λ(ψ(UN)) + {1 + 2.2−Bν}
∞∑

n=N+1

λ(In) ≤ λ(ψ(UN)) + η{1 + 2.2−Bν},

assuming N is large enough. Further, ∪N
n=1In = ∪· N ′

n=1I ′
n, I ′

n being pairwise disjoint
intervals. Since ψ is continuous increasing,

λ(ψ(UN)) = λ

(
N ′∑

n=1

ψ(I ′
n)

)
=

N ′∑
n=1

λ(ψ(I ′
n)) ≤ {1 + 2.2−Bν}

N∑
n=1

λ(In)

= {1 + 2.2−Bν}λ(UN) ≤ {1 + 2.2−Bν}(λ(J0) + η).

Thus,

λ(ψ(J0)) ≤ {1 + 1/2Bν}λ(J0) + 2η{1 + 1/2Bν} ≤ {1 + 1/2Bν}{(1 − α)λ(J) + 2η
}
,

since λ(J0) ≤ (1 − α)λ(J). Since η is arbitrary, (3.16) follows.

Therefore,

λ(ψ(J̃)) ≥ λ(ψ(J)) − {1 + 2−Bν}(1 − α)λ(J)

= λ(ψ(J))
[
1 − 1 + 2−Bν

1 + 3(
√

2 − 1)2−Bν
(1 − α)

]
:= (1 − ᾱ)λ(ψ(J)), (3.17)

noting that λ(ψ(J)) = λ(J)(1 + 3(
√

2 − 1)2−Bν).
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As T1/2
θ ≥ θ1/2 ≥ 2Bν , we have [Tθ − T1/2

θ , Tθ + T1/2
θ ] ⊃ [Tθ − 2Bν, Tθ + 2Bν ]. Now

consider on ψ(J) = [ψ(22Bν), ψ(22Bν+1)] the subdivision

Ki =
[
ψ(22Bν) + (i − 1)2Bν−1, ψ(22Bν) + i2Bν−1

]
, 1 ≤ i ≤ (

2Bν+1 + 6(
√

2 − 1)
)
.

In view of (3.17), the number of indices i such that Ki ∩ ψ(J̃)) = ∅ is less than (1 −
ᾱ)λ(ψ(J))/2Bν+1.

Consequently, at least ᾱλ(ψ(J))/2Bν+1 indices i are such that Ki ∩ ψ(J̃)) �= ∅. Pick
a real ϑ in the intersection. We have

[ϑ − ϑ1/2, ϑ + ϑ1/2] ⊃ Ki,

so that by (3.15),

ζ (σ + it) �= 0, ∀σ > 1 − δ12
0 , ∀t ∈ Ki, (3.18)

and the number of indices i for which this is true, exceeds

ᾱλ(ψ(J))/2Bν+1 = ᾱ
(
2Bν+1 + 6(

√
2 − 1)

)
. (3.19)

We can now achieve the proof. Given any fixed real 0 < α∗ < 1, it follows from
(3.18) and (3.19) that in any subdivision of ψ(J) of size 2Bν−1, at least α∗2Bν+1 intervals
are zerofree. Since ψ(J) = [22Bν + 3.2Bν, 2.22Bν + 3

√
2.2Bν ], it also implies that in any

subdivision of [22Bν, 22Bν+1[ of size 2Bν−1, at least α∗2Bν+1 intervals are zerofree.
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