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A b s t r a c t . Averaging methods are convenient tools for studying long-periodic 
variations of the motion of artificial satellites. The main lines of a semi-analytical 
theory of the mean motion are given. We show how, when coupled with a careful 
reduction of the tracking data, this theory allows to determine parameters related 
to the temporal variations of the Earth gravity field (e.g. the amplitude of 18.6 
years tide and the secular variation of even zonal harmonics). The theory is also 
very useful for other applications such as mission analysis. 

1. Introduct ion 

The most elegant, and so far most accurate, method for studying the global 
Earth gravity field in time and space (combined ocean-atmosphere-Earth) 
is to analyse the induced perturbations in the orbits of artificial satellites. 
Several "geodetic" satellites have now been routinely tracked by lasers for 
two decades. Low satellites (e.g. Starlette at 900 km altitude) are more 
sensitive to the atmosphere and to the Earth gravity field at mean wa­
velengths, whereas higher satellites (e.g. Lageos at 6000 km) are suitable 
for the study of long wavelengths, including their temporal variations, and 
the Earth rotation. The development of highly precise Earth gravity field 
models in view of precise orbit determination (see Schwintzer et al, 1996; 
Tapley et a/., 1994) allows the determination of the temporal variations 
of mass distribution in the oceans, atmosphere and solid Ear th . In order 
to provide enough information on these geodynamical phenomena from a 
satellite perturbation analysis, it is necessary to extract the secular and 
long periodic effects appearing in satellite orbits. A natural strategy is (1) 

1 On leave from Delft University, Aerospace Department 

/. M. Wytrzyszczak, J. H. Lieske and R. A. Feldman (eds.), 
Dynamics and Astrometry of Natural and Artificial Celestial Bodies, 333,1997. 
© 1997 Kluwer Academic Publishers. Printed in the Netherlands. 

https://doi.org/10.1017/S0252921100046765 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100046765


334 P. EXERTIER ET AL. 

to use dynamical arcs as long as possible, tha t is several tens of thousands 
of orbital revolutions (typically 10 to 20 years), and (2) to remove short 
periodic effects. This is exactly the spirit of averaging methods. 

The method of averaging is a well-known tool in celestial mechanics 
(Moons, 1993). With such a technique, the first goal is to improve the 
accuracy of the solution by removing short periodic terms which can be 
corrupted by unknown local phenomena in time and space. Due to the 
limited accuracies of the available initial conditions for the artificial bo­
dies and the averaging methods used for the computation, investigations 
developed in the 70s revealed large approximations (e.g. Wagner, 1973). 
Following these ideas, we have defined the concept of mean orbital mo­
tion more comprehensively and more precisly. This has led to the develop­
ment of a semi-analytical theory of the mean orbital motion (Metris, 1991; 
Metris and Exertier, 1995). The theory is based on the concept of filtered 
elements permitting exact separation between short-period and long-period 
variations of the orbital motion. The theory initially developed for gravi­
tational effects has been extended to dissipative ones (e.g. drag, radiation 
pressure). The purpose of this paper is to show which ingredients, theo­
retical and practical, have permitted to precisely describe the long term 
changes of satellite orbital elements. To provide an unprecedented informa­
tion on geodynamical processes, investigations over long periods of time of 
the motion of Lageos and Starlette form the basis of our applications. 

The organization of the paper is the following: after recalling the prin­
ciple of the averaging method in Section 2, the analytical theory used to 
compute the mean orbital motion is summarized in Section 3. Section 4 is 
dedicated to examples of applications realized with the method. 

2. Principle of t h e Averag ing M e t h o d 

Satellite motion can be described by the temporal evolution of six indepen­
dent parameters. We will consider tha t the study of the orbital motion can 
be treated as a study of the temporal evolution of six signals. These signals 
result either from observations or from a dynamical model; the goal of any 
perturbation analysis is to compare both signals, observed and theoretical, 
permitting the fit of model parameters and initial conditions of the motion. 

There is a considerable freedom in the selection of the solution tech­
nique with properly chosen variables. The averaging technique consists in 
transforming (filtering) the initial system of motion equations and proces­
sing the integration of the transformed equations to provide the theoretical 
signal. Thus, in order to set up an averaging method, it is necessary: (1) to 
properly define the transformation (filtering) to be applied both to obser­
ved and theoretical signals, and the variables used during this operation, 
(2) to develop the tools allowing to perform the filtering tha t leads to the 
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theory of the mean orbital motion, and (3) to compare the solution with 
the observations properly reduced, and to analyse the residuals. 

Given a set of variables Xi(t) describing the satellite motion, the filtered 
variables X{ (t) over the period T result from the removal of, and only of, the 
short-period variations from Xi(t), i.e. the periodic variations with a period 
smaller than T. The concept of filtered elements is completely defined by 
the specification of the set of elements X(, and the cut-off period T. 

The variables chosen for the processing of the transformation are of great 
importance1. From a practical point of view, Delaunay variables (Brouwer, 
1959) have been chosen because they are canonical action-angle variables, 
they highlight the different frequencies, and they are close to the Keple-
rian elements. In absence of resonances, the cut-off period must be slightly 
larger than one day (e.g. 1.2 days), to permit the removal of all periodic 
terms related to the orbital and Earth sidereal periods. In the case of weak 
resonance between these two periods, the cut-off period is chosen so as to 
remove these resonant terms. Orbits in deep resonance have not been con­
sidered, because most current geodetic space missions avoid this kind of 
dynamical configuration. 

3 . Theory and Observat ions 

3.1. THEORETICAL FILTERED DELAUNAY ELEMENTS 

In classical methods, the temporal evolution of osculating elements is gover­
ned by a differential system (e.g. Lagrange or Hamilton or Gauss equations). 
Here, we shall examine if, in a similar way, filtered elements can be the re­
sult of the integration of a modified (averaged) Hamiltonian system. Only 
the main lines will be explained here; readers interested in more details can 
refer to (Metris, 1991; Metris and Exertier, 1995). 

The differential equations of motion expressed in Delaunay canonical 
variables (u,-, V{\ i = 1,3) are derived from the Hamiltonian H of the di­
sturbed system: 

<" = W> ( i = 1 ' 3 ) - *<—£ <i = 1 ' 3 > - W 

In absence of external time dependent parameters, the short period removal 
is accomplished by elimination of the mean anomaly / from the differential 
system. In this aim, a canonical change of variables has been performed: 

(l,g,h,L,G,H) —> (l',g\h',L',G\H') 
H(l,g,h,L,G,H;e) —• U'{-,9',h>,L',G',H';e) {l> 

'In particular we have shown (Metris and Exertier, 1995) that the mean motion is 
not unique but depends on the choice of the set of variables Xi. 
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The transformation is constructed by means of Lie transforms according 
to the Deprit algorithm (Deprit, 1969). It is completely determined by its 
generating function W, which is developed in powers of e: 

fc>0 ' |_A:>1 
(3) 

Following the standard process (see Deprit and Rom, 1970), at each order 
k, Wk is determined up to a function independent of /. Applying a Lie 
transform to a function of the old variables (u,-, V )̂ permits to express it in 
function of the new variables {v'^Vl). In particular: 

Vi = V!-

dVt 

dv; + *K 

(dw-

% + { & « } ) 

(v'^VD + Oie3) 

(v'^VD + Oie*) 

(4) 
where {<f>; ifi} stands for the Poisson bracket of <j> and tp. But in fact, we are 

looking for a set of variables (TĴ , V8) such as: 

V'i = < Vi >f =< V'{ >\i + < V{ - V[ >// 

V'i =<Vi>v =<V!>v + <Vi-V!>v 
(5) 

As a result of the ave rag ings v\ > = v\ and < V- > = V(. Expression (4) 
allows the computation of < V{ — v\ >j; and < Vi - V( >// knowing the 
generating function W. If W\ is chosen in such a way that < W\ > ; = 0 
(thanks to the integration constant) the mean values (5) are of second order. 

It would be simpler to obtain the total equivalence between the two 
sets of variables {v'^Vf) and (v^V,-). But, it can be proved that this is 
not possible beyond the first order. This is the reason why (v^V^ can 
not be directly obtained by the integration (numerical, for example) of the 
canonical averaged system. An important step in our solution is precisely 
to add a change of variables (Eq. 5) which is not canonical. 

The above algorithm states the bases of the computation of the theo­
retical filtered elements but it is not always usable in this form; in parti­
cular, for non-gravitational forces no Hamiltonian exists. Fortunately, we 
can show that , provided tha t the perturbation fulfills some conditions of 
periodicity (more or less satisfied in reality), the filtering can be performed 
by means of numerical quadratures, at least up to the first order of these 
small perturbations. This was applied for the drag and radiation pressure 
perturbations. 
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3.2. OBSERVED FILTERED DELAUNAY ELEMENTS 

If we could directly observe the variables of the motion, it would be suffi­
cient to apply a digital filter to get observed filtered variables. This is of 
course not the case: observations are more or less complicated functions of 
the elements. In classical methods, one simply computes the value of this 
function using theoretical elements and compares it to the observation. Un­
fortunately, in our case, the use of theoretical filtered elements to compute 
the function does not produce the searched theoretical filtered observation 
because the function is not linear with respect to the variables. The pro­
blem has been solved by Exertier (1988, 1990). The first step consists in 
converting the observations into variables of the motion via orbit fits (using 
short arcs) to get "observed osculating elements". Then, in a second step, 
observed osculating elements are filtered to produce "observed filtered ele­
ments" . We have checked the robustness of this da ta reduction scheme and 
have shown tha t a level of 1 0 - 9 between a simulated observed signal and 
the corresponding theoretical signal can be achieved by this procedure. 

At this stage a question may arise: what is the gain, if a classical me­
thod must be used anyway to compute observed filtered elements? Several 
advantages exist: (1) one can get very good results with only, let us say, 
one filtered element per month computed with typically one week of ob­
servations, (2) even with a larger density of filtered elements, the factor of 
compression of the useful information ranges from thousands to one million, 
and (3) being independent of the dynamical model used to compute them, 
these filtered elements are computed once for all. 

4 . Appl icat ions 

If, as explained above, building a precise averaging method is a difficult task, 
it is rewarded by the following benefits: (1) we are free of short periodic 
variations always difficult to modelize, (2) the CPU time is reduced by more 
than a factor 10, and the same parameters are always recovered with very 
different methods. 

4.1. GEODYNAMICS 

The temporal variations of the external gravitational field represent a dy­
namic aspect of the mass redistribution within the ocean-atmosphere-solid 
Earth system. Satellite solutions place bounds on the aggregate mass redis­
tribution ongoing within this system. In particular, Satellite Laser Ranging 
(SLR) observations acquired on Lageos for twenty years account for the 
drastic improvement seen in the long wavelength static, time-dependent, 
and tidal geopotential fields (Marshall et al., 1995). 
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Among the temporal variations of the gravity field, tides are the best under­
stood for they have the largest effects and occur at well known astronomical 
frequencies. For near-Earth orbit determination, the tide modeling problem 
represents a challenge: to improve the long wavelength tidal terms, which 
give rise to long period perturbations. This is particularly true for the 18.6 
year ocean and solid-Earth tides. The analysis of 15 years of SLR data on 
Lageos reduced in terms of mean orbital elements, has permitted to extract 
without ambiguities a 18.6 year periodic signal in the mean ascending node 
of the orbit related to these phenomena. The amplitude of the signal, when 
expressed in terms of oceanic tide, is of 2 cm ± 0.1 cm with zero phase, the 
residuals on the node being at the level of 85 mas (Exertier et a/., 1995). 

To date, direct assessment of non-tidal changes in the geopotential has 
been restricted to variations in a few zonal harmonics. The coefficients (se­
cular, annual and semi-annual) for the J2 harmonic have been determined 
from our study on the mean orbital motion of Lageos (ibid.). As an exam­
ple, we found a secular variation of J% of (2.4 ±0 .3 ) X 10- 1 1 /y r> which is in 
good agreement with other results (e.g. Gegout and Cazenave, 1993; Eanes 
1995). 

The most challenging aspect in the study of temporal gravitational va­
riations will be to a t tempt to separate the contributions from individual 
geophysical processes, given the estimate of their overall effect from satel­
lite determinations. In this field, the semi-analytical theory of the mean 
orbital motion will certainly play an increasing role. 

4.2. NON-CONSERVATIVE FORCES 

Of particular importance in the development of contemporary gravity mo­
dels are the laser geodetic satellites. These satellites are passive targets 
constructed as solid, dense spheres. Their simple form reduces both the 
magnitude and complexity of their surface forces. Since separation and mo­
deling of conservative and non-conservative forces acting on these satellites 
is easier to achieve than with complex satellite forms, they have provided 
the most important da ta for geopotential recovery. 

The semi-analytical theory of the mean orbital motion has been exten­
ded to non-conservative forces. In particular, we have treated the problem 
of averaging solar radiation pressure including its associated shadowing 
effects, and drag. Atmospheric drag is a significant non-conservative force 
modeling problem for new missions orbiting at low-Earth altitudes (between 
350 km and 500 km) (Bruinsma et a/., 1996), and satellites with complex 
shapes. The analysis of 12 years of Starlette SLR da ta reduced in terms of 
mean orbital elements, has permitted to extract properly the decrease of 
the mean semi-major axis due to drag. This has permitted to evaluate the 
performance over long periods of recent atmospheric density models: DTM 
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(Barlier et al., 1978; Berger et al., 1996) and MSIS86 (Hedin et al., 1987). 
The two main conclusions are: (1) DTM94 and MSIS86 are comparable in 
quality, and (2) they produce much better results for long term evolution of 
filtered elements than for short periodic variations of osculating elements. 

The averaging method can be very useful in other ways: since the re­
siduals are clean of fast variations, it is easier to study new long period 
phenomena. Moreover, with this process, we can also work on residuals is­
sued from other sources. For example, we used so called residual excitations 
(Eanes, 1995) produced at U T / C S R to improve the model of thermal for­
ces acting on Lageos (Metris et al., 1995). This kind of work could hardly 
be performed by classical methods (using osculating motion) because the 
physical model is at the same time complicated and poorly known. Thus, 
one needs many tests, the interpretation of which must be very visual. 

4.3. MISSION ANALYSIS 

Planning and designing a satellite mission requires powerful computational 
tools, which are used to determine the orbital parameters satisfying the mis­
sion's objectives with minimum cost. Lifetime estimations are an important 
part of mission analysis, and the concept of mean motion in this context is 
of particular interest for two reasons: the averaged orbital elements reflect 
only the long period perturbations, which enhances their interpretability, 
and secondly, the computational speed as compared to the classical exceeds 
a factor 15. The latter reason allows the fast computation of several lifetime 
scenarios, with varying initial conditions and a predicted solar activity. The 
solar activity predictions are the weak point in satellite lifetime predictions, 
since they are not very accurate; errors of the order of 20% (Brown, 1992) 
must be reckoned with when the prediction is given several years before 
solar maximum. Thus, the lifetime of a particular (low-Earth) satellite in a 
given configuration is a function of the predicted solar activity, with large 
error bars. Any other model error will be negligible compared to it. 

Lifetimes for the German satellite CHAMP, to be launched into a polar, 
circular orbit at an altitude of 500 km in 1999, were estimated. The lifetime 
estimates varied between 4 and 12 years under stronger or weaker solar 
regimes, and, depending on the solar activity level, orbit corrections during 
the mission will be necessary (Bruinsma et al., 1996). 

5 . Conclusion 

The concept of filtered elements applied to dedicated satellites appears 
to be a powerful tool for long term analysis. It is efficient for monitoring 
geophysical changes; good results have been obtained concerning the deter­
mination of Ji and of the 18.6 year tide. The theory of the mean motion 
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has been also used to study non-gravitational forces. It is used intensively 
by CNES for mission analysis purposes. 
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