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Large-eddy simulation is used to simulate the flow around a 6 : 1 prolate spheroid at 10◦

and 20◦ angles of attack, and Reynolds number 4.2 × 106. Flows with and without trip
are compared to understand the relative effect of the trip on the state of the boundary
layer and separation. For the tripped case, the geometry of the trip is resolved to
better predict its effect on the downstream flow. The simulations employ overset grids
that allow adequate resolution of the trips without significant increase in the overall
computational cost. Results suggest that while the trip accelerates transition to turbulence
at 10◦, it does not induce a fully developed turbulent boundary layer as intended at 20◦.
Rather, the influence of the trip is localized, and the near-wall flow converges towards
a solution similar to that of the non-tripped case upstream of separation. This is due to
two distinct phenomena: directly downstream of the trip, favourable pressure gradient
and streamline curvature effects suppress the disturbance on the windward side. Further
along the spheroid, the boundary layer receives a small fraction of the initial perturbation
due to spanwise and wall-normal streamline curvatures inducing a secondary flow that
advects the low-momentum trip wake to the leeward side. The locations of transition and
separation are insensitive to the presence of the trip. The simulation results are used to
construct a regime map that identifies different regions characterized by distinct boundary
layer properties and flow features. The present results underscore the difficulty associated
with tripping smooth bodies at angle of attack, and the importance of accounting for
transition in simulations of such flows, even on tripped geometries.
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1. Introduction

Understanding flows over smooth geometries at angle of attack is central to understanding
the overall loads and dynamics of marine and aerial vehicles. On smooth surfaces, the
location of separation is not known a priori; it depends on boundary layer properties,
specifically on turbulent intensities. Experiments and numerical simulations often trip the
boundary layer, which undergoes bypass transition to become fully developed. This results
in more repeatable conditions and behaviour representative of high-Reynolds-number
flows. The 6 : 1 prolate spheroid is a canonical flow to study the physics of separated
flow over streamlined bodies. This paper therefore uses wall-resolved and trip-resolved
large-eddy simulation to study the effect of tripping on the prolate spheroid at 10◦ and 20◦

angles of attack for Reynolds number ReL = 4.2 × 106 based on length.
Figure 1 illustrates the qualitative nature of the flow at 20◦ angle of attack using results

from the present simulations. The trip is visible on the left of the image, increasing the skin
friction in its wake. The skin friction lines show the turning of the flow towards the leeward
side along the length of the spheroid. The three-dimensional boundary layer separates
on the leeward side to produce a counter-rotating vortex pair whose strength and size
increase along the spheroid length. The vortices entrain freestream fluid that then impinges
on the spheroid near the meridian plane. The high pressure due to impingement then
redirects the flow towards the windward side underneath the primary vortex. Depending
on the Reynolds number, this reversed flow undergoes additional separations, resulting in
secondary and tertiary vortices.

These vortex pairs have been shown to influence the wall pressure coefficient
(Chesnakas & Simpson 1996) and global loads (Ahn 1992). Since the separation is
over a smooth surface, its location is dependent on the flow conditions and local
Reynolds number. There exists a critical Reynolds number across which the primary
separation line is displaced azimuthally (Ahn 1992). The importance of characterizing
the three-dimensional boundary layer transition to understand the flow separation
has been discussed by Meier & Kreplin (1980) for the non-tripped case. Several
natural transition mechanisms have been identified on the prolate spheroid: streamwise
Tollmien–Schlichting instability on the windward side; crossflow instability (Stock 2006;
Xiao et al. 2007; Krimmelbein & Radespiel 2009), which originates from the inflection of
the secondary flow velocity profile (Saric & Reed 1989; Nie et al. 2018); and centrifugal
instability resulting from the wall-parallel inflection point of the streamlines. These
instabilities contribute to the onset of turbulence and the production of turbulent kinetic
energy in the attached region, which in turn affect the location of separation.

Past experiments (e.g. Fu et al. 1994; Chesnakas & Simpson 1994, 1996, 1997; Wetzel,
Simpson & Chesnakas 1998) have tripped the boundary layer using a combination of
wires and azimuthally distributed roughness elements located at 20 % of the length from
the nose. It is assumed that a tripped flow results in a fully developed boundary layer at
the locations of measurement. However, as underscored by Schlatter & Örlü (2012), the
determination of whether the boundary layer is fully developed or transitional is non-trivial
even in a zero-pressure gradient flat plate boundary layer. On the prolate spheroid, there are
some indications that at the widely studied Reynolds number based on freestream velocity
and spheroid length ReL = U∞L/ν = 4.2 × 106 and at high angle of attack of α = 20◦,
some regions of the flow reported in past experimental and numerical investigations may
not be fully developed downstream of the trip, and might undergo natural transition.
Experimentally, Fu et al. (1994) observed that tripping affected the location of separation
and vortical structure at ReL = 4.2 × 105, that it had little effect past 70 % of the length,

960 A3-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

17
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.175


LES of tripping effects on prolate spheroid

x/L

φ

x0

y0

0.001cf

u

0.00284615 0.00469231

0 0.472727 0.945455

Figure 1. Isometric view of the flow around the tripped prolate spheroid at 20◦ angle of attack. The spheroid
surface is shaded by skin friction values. The transverse planes are located at every 10 % of L and show the
axial velocity.

and that the influence of tripping at ReL higher than 2.1 × 106 was uncertain because of
transition.

Results from past numerical work are consistent with the importance of predicting the
transitional/turbulent state of the boundary layer downstream of the trip. A wall-modelled
large-eddy simulation study performed by Hedin et al. (2001) observed that the vortex
was closer to the wall because of a mismatch in the location of separation. Fureby
& Karlsson (2009) compared the one-equation eddy-viscosity model (OEEVM), the
dynamic Smagorinsky model and the localized dynamic kinetic model, and noted that the
OEEVM yielded the earliest separation and largest primary vortex compared to the other
models. Constantinescu et al. (2002) studied the spheroid flow using Reynolds-averaged
Navier–Stokes (RANS) with several variations of the Spalart–Allmaras model and
detached-eddy simulation (DES). They presented good agreement with experiments from
Chesnakas & Simpson (1997) and Wetzel et al. (1998) on the attached region, with
some variation in the amplitude of the pressure dip from the primary vortex, which
depended on the model used. Interestingly, they remarked that the Reynolds averaging
may suppress small-scale perturbations and result in errors that are larger for the prolate
spheroid flows than other separated flows. These deviations were linked to errors in the
assessment of the skin friction, separation and loads. Some indication of the importance
of modelling transition has also been shown by Xiao et al. (2007), who used RANS, DES
and zonal RANS/large-eddy simulation of the flow around the prolate spheroid. Although
the authors did not trip the flow numerically, they presented reasonable agreement with
compared tripped experimental results. They concluded that both the pressure coefficient
and the skin friction matched experiment better with the model accounting for transition.
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Recently, Aram, Shan & Jiang (2021) and Aram et al. (2022) studied the spheroid flow
using RANS both without a trip, and with a Hama strip located at 5 % of the length. They
concluded that the trip was ineffective at higher angle of attack, and that part of the prolate
spheroid still underwent natural transition.

The objective of the current study is to assess the validity of assuming that the tripped
boundary layer of a smooth body at angle of attack results in a fully developed turbulent
boundary layer. The influence of the trip is assessed for the flow around a prolate spheroid
under conditions similar to those in past experiments, and the flow field is analysed
to determine if and how the post-trip boundary layer becomes fully developed until
separation. The simulations resolve the same trip as described and utilized by Chesnakas
& Simpson (1994) to obtain a better reproduction of the downstream flow. This is, to the
authors’ knowledge, the first trip-resolved numerical study of the prolate spheroid flow,
with a finer numerical resolution than any past computations.

The rest of the paper is organized as follows: The simulation details are described in § 2,
followed by the description of the problem in § 3 and a discussion of the results in § 4.

2. Numerical approach

2.1. Coordinate systems
Figures 1 and 2 illustrate the coordinate systems that are used in this study. The first,
freestream flow-based system uses x0, y0 and z0 as its main axes, where x0 is aligned with
the freestream velocity. The second coordinate system is based on the major axis of the
spheroid, and uses x/L varying from 0 at the nose to 1 at the tail of the spheroid, and
φ, the azimuthal coordinate varying from 0◦ at the windward meridian line to 180◦ at
the leeward meridian line. A third ‘friction line coordinate system’ is denoted by the FL
subscript; it uses the projection of the time-averaged edge velocity vector in a wall-parallel
plane, xFL, the wall-normal vector yFL, and a vector aligned with the spanwise direction at
the edge of the boundary layer, zFL. This coordinate system changes with x/L and φ, but
does not change with the distance from the wall. The edge friction line frame is used to
compare quantities throughout the boundary layer in a fashion similar to a two-dimensional
description of the flow over a flat plate. This reference frame can be used only in the
attached regions of the spheroid because it uses the edge velocity of the boundary layer.
The last coordinate system, referred to as the ‘local streamline frame’ and indicated by the
SL subscript, is based on the time-averaged velocity vector at the considered location, xSL,
the projection of the wall-normal vector in a plane orthogonal to the first component, ySL,
and a spanwise vector zSL. This system changes with x/L, φ and wall-normal distance. It
is used to rotate the velocity gradient or higher-order quantities to measure perturbations
in and out of the axis of the local mean flow.

2.2. Large-eddy simulation formulation
An overbar �(·) denotes spatial filtering, while the bracket 〈·〉 is used to indicate time
averaging. The incompressible, spatially filtered Navier–Stokes equations are solved in
a large-eddy simulation formulation:

∂ ūi

∂t
+ ∂

∂xj
(ūiūj) = − ∂ p̄

∂xi
+ ν

∂2ūi

∂xj ∂xj
− ∂τij

∂xj
, (2.1)

∂ ūi

∂xi
= 0, (2.2)
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Figure 2. Schematic of local coordinate systems: red indicates friction line, green indicates streamline.

where ui is the velocity, p is the pressure, and ν is the kinematic viscosity. The
subgrid stress (SGS) τij = uiuj − ūiūj is modelled with the dynamic Smagorinsky
model (Germano et al. 1991; Lilly 1992). A finite-volume, second-order centred spatial
discretization is used, where the filtered velocity components and pressure are stored
at the cell centroids, while the face-normal velocities are estimated at the face centres.
The equations are marched in time with a second-order Crank–Nicolson scheme. The
algorithm has shown good performance for multiple complex flows, such as propeller
in crashback (Verma & Mahesh 2012; Kroll & Mahesh 2022) and flow over hulls
(Kumar & Mahesh 2017; Morse & Mahesh 2021). The kinetic energy conservation
property of the method (Mahesh, Constantinescu & Moin 2004) makes it suitable for
high-Reynolds-number flow such as that presented in this paper. The method was extended
by Horne & Mahesh (2019) to allow for overlapping (overset) grids and six degrees of
freedom movement. Although the present geometry is stationary, overset grids are used
for better grid efficiency by circumventing the need for a one-to-one match between the
near-wall region and the far field. In addition, overset grids provide more flexibility in
the grid generation process as they allow for the modelling of details such as small trip
elements, independently from the spheroid grid.

3. Problem description

A Reynolds number ReL = 4.2 × 106 is considered at angles of attack 10◦ and 20◦. Two
cases are compared, one with trip and one without. The trip has the same specification
as the experiments of Chesnakas & Simpson (1994). It consists of 230 cylindrical posts
located at x/L = 0.20, whose diameter is 8.76 × 10−4L and height is 5.11 × 10−4L, where
L is the length of the prolate spheroid. The posts are resolved using an overset ring grid
shown in figure 3. Both cases with and without trip use the same grid for the prolate
spheroid, though the former uses an additional level of overset for the post grids.

Figure 4 illustrates the incremental overset levels of refinements that are used to increase
the near-wall refinement with limited impact on the overall cell count. The numbers of cells
and partitions are indicated in table 1, showing that 78 % of the control volumes are in the
near-wall region – good grid efficiency enabled by the overset methodology. In addition,
the overset capability is used to rotate the grid of the geometry, which specifies the
incidence of the flow without having to modify the grid and limit the maximum skewness.
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Figure 3. Wall grid of one of the trip elements.

Level 0 Level 1

Level 2

Figure 4. Schematic of the three levels of overset grid refinement.

The near-wall resolution in wall units is �x+ = 100, r �φ+ = 20 and �r+ = 0.5. The
wall-normal stretching ratio of the boundary layer clustering is 1.02.

The outer boundary is a cylinder of 8D radius and 20D length, where D is the minor
diameter of the spheroid. The blockage ratio is 2.2 %, which is considered low enough
to neglect confinement effects. Dirichlet boundary conditions are used for the velocity
at the inflow. A slip condition is imposed on the remaining far-field boundaries, while
a no-slip condition is specified at the wall of the prolate spheroid. The flow fields are
interpolated across the boundaries between overset levels in a manner that ensures energy
conservation. The overset interpolation is detailed in Horne & Mahesh (2019).

The simulations are time-advanced for 30D U−1∞ , where U∞ is the velocity at the inflow.
This is deemed sufficient when compared to the 6D U−1∞ necessary for the transient. The
statistics are measured for 2.4D U−1∞ . The time step for both tripped and non-tripped
cases is 2 × 10−4D U−1∞ . This value is limited by the small cells necessary to resolve the
geometry of the trip.

The variables of interest are compared at four locations for 10◦ angle of attack and five
to seven locations for 20◦ angle of attack, distributed along two friction lines. Friction
line 1 starts at x/L = 0.2 and φ = 10◦; friction line 2 starts at x/L = 0.5 and φ = 10◦.
Friction line 1 was chosen because it starts at the location of the trip and is useful to assess
how the forcing evolves downstream; The flow following friction line 2 in the attached
region eventually separates and intersects the location of measurement of the vortex at
x/L = 0.772. The measurement locations are indicated in tables 2 and 3 for α = 10◦ and
20◦, respectively, and displayed in figure 5. For clarity, only four locations are visualized in
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Grid level Number of cells (millions) Number of processors

0 (far field) 80 1024
1 47 726
2 (near field) 435 5290
3 (trip) 7.5 220

Table 1. Number of control volumes and processors for each overset grid level.

Friction line no. Point no. x/L φ (deg.)

1 1 0.2 10
1 2 0.323 22.63
1 3 0.443 39.74
1 4 0.555 62.64
1 5 0.660 88.72
2 1 0.5 10
2 2 0.617 16.30
2 3 0.731 26.53
2 4 0.836 45.35
2 5 0.929 76.48

Table 2. Location of the measurement of velocity profiles along the two considered friction lines at 10◦ angle
of attack.

Friction line no. Point no. x/L φ (deg.)

1 1 0.2 10
1 2 0.248 19.40
1 3 0.298 38.95
1 4 0.342 65.98
1 5 0.384 93.52
1 6 0.433 113.3
1 7 0.486 124.9
2 1 0.5 10
2 2 0.553 22.36
2 3 0.600 42.16
2 4 0.642 67.82
2 5 0.684 92.74
2 6 0.735 108.2
2 7 0.790 112.0

Table 3. Location of the measurement of velocity profiles along the two considered friction lines at 20◦ angle
of attack.

profile plots at α = 10◦ (locations 2–5 of table 2) and five locations at α = 20◦ (locations
2–6 of table 3).

3.1. Identification of the fully developed turbulent boundary layer
The identification of a fully developed turbulent boundary layer is made based on three
metrics: (i) the development of a logarithmic region in the velocity profiles; (ii) the
convergence of the energy spectrum toward a common curve along the streamwise
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Figure 5. Locations of the profiles (blue dots) on friction lines 1 and 2 (red lines).

direction; (iii) the unsteadiness of the skin friction coefficient. The last metric differs from
the other two because it is based on near-wall perturbation and thus allows us to compare
the behaviour at the wall with that of the outer region of the boundary layer.

3.2. Grid convergence
A coarse grid containing 225 million control volumes is compared to the fine, 570 million
control volume grid in order to estimate the effect of grid refinement on the results.
Figure 6 shows the axial component of the instantaneous velocity at x/L = 0.772, along
with the mean secondary streamlines at the same location, and wall-pressure coefficient
cp. The primary separation in the coarse grid is slightly delayed, with a slightly smaller
primary vortex. In addition, the axial velocity deficit in the primary vortex is larger in the
fine case. The pressure coefficient is similar between the two cases; however, the fine grid
shows the signature of the secondary vortex at φ = 140◦, which is not visible on the coarse
grid.

Figure 7 shows the skin friction coefficient cf obtained with the coarse and fine grids,
both without trip. For both cases, three distinct regions are visible on the midbody:
a quiescent region for φ < 30◦; followed by a perturbed region for 30◦ < φ < 100◦,
showing streamwise streaks; and an unsteady region for φ > 100◦. For both, the location
of primary separation is visible where the direction of cf rotates toward the aft end of the
spheroid. Apart from these similarities, some differences are noted: the quiescent region
has some diffuse perturbations in the coarse case that are not observed in the fine case; the
flow angle in the coarse case is different than in the fine case on the perturbed region; the
boundary between the perturbed and unsteady regions is delayed and more clearly defined
in the coarse case.

The velocity profiles in the friction line direction are compared in figure 8, between the
coarse and fine grids, without trip. Although the profiles are similar at the beginning of
both friction lines, the two cases have differences in both shape and amplitude at the edge
of the boundary layer.
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Figure 6. Instantaneous axial component of velocity and averaged pressure coefficient at x/L = 0.772
comparing Wetzel (1996) (blue circles) and Chesnakas & Simpson (1996) (red crosses) with trip, with
(a) the coarse grid and (b) the fine grid.
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Figure 7. Instantaneous skin friction coefficient for (a) coarse and (b) fine grids without trip.

Figure 9 shows the turbulent kinetic energy along both friction lines, for the two cases.
Contrary to what was observed on the velocity profiles (figure 8), the largest differences
occur on the three middle profiles for each friction line, which corresponds to the perturbed
region discussed above. At these locations, the turbulent kinetic energy is higher for the
coarse grid.

From these observations, it is concluded that the main features of the flow are similar in
both the coarse and the fine grid, although there are some quantitative differences between
the two. The coarse grid appears overall more unsteady, with stronger levels of turbulence.
This suggests that the dampening of these perturbations is not an effect of the subgrid
model, although sufficient resolution is necessary to capture the physical process behind it.
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Figure 8. Profiles of dimensionless streamwise velocity along (a–e) friction line 1, and ( f – j) friction line 2,
for the case without trip on the coarse (green) and fine (black) grids. Profiles 2 (a and f ) to 6 (e and j) are
shown. The dashed lines indicate the location of δ99 of the coarse (green) and fine (black) grids.
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Figure 9. Profiles of dimensionless resolved turbulent kinetic energy along (a–e) friction line 1, and ( f – j)
friction line 2, for the case without trip on the coarse (green) and fine (black) grids.

4. Results and discussion

4.1. Difference between tripped and non-tripped cases

4.1.1. Vortex pair and pressure
The instantaneous axial velocity for the tripped and non-tripped cases is shown in
figure 10. The turbulent separation and formation of the primary vortex pair are visible
in both cases. The size and the location of separation and primary vortex are comparable
between the two cases. The flow in the centre of the vortex has slightly less momentum in
the tripped case compared to its non-tripped counterpart. The pressure coefficient shows
good agreement with experiment from φ = 0◦ to φ = 75◦. There is a global minimum at
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Figure 10. Instantaneous axial component of velocity and averaged pressure coefficient at x/L = 0.772
comparing Wetzel (1996) (blue circles) and Chesnakas & Simpson (1996) (red crosses) in the cases (a) with
trip and (b) without trip.

approximately φ = 80◦ as the flow accelerates along the side and the pressure gradient
changes from favourable to adverse at that location. Experimental comparisons predict
a slightly earlier azimuth for the global minimum at approximately φ = 75◦, followed
by an earlier increase in pressure. Another local minimum of pressure is visible at φ =
160◦, below the primary vortex. This minimum is lower and earlier in φ in experiments
compared with the current predictions. Comparing the tripped and non-tripped cases, the
pressure coefficient appears similar in amplitude and location of extrema.

The similarity between the tripped and non-tripped cases indicates that the influence of
the trip at this location is negligible. The fact that the flow is unsteady on the windward
side of the non-tripped case suggests that the trip is not necessary to achieve boundary
layer transition, and that it is not the leading source of instability at this location. The
agreement in pressure in the attached region indicates that the freestream flow is predicted
correctly.

4.1.2. Skin friction
The instantaneous skin friction is shown for both cases in figure 11 at 20◦ angle of
attack. Strong convection is observed from the windward side to the leeward side. The
maximum flow angle with respect to the axis of the spheroid is approximately 32◦,
over 1.5 times the angle of attack. Two distinct regions are observed, separated by a
diffuse boundary at approximately φ = 100◦. In the region below, the variation of skin
friction shows streamwise streaks, while over φ = 100◦, the skin friction is noisier and
the boundary layer flow is more unsteady. Comparing the two cases, the differences are
limited to φ < 30◦. Downstream of this azimuth (i.e. for φ > 30◦), the skin frictions in the
tripped and non-tripped cases have similar values, which suggests that the turbulent state
of the boundary layer in this region is not necessarily due to the difference in upstream
disturbances.
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Figure 11. Instantaneous skin friction coefficient for (a) the tripped case and (b) without trip, at 20◦ angle of
attack.

Friction line no. Location no. δ99 δ∗ θ H Reθ β1 β3

1 1 0.00468 0.00370 0.000606 6.11 424 −0.573 −0.41
1 2 0.00956 0.000959 0.000596 1.61 418 −0.0975 0.222
1 3 0.00910 0.000953 0.000535 1.78 374 −0.185 0.335
1 4 0.00874 0.00132 0.000594 2.23 416 −0.248 0.328
1 5 0.00855 0.00151 0.000756 2.00 529 0.00191 −0.0272
1 6 0.0128 0.00222 0.00132 1.68 926 0.314 −0.438
1 7 0.0194 0.00331 0.00205 1.61 1434 0.631 −0.963
2 1 0.00441 0.00110 0.000483 2.27 338 −0.0634 0.172
2 2 0.00401 0.00110 0.000476 2.32 333 −0.103 0.29
2 3 0.00488 0.00106 0.000536 1.98 376 −0.169 0.311
2 4 0.00639 0.00134 0.000627 2.14 439 −0.136 0.23
2 5 0.00960 0.00181 0.000954 1.90 668 0.204 −0.175
2 6 0.0145 0.00281 0.00161 1.74 1127 0.868 −1.03
2 7 0.0200 0.00437 0.00272 1.60 1904 1.39 −1.67

Table 4. Boundary layer parameters in the case with trip at 20◦ angle of attack.

4.1.3. Boundary layer parameters
Boundary layer parameters are provided in table 4 for the tripped case. All three
thicknesses decrease on the windward side before increasing again on the leeward side.
On friction line 1, the minimum of δ99 is at the fifth location, while the minima of
displacement thickness δ∗ and momentum thickness θ are at the third location. Apart
from the first location (over the trip), the shape factor H = δ∗/θ increases until the fifth
location with a jump between the third and fourth location, before decreasing until the
end of the line. On friction line 2, the minima of all three thicknesses occur earlier, at the
second location. The streamwise pressure gradient parameter β1 = δ∗/(ρu2

τ ) ∂Pe/∂xSL is
favourable on the first four locations of both lines, and adverse on the last three locations.
The spanwise pressure gradient parameter β3 = δ∗/(ρu2

τ ) ∂Pe/∂zSL is larger in magnitude
and follows the opposite trend. The reversal of both pressure gradients occurs close to
location 5 on friction line 1, and between locations 4 and 5 on friction line 2.
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Friction line no. Location no. δ99 δ∗ θ H Reθ β1 β3

1 1 0.00257 0.000846 0.000324 2.61 227 −0.0889 0.178
1 2 0.00246 0.000651 0.000328 1.98 230 −0.0915 0.213
1 3 0.00404 0.000808 0.000457 1.77 320 −0.14 0.26
1 4 0.00512 0.00119 0.000516 2.31 361 −0.204 0.27
1 5 0.00715 0.00141 0.000701 2.01 491 −0.0024 −0.0296
1 6 0.0112 0.00206 0.00121 1.70 847 0.262 −0.398
1 7 0.0170 0.00303 0.00187 1.62 1308 0.572 −0.864
2 1 0.00311 0.00100 0.000396 2.53 277 −0.0616 0.168
2 2 0.00352 0.00105 0.000451 2.33 316 −0.125 0.285
2 3 0.00508 0.00110 0.000566 1.95 396 −0.146 0.304
2 4 0.00663 0.00137 0.000649 2.11 454 −0.157 0.265
2 5 0.00928 0.00185 0.000969 1.91 679 0.218 −0.188
2 6 0.0145 0.00291 0.00166 1.75 1165 0.876 −1
2 7 0.0201 0.00408 0.00253 1.61 1772 1.31 −1.57

Table 5. Boundary layer parameters in the case without trip at 20◦ angle of attack.

Table 5 shows boundary layer parameters in the case without trip. On friction line 1, the
thicknesses reach a minimum at the second location, then increase until the end of the line.
No decrease of the thicknesses is observed on friction line 2. The shape factor decreases
overall on both lines, although a jump is seen at the fourth location of each. Similarly to
the tripped case, the spanwise pressure gradient is larger in magnitude than the streamwise
pressure gradient, with opposite sign.

All three metrics of thicknesses provided are larger in the tripped case, particularly
on friction line 1, and converge to similar values by the ends of both lines. The larger
values show that the effect of the trip is to increase the deficit of momentum close to
the wall; the subsequent increase illustrates that the flow recovers from the forcing and
converges toward the non-tripped solution. For both cases and both friction lines, the
jump in shape factor on the side of the spheroid occurs upstream of the reversal of the
streamwise and spanwise components of the pressure gradient. The larger magnitude of
the spanwise pressure gradient compared to the streamwise pressure gradient suggests that
it is an important factor to consider in studying the evolution of the boundary layer. The
jump in adverse streamwise pressure gradient at the last two locations is related to the
primary separation that occurs downstream of location 7.

4.1.4. Mean velocity
The friction lines on the wall of the spheroid are shown in figure 12. The regions
of convergence are indicative of separation, which show good agreement with Wetzel
(1996). The azimuth of the primary separation decreases linearly with the axial location
from x/L = 0.3 to x/L = 0.85. The lines have an inflection point between φ = 60◦ and
φ = 90◦.

Figure 13 shows the streamwise velocity profiles for cases with and without trip at
stations along the two friction lines of interest. On friction line 1, the two cases are different
at the first two locations. The velocity profiles converge to a common curve at the last three
locations. On friction line 2, the profiles from the two cases are laminar at the beginning
on the first location and become either transitional or turbulent with increasing distance.
The profiles are comparable between tripped and non-tripped cases all along this friction
line.
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Figure 12. Friction lines on the prolate spheroid in the tripped case, compared with experiments from Wetzel
(1996), who recorded the lines using hot film and oil flow measurements. The red lines indicate friction lines 1
and 2, used for the velocity profile measurements.
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Figure 13. Profiles of dimensionless streamwise velocity along (a–e) friction line 1, and ( f – j) friction line 2,
for the cases with (red) and without (black) trip, for α = 20◦. Profiles 2 (a) to 6 (e) are shown. The dashed lines
indicate the location of δ99 of the case with (red) and without (black) trips.

Figure 14 shows the wall-normal velocity profile along friction lines 1 and 2. Similar to
what was observed in figure 13, the velocity is different at the first location of friction line
1 between the cases with and without trip, although the two profiles converge towards a
common curve farther downstream. On friction line 2, the two cases have similar profiles
throughout the line. The wall-normal component is positive in the tripped case on friction
line 1 between the wall and y+ ≈ 200 at the first three locations, indicating that the flow
moves away from the wall. The negative wall-normal velocities in both cases farther from
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Figure 14. Profiles of dimensionless wall-normal velocity along (a–e) friction line 1, and ( f – j) friction
line 2, for the cases with (red) and without (black) trip.

the wall indicate flow attachment from the freestream at the first three locations of friction
lines 1 and 2. On the other hand, the wall-normal velocity is positive farther from the wall
on the last two locations of both lines, indicative of separation of the boundary layer.

Figure 15 shows the spanwise velocity component throughout the boundary layer along
friction lines 1 and 2. Positive values of spanwise velocity are indicative of crossflow
towards the windward side, while negative values represent a crossflow in the leeward
direction. For both lines at the first four locations, a strong crossflow of approximately
0.06Ue to 0.1Ue is observed towards the leeward side at y+ ≈ 20, with a crossflow in the
opposite direction at y+ > 100. At the last location of both friction lines, the crossflow is
positive close to the wall and negative farther from it.

Comparison of the velocity components between the two cases on friction line 1
suggests that the disturbance dissipates with increasing distance even though the initial
perturbation from the trip is strong. The fact that the tripped boundary layer is similar to
the non-tripped counterpart is another indication of stabilization of the boundary layer,
which removes the history effect of the trip.

4.1.5. Reynolds stress
Figures 16–18 show the streamwise, wall-normal and spanwise normal Reynolds stresses
along the two friction lines. The largest components are in the streamwise direction,
followed by the spanwise direction, followed by the wall-normal direction. In addition,
the peaks of magnitude of each component occur at different locations: y+ = 10–30 for
the streamwise direction, y+ ≈ 100 in the wall-normal direction, and y+ = 20–100 with
more spread for the spanwise direction. On friction line 1: in the tripped case, for all three
components, the magnitude decreases, stagnates and rises again on the leeward side. In the
case without trip, the intensities increase between the first two locations, stagnate to match
levels similar to the tripped case, then rise again on the leeward side (last two locations).
On friction line 2, the intensities are constant, then increase on the leeward side. On this
line, similar intensities are observed between the cases with and without trip.
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Figure 15. Profiles of dimensionless spanwise velocity along (a–e) friction line 1, and ( f – j) friction line 2,
for the cases with (red) and without (black) trip.
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Figure 16. Profiles of dimensionless streamwise Reynolds normal stress along (a–e) friction line 1, and ( f – j)
friction line 2, for the cases with (red) and without (black) trip.

Figures 19–21 show the three shear components of the Reynolds stress tensor along the
two friction lines for both studied cases. The largest values are for the streamwise/spanwise
component 〈u′

SLw′
SL〉+, followed by the streamwise/wall-normal component 〈u′

SLv′
SL〉+

and the wall-normal/spanwise component 〈v′
SLw′

SL〉+. For the two latter components, the
maximum intensity occurs on the leeward side of the prolate spheroid (last two locations);
they are negatively correlated and have similar values in the cases with and without trip.
For the streamwise/spanwise component 〈u′

SLw′
SL〉+, the maximum intensity is on the side
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Figure 17. Profiles of dimensionless wall-normal Reynolds normal stress along (a–e) friction line 1, and
( f – j) friction line 2, for the cases with (red) and without (black) trip.
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Figure 18. Profiles of dimensionless spanwise Reynolds normal stress along (a–e) friction line 1, and ( f – j)
friction line 2, for the cases with (red) and without (black) trip.

of the spheroid for both friction lines and cases (second, third and fourth locations), and is
positively correlated.

The decrease of all six components of the Reynolds stress tensor in the tripped case,
at the first three locations (φ = 19.4◦ to φ = 66.0◦) of friction line 1, reinforces the
previous observation that disturbances decrease with distance downstream of the trip, on
the windward side. The collapse of the two cases on the leeward side of friction line 1 and
on friction line 2 is another indication of the erasure of the history effect from the trip.
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Figure 19. Profiles of dimensionless streamwise/wall-normal Reynolds shear stress along (a–e) friction
line 1, and ( f – j) friction line 2, for the cases with (red) and without (black) trip.
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Figure 20. Profiles of dimensionless streamwise/spanwise Reynolds shear stress along (a–e) friction line 1
and ( f – j) friction line 2, for the cases with (red) and without (black) trip.

The normal Reynolds stresses in the streamwise direction are found to be the largest,
followed by the spanwise direction, followed by the wall-normal direction. The fact that
the spanwise component is so strong also points to the importance of the crossflow
to the dynamics of the flow. It is also related to the strong streamwise/spanwise
Reynolds shear component, indicative of turbulent eddies aligned with the wall-normal
direction.
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Figure 21. Profiles of dimensionless wall-normal/spanwise Reynolds shear stress along (a–e) friction line 1,
and ( f – j) friction line 2, for the cases with (red) and without (black) trip.

4.1.6. Turbulent kinetic energy
Figure 22 shows the resolved turbulent kinetic energy (TKE) at five locations along friction
lines 1 and 2. For the case with trip, the TKE decreases at the beginning of the first line to
reach a minimum at the third location on the side of the spheroid, and increases again on
the leeward side (last two locations). The TKE from the case without trip increases from
a small value at the first location and becomes constant at a level similar to the tripped
case on the second and third locations, before increasing again at the last location. The
TKE values of the tripped and non-tripped cases are comparable along friction line 2. For
both cases, TKE remains constant on the first half of friction line 2 (windward side), with
an increase at the last two locations (leeward side). In both cases, the decrease of TKE is
indicative of a dampening of the perturbations on the windward side and is consistent with
the observations made on the components of the Reynolds stress tensor.

The evolution of the production of TKE (as defined in § A.1) displayed in figure 23
follows the same trend as the TKE. Despite the decrease of the energy, the production
remains positive though decreasing on the first halves of both friction lines, and increasing
on the second halves. In addition, the production term in the tripped case is larger than
in the case without trip at the beginning of friction line 1, despite a faster decrease of
turbulence with the former. This apparent contradiction is resolved when comparing the
relative weight of production of TKE to the maximum viscous dissipation in the boundary
layer in figure 24. Indeed, the production to dissipation ratio in the case without trip is over
twice as much on the first studied location compared to the case with trip.

4.1.7. Spectra
Figures 25–27 show the spectra of the normal Reynolds stresses along friction lines 1
and 2 at 1 × 10−3D away from the wall. At the beginning of friction line 1, the spectra
of the tripped case have slightly higher intensities than the case without trip in the
lower frequency range between 1 and 10 frequency units; however, the magnitude of the
non-tripped case drops quickly, starting from 10–50 units, while stronger intensities are
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Figure 22. Profiles of dimensionless resolved TKE along (a–e) friction line 1, and ( f – j) friction line 2, for
the cases with (red) and without (black) trip, for α = 20◦.
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Figure 23. Profiles of dimensionless TKE production along (a–e) friction line 1, and ( f – j) friction line 2, for
the cases with (red) and without (black) trip. A positive value is indicative of a transfer of energy from the
mean flow to turbulence levels.

observed at high frequency in the tripped case. Farther along friction line 1, the spectra
from all three directions collapse onto a similar curve between the two cases. On friction
line 2, the largest difference between the two cases is at the first location, where the curve
from the tripped case is shifted to higher frequency, although the rate of the drop off is
similar to the case without trip. Farther along friction line 2, the spectra from the two
cases are similar. In addition, the change in magnitude of the spectra along the friction
lines depends on the frequency. The trip is responsible for a broadband spectrum, with
higher magnitude in the smaller scales, which decreases with distance along friction line 1.
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Figure 24. Profiles of dimensionless TKE production non-dimensionalized by maximum viscous dissipation
along (a–e) friction line 1, and ( f – j) friction line 2, for the cases with (red) and without (black) trip.

The lower frequencies, on the other hand, conserve their energy. The decrease of the
high-frequency components is understood in the context of higher turbulent dissipation
acting on the small scales of turbulence, while the preservation of the lower frequency
is related to the high turbulent production term seen in figure 23, which feeds energy to
the larger eddies of the boundary layer. Although the described behaviour is similar in
the three directions, some differences are observed in the rate of decay of the streamwise
perturbation (figure 25) compared to the two other components (figures 26 and 27) in both
cases, with and without trips. The energy for the streamwise component decreases slowly
between 1 and 20 frequency units, while it is constant on the other directions, in this
range. On friction line 2, the closeness of the spectra between the cases with and without
trip shows further similarity between the two cases, even in term of spectral content. In
addition, the evolution of the spectra in the tripped case more closely resembles that from
the case without trip, with a gain of energy across the scales. This suggests that the spectral
signature of the trip is small on the aft midbody.

Figure 28 shows the TKE spectra in the cases with and without trip, along friction
line 1. In the tripped case, the spectrum is broadband close to the trip. The higher
frequencies lose energy with increasing distance, while small variations at the lower
frequencies are observed. In the case without trip, the increase in energy occurs for all the
frequencies, with the curves converging towards an asymptotic solution. Higher harmonics
at frequencies approximately 15 and 30 are observed in the second spectrum for the case
without trip. The evolution of the spectrum of TKE in the case without trip is markedly
different to the tripped case. Indeed, the increase in energetic content occurs across all
scales in the case without trip. Unlike in the case with trip, the intermediate (10–70
frequency units) and smaller scales gain energy with increasing streamwise distance
along the friction line, which is also consistent with higher production to dissipation
ratio.
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Figure 25. Spectra of the streamwise Reynolds normal stress product versus dimensionless frequency unit on
(a–e) friction line 1, and ( f – j) friction line 2, in the cases with (red) and without (black) trip. Here, R+

xx is
defined as the Fourier transform of the convolution product of 〈uSL〉 with itself.
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Figure 26. Spectra of the wall-normal Reynolds normal stress versus dimensionless frequency unit on (a–e)
friction line 1, and ( f – j) friction line 2, in the cases with (red) and without (black) trip. Here, R+

yy is defined
as the Fourier transform of the convolution product of 〈vSL〉 with itself.

4.2. Effect of subgrid model
Table 6 provides the ratio of the subgrid term to the dissipation term in the TKE equation
(cf. § A.1) for the fine grid, for the cases with and without trip. For both cases, the
ratio increases overall with distance along friction lines 1 and 2. In the region where
the perturbations are attenuated (locations 1, 2, 3 and 4 of both lines), however, the
contribution of the subgrid term is approximately four times smaller than the viscous
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Figure 27. Spectra of the spanwise Reynolds normal stress versus dimensionless frequency unit on (a–e)
friction line 1, and ( f – j) friction line 2, in the cases with (red) and without (black) trip. Here, R+

zz is defined as
the Fourier transform of the convolution product of 〈wSL〉 with itself.
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Figure 28. Spectra of TKE versus dimensionless frequency unit along friction line 1 (sorted by decreasing
darkness) for the cases (a) with trip, and (b) without trip.

dissipation term. This shows that the observed attenuation of the perturbations is not due
to the subgrid term.

4.3. Effect of pressure gradient
Section 4.1 details how the TKE decreases from φ = 40◦ to φ = 65◦. Favourable pressure
gradients have been shown to decrease the intensity of turbulence, and Launder (1965)
found that relaminarization of a two-dimensional boundary layer occurred for a threshold
value of the acceleration parameter Kx = (ν/U2

e )(∂Ue/∂xSL) = 3 × 106. On the prolate
spheroid, figure 10 shows that the favourable pressure gradient is the strongest for φ ∈
[20◦, 65◦]. The values of the acceleration parameter in the streamwise (Kx), wall-normal
(Ky) and spanwise (Kz) directions are calculated and provided in figure 29 in order to
estimate the contribution of the pressure gradient to the attenuation of the TKE.
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Friction line no. Location no. DSGS/ε (tripped) DSGS/ε (no trip)

1 1 — 0.0026
1 2 0.23 0.049
1 3 0.16 0.28
1 4 0.14 0.16
1 5 0.35 0.31
1 6 0.77 0.79
1 7 0.92 0.90
2 1 0.08 0.0023
2 2 0.11 0.12
2 3 0.19 0.22
2 4 0.19 0.16
2 5 0.51 0.43
2 6 0.49 0.45
2 7 1.50 1.54

Table 6. Ratio of the integral of the SGS term of the TKE equation over the integral of the molecular
dissipation term, for the cases with and without trip.
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Figure 29. Acceleration parameters Kx (+), Ky (o) and Kz (∗) in the cases with (red) and without trip (black)
on (a) friction line 1, and (b) friction line 2. A definition of the acceleration parameters is provided in § A.3.

Note that because of conservation of mass, the equality Kx + Ky + Kz = 0 must hold.
On the windward side (locations 1–4), the streamwise parameter Kx is small compared to
Ky and Kz, which have similar values but opposite signs. The wall-normal acceleration
parameter Ky is negative and increases before reaching a small value at the fifth location.
The spanwise parameter, on the other hand, decreases to reach a small value at the fifth
location. On the leeward side, both the streamwise and spanwise parameters have similar
values and are negative, while the wall-normal component is positive. Figure 29 shows that
the pressure gradient parameter in the streamwise direction is smaller than the commonly
accepted two-dimensional relaminarization value 3 × 10−6. The other components of
the pressure gradient vector, however, have larger magnitudes than the relaminarization
threshold at the beginning of friction line 1. In particular, the spanwise acceleration
parameter is positive and thus stabilizes the boundary layer, while the wall-normal
pressure gradient is destabilizing. The small values in the streamwise direction compared
to the other two directions are an indication that the Launder acceleration parameter is
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Figure 30. Contribution of the xy term of the TKE production along (a–e) friction line 1, and ( f – j) friction
line 2, for the cases with (red) and without (black) trip.

not a reliable metric to assess relaminarization in this flow, since the pressure gradient
is strongly three-dimensional and thus outside the scope in which the critical value was
established.

For these reasons, the effect of the pressure gradient on the turbulent intensities is
assessed in a different manner, by observing its contribution to production terms in the
normal directions in comparison to the destabilizing shear production. Figures 30–33
show the contributions P12, P11, P22 and P33 compared to ‖P‖2, where Pαβ =
〈u′

αu′
β〉(∂〈uα〉/∂xβ). The production due to shear P12 is dominant throughout the boundary

layer, with smaller values close to the wall in the tripped case. Here, P11 is a sink of TKE
on the windward side and a source on the leeward side; it is negligible inside the boundary
layer. The negative values of P33 on the windward side imply that it is a sink of TKE,
while P22 is a source. Generally, P11, P22 and P33 are negligible compared to the shear
production throughout the boundary layer, except at the edge, where the shear become
small and the wall-normal and spanwise terms become larger.

4.4. Effect of streamline line curvature
Finnigan (1983) and Morse & Mahesh (2021) derived the Navier–Stokes equations in
streamline coordinates, which contain explicit centrifugal terms. The centrifugal terms
and pressure gradient can be combined into a corrected pressure gradient as defined in

(
∂〈P〉
∂y

)
corr

= ∂〈P〉
∂ySL

+ ρ
〈uSL〉2

Ry
,

(
∂〈P〉
∂z

)
corr

= ∂〈P〉
∂zSL

+ ρ
〈uSL〉2

Rz
, (4.1)

where Ry and Rz are the radii of curvature in the wall-normal and spanwise directions. If
the viscous and turbulent stresses are small, then a centrifugal balance can be written
in the two directions orthogonal to the streamline such that (∂〈P〉/∂y)corr = 0 and
(∂〈P〉/∂z)corr = 0.
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Figure 31. Contribution of the xx term of the TKE production along (a–e) friction line 1, and ( f – j) friction
line 2, for the cases with (red) and without (black) trip.
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Figure 32. Contribution of the yy term of the TKE production along (a–e) friction line 1, and ( f – j) friction
line 2, for the cases with (red) and without (black) trip.

Figure 34 compares the centrifugal acceleration to the pressure gradient in the vicinity
of the wall at the second location of friction line 1. Even inside the boundary layer
(y+ < 100), where viscous and turbulent terms are important, the wall-normal balance
is dominated by centrifugal effects. In the spanwise direction, the two terms differ for
y+ < 80, and agree closely farther from the wall. This suggests that the pressure gradient
in the wall-normal and spanwise directions originates from the curvature of the streamline.
This in turn influences the production term of the TKE equation, as seen in figures 31–33.
In addition to these considerations, streamline curvature leads to other effects related to
the stability of the boundary layer.
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Figure 33. Contribution of the zz term of the TKE production along (a–e) friction line 1, and ( f – j) friction
line 2, for the cases with (red) and without (black) trip.
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Figure 34. Centrifugal acceleration (purple) and pressure gradient (green) in the (a) wall-normal and
(b) spanwise directions, for the case without trip, at the second location of friction line 1. Note that Ry and
Rz are negative at this location.

One of these effects, illustrated in figure 35, is to either dampen or amplify
turbulence. Consider an eddy with a negative streamwise/wall-normal Reynolds shear
stress 〈u′

SLv′
SL〉 < 0 along a convex streamwise curvature. If u′

SL > 0, i.e. the centrifugal
acceleration is stronger than the wall-normal pressure gradient, then the fluid gains
momentum in the wall-normal direction, i.e. v′

SL > 0, and 〈u′
SLv′

SL〉 becomes less negative.
Similarly, if u′

SL < 0, then v′
SL < 0, and 〈u′

SLv′
SL〉 also becomes less negative. In this

case, the streamline curvature dampens turbulence; however, if the streamline curvature
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∂〈P〉/∂ySL

∂〈P〉/∂ySL = constant

u′
SL > 0, v′

SL > 0, –〈u′
SLv

′
SL〉 ↘

−ρ(u2
SL/Ry)↗

−ρ(u2
SL/Ry)

Figure 35. Schematic of the stabilization of the boundary layer from a convex streamline curvature. A mean
balance exists such that the wall-normal pressure gradient is balanced by the centrifugal acceleration. If a
particle has higher streamwise velocity than the mean flow, then the centrifugal acceleration becomes larger
than the pressure gradient, creating a positive wall-normal component.

or the shear is in the other direction, then the turbulence is amplified. Similarly, spanwise
streamline curvature can either decrease or increase 〈u′

SLw′
SL〉.

Streamline curvature affects the TKE (A1) in two ways: (i) the change of 〈u′
SLv′

SL〉 and
〈u′

SLw′
SL〉 modifies the production of TKE P ; (ii) additional terms are introduced, namely

Pc
y = 〈u′

SLv′
SL〉〈uSL〉/Ry and Pc

y = 〈u′
SLw′

SL〉〈uSL〉/Rz. Figure 36 shows the production of
TKE due to the wall-normal curvature Pc

y . It is negative and decreases with distance
along both friction lines, implying that the effect of this curvature is to reduce TKE in
the boundary layer. The wall-normal curvature does contribute to a diminution of the
turbulence kinetic energy; however, the magnitude is small compared to the production
term seen in figure 23, especially on the windward side where a decrease of the
perturbations is observed. While the explicit contribution of the streamline curvature to
the turbulent budget Pc

y is small, it is important to note that the shear production P12 is
dominant (figure 30) and that the curvature in the wall-normal direction contributes to a
reduction of that term via the 〈u′

SLv′
SL〉 product.

Figure 37 shows the production of TKE due to spanwise curvature. The spanwise
curvature term is positive on the first half of both friction lines, then varies between
positive and negative at the ends of the lines. The positivity of this term implies that
the spanwise curvature is a source of TKE on the windward side. Thus the curvature
in the spanwise direction contributes to an increase of TKE on the windward side, and
both positive and negative contributions on the leeward side. For the same reason that
wall-normal curvature affects 〈u′

SLv′
SL〉, the spanwise curvature is understood as the origin

of the large 〈u′
SLw′

SL〉 values observed in figure 20. On the windward side, perturbations
in the streamwise direction are correlated with perturbations in the spanwise direction
because of the curvature of the mean flow, such that wall-normal aligned eddies are
amplified. On the other hand, figure 19 shows that the 〈u′

SLv′
SL〉 component remains close to

constant and smaller in magnitude than 〈u′
SLw′

SL〉 despite production from the wall-normal
shear. Similarly, the fact that the 〈w′

SLw′
SL〉 intensity is close to an order of magnitude larger

than the 〈v′
SLv′

SL〉 component is also indicative of turbulence production via streamline
curvature.

Figure 38 shows the ratio of the spanwise velocity over the streamwise velocity, in the
friction line coordinate system. The ratio is negative and increasing with distance from the
wall on the first four locations of friction line 1, and the first three locations of friction
line 2. The ratio is positive and decreasing with distance from the wall on the last location
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Figure 36. Production term of TKE due to friction line curvature in the wall-normal direction, in the cases
with (red) and without (black) trip, along (a–e) friction line 1, and ( f – j) friction line 2.
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Figure 37. Production term of TKE due to friction line curvature in the spanwise direction, in the cases with
(red) and without (black) trip, along (a–e) friction line 1, and ( f – j) friction line 2.

of both lines. This means that on the windward side, low-momentum fluid close to the
wall moves more towards the leeward side, while the velocity vector of high-momentum
fluid away from the wall has a stronger axial component, resulting in a secondary flow. This
secondary flow is understood as a consequence of a balance between pressure gradient and
centrifugal acceleration, which are combined in (4.1) into the corrected pressure gradient.
Figure 34 shows both terms of this corrected pressure gradient. In the spanwise direction,
the pressure gradient is greater than the centrifugal acceleration for y+ < 30, which means
that (∂〈P〉/∂z)corr > 0, i.e. the fluid is accelerated toward the leeward side close to the wall.
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Figure 38. Ratio of spanwise velocity to streamwise velocity, in the cases with (red) and without (black) trip,
along (a–e) friction line 1, and ( f – j) friction line 2.

The pressure gradient is smaller for y+ ∈ [30, 80], then (∂〈P〉/∂z)corr < 0 and the fluid is
accelerated towards the windward side.

The same process alters the way the trip functions, as illustrated in figure 39. First, the
trip acts as a sink of mean momentum that slows the fluid in the boundary layer. Since Rz

is negative, ρ(〈uSL〉2/Rz) increases when uSL decreases, hence ∂〈P〉/∂zSL increases. This
forcing pushes the trip wake to the windward side. This phenomenon is also evidenced by
the positive 〈u′

SLw′
SL〉, showing that a higher u′

SL velocity perturbation is correlated with a
higher w′

SL perturbation. This reduces the windward area of the spheroid that is in the mean
advected wake of the trip. Fransson et al. (2004) and Ma & Mahesh (2022) discuss low-
and high-speed streaks generated by a trip element in relation to the growth of perturbation
leading to transition. In the present case, low- and high-speed streaks are segregated
because of the centrifugal balance leading to the former following a streamline along the
azimuth, while the latter follow a path closer to the axis of the spheroid. The separation
of the low- and high-speed streaks further alters the behaviour of the trip wake flow. In
addition, high-momentum fluid is pushed away from the wall because of wall-normal
curvature increasing 〈u′

SLv′
SL〉, while low-momentum fluid is transported towards the wall.

In summary, this centrifugal balance in two directions is responsible for: (i) an
attenuation or amplification of the perturbations depending on the convexity and the sign
of mean shear, where this term appears as an additional source in the TKE equation along
streamlines; (ii) a secondary flow in the boundary layer produced by varying streamwise
velocity and visible as a non-zero wFL component.

4.5. Diffusion of the perturbations
Advection and turbulent diffusion reduce the perturbations from the trip, which become
insufficient to trigger early transition. A strong convection is observed in figures 12 and
11, transporting fluid from the windward side to the leeward side. In § 4.4, this advection
was found to be amplified by wall-parallel curvature effects. The impact of advection
is evaluated by releasing a passive scalar from the trip and monitoring the intensity in
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Figure 39. Schematic of the influence of wall-parallel curvature on low- and high-speed flow. (a) Low-speed
flow follows higher curvature than high-speed flow because of the centrifugal balance. This also translates
into a positive correlation between streamwise and spanwise perturbations. (b) The difference in curvature
is responsible for a fanning of the streamlines, such that low-momentum fluid from the trip has a stronger
azimuthal velocity component than high-momentum fluid.

the downstream boundary layer. The scalar is transported using an advection/diffusion
algorithm developed by Muppidi & Mahesh (2006), with Schmidt number 1. Although
the passive scalar does not account for the more complex effects of transition, including
nonlinear growth of the perturbation, and does not account for production or destruction
terms, it is an indicator of the mean advection, turbulent and viscous diffusion that
perturbations are subject to.

Figure 40 shows the passive scalar intensity along the axial direction, at φ = 0◦, 90◦ and
180◦. For the three azimuthal lines, it decreases exponentially with the distance. By the
midsection at x/L = 0.5, the passive scalar intensity is only 2 × 10−4 of the initial density
on the side; by x/L = 0.772, where the transverse view shown in figure 10 is located, the
intensity is approximately 2 × 10−5. The intensity increases again starting from x/L = 0.9
at φ = 90◦, as the curve crosses the separation line where there is higher concentrations
of passive scalar from the reattached flow. The strong fall-off of its concentration in
figure 40 points to the fact that advection and diffusion processes render the effect of
the trip minimal on the aftmost half of the spheroid. In addition, the smaller production
to dissipation ratio observed in the tripped case in figure 24 indicates that the advection
and turbulent diffusion terms are stronger in that case. This suggests that not only does
the trip increase the production term through increase of the Reynolds shear, its wake is
also rapidly advected to the leeward side, leading to a dilution of the perturbations. The
shearing of the flow in the streamwise/spanwise direction due to the streamline curvature
(figure 20) results in turbulent diffusion in the wall-parallel plane.

4.6. Development of turbulent boundary layer
While the discussion so far has been focused on the attenuation of the perturbations on the
windward side, there is evidence that the flow becomes fully turbulent farther downstream.
The development of a logarithmic region in the velocity profiles (figure 13), the increase
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Figure 40. Scalar intensity along the length of the spheroid at φ = 0◦, 90◦ and 180◦.

of TKE on the leeward side (figure 22), the increase in unsteadiness of the skin friction
coefficient at approximately φ = 100◦ (figure 11), and the collapse of the energy spectra
at the last two locations of both friction lines (figures 25–28) are all indications of the
development of a turbulent boundary layer on the side of the prolate spheroid in both
tripped and non-tripped cases. Note that the unsteadiness of the skin friction precedes the
development of a logarithmic region and the collapse of the spectra.

The mechanisms of instability that initiate the growth of the perturbations on the
side of the spheroid are related to the streaks seen in the skin friction map (figure 11).
Figure 41(a) shows a line used to perform a one-dimensional spatial Fourier transform
of the skin friction coefficient cf . The spectrum is shown in figure 41(b). The peak at
wavelength 55−1D corresponds to the spanwise streaks observed on the skin friction
maps. The fact that both cases, with and without trip, have these streaks indicates that
this effect is independent of the trip. Indeed, the streaks at φ ∈ [30◦, 90◦] are consistent
with crossflow instabilities (Saric & Reed 1989) in that region. Chesnakas & Simpson
(1994) have observed that the boundary layer is skewed since the near-wall flow velocity
has a strong φ component, while the velocity at the edge of the boundary layer has a
stronger x component. This strong crossflow is also visible in figure 15, which shows that
the magnitude of the secondary velocity is as high as 10 % of the freestream velocity.

4.7. Effect of angle of attack
Figure 42 shows the skin friction coefficient at 10◦ angle of attack. In the tripped case, the
flow is unsteady at all locations for x/L > 0.2; the near-wall flow looks nearly uniformly
perturbed. In the case without trip, the near-wall flow is unperturbed on the windward
side on a triangular region bounded by (x/L, φ) = (0, 0◦), (0.4, 0◦) and (0, 180◦), and
perturbed outside of this region. The unsteady region is visibly similar in both cases,
although it starts at an earlier axial location on the windward side, in the case with trip.
This indicates that for the smaller angle of attack, the effect of the trip is to introduce
unsteadiness in the near-wall flow at a location earlier than otherwise observed in the case
without trip. The skin friction map shows less variation in the 10◦ case compared to the
20◦ case (figure 11). It is unsteady at all locations with x/L > 0.2, even on the windward
side, unlike at α = 20◦, which showed a more quiescent region for φ < 90◦.

Figure 43 shows the streamwise velocity profiles on the two considered friction lines. In
the case with trip, a logarithmic layer is visible, starting at y+ ≈ 30 for all the locations.
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Figure 41. (a) Measurement of location of the one-dimensional spatial spectrum of skin friction magnitude
(indicated by a red line). (b) One-dimensional spatial spectrum of skin friction magnitude versus wavenumber.
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Figure 42. Instantaneous skin friction coefficient for (a) the tripped case, and (b) without trip, at 10◦ angle of
attack.

The size of this logarithmic region increases with streamwise distance. In the case without
trip and on friction line 1, the velocity profile suggests that the boundary layer is laminar at
the first location. The curves in the case without trip subsequently collapse to their tripped
counterpart. A small logarithmic region is observed starting from the second location of
friction line 1 in the case without trip. On friction line 2, the profile from the case without
trip is similar to the one with trip, and also shows an increasing large logarithmic region.
The presence of logarithmic regions in figure 43 upstream of separation is one of the
criteria used to identify a turbulent boundary layer.

Figure 44 shows the TKE along the two considered friction lines for 10◦ angle of attack.
In the tripped case, on friction line 1, the TKE increases slightly from k+ = 10 to k+ = 15,
with a larger increase on the last location. In the case without trip, the TKE is small
on the first location and increases to match the value of the case with trip in the three
locations downstream. The TKE is similar between the two cases on all four locations of
friction line 2. It is constant at around k+ = 11 on the first three locations, and increases to
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Figure 43. Profiles of dimensionless streamwise velocity along (a–d) friction line 1, and (e–h) friction line 2,
for the cases with (red) and without (black) trip, for α = 10◦.

k+ = 28 on the last location. In contrast to the 20◦ tripped case, where TKE decreases, the
TKE increases slightly post-tripping. Both these observations indicate that the attenuation
of the perturbations on the windward side depends on the angle of attack. The fact that
it is turbulent earlier in the tripped case than in the case without trip on friction line 1
suggests that the effect of the trip is to trigger early transition. In addition, skin friction,
velocity profiles and TKE all have similar values in both cases in the turbulent region.
The indicates that there is no over-tripping of the boundary layer. In accordance with the
discussed metrics, it is deemed that successful tripping is achieved at 10◦ angle of attack.

Sections 4.3 and 4.4 discuss the idea that pressure gradient and curvature limit the effect
of the trip at 20◦ angle of attack. These effects are thus expected to be reduced at 10◦ since
the trip is effective for this lower angle of attack. The dimensionless pressure gradient in
three directions is shown in figure 45, for 10◦ and 20◦ angle of attacks. As observed in
figure 34, this quantity in the wall-normal and spanwise directions is close in value to the
radii of curvature in the edge of the boundary layer. In all three directions, the pressure
gradient/streamline curvature is much stronger at α = 20◦ compared to α = 10◦. The fact
that these parameters are both reduced in this region at smaller angle of attack is consistent
with the idea stated previously that these parameters play a role in the attenuation of the
perturbations on the windward side. Similarly, the absence of skin friction streaks at 10◦
(figure 42) compared to those observed at 20◦ (figure 11) suggests an association between
the streaks and the curvature effects.

4.8. Regime map of the skin friction coefficient at 20◦ angle of attack
Figure 46 summarizes the interpretation of the near-wall flow topology from the current
results. In region A, upstream of the trip, the flow is laminar and transitions naturally in the
presence of an adverse pressure gradient. This perturbed boundary layer then flows into
region B. Directly downstream of the trip, the skin friction is maximum, with a wake-like
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Figure 44. Profiles of dimensionless resolved TKE along (a–d) friction line 1, and (e–h) friction line 2, for
the cases with (red) and without (black) trip, for α = 10◦.
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Figure 45. Dimensionless pressure gradient at the edge of the boundary layer on friction line 1 in the
(a) streamwise, (b) wall-normal and (c) spanwise directions, for α = 10◦ (black) and α = 20◦ (red), in the
case without trip.

flow strongly affected by the roughness elements. Fluid is advected from region C and the
freestream into region D. That area is also trip-dependent, and shows variations between
the tripped and non-tripped cases. These variations are attenuated, so much that the flow
becomes trip-independent by the top interface of that region. Downstream, region E is
marked by a strong secondary component of velocity (10 % of freestream velocity) creating
crossflow instability that manifests itself as streamwise streaks. The bottom of region F is
characterized by development of turbulence followed by primary separation at the top of
this area. The flow from the separated boundary layer travels with the primary vortex,
where it is reattached at the top border of region H at φ = 180◦. The unsteady flow travels
along the negative φ direction before separating at the bottom border of that region. The
secondary vortex is reattached in the middle of region I. This region is characterized by
a turbulent boundary layer located underneath the primary and secondary vortices, both
of which drive the pressure in the area. Finally, regions G and J were not discussed in
the current study and are located on the aft windward and leeward sides of the spheroid,
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Figure 46. Map of the wall flow regions around the prolate spheroid as observed on the instantaneous skin
friction coefficient for the tripped case. A: pre-trip laminar region showing advection of disturbances. B:
pre-trip unsteady. C: trip wake region. D: windward, freestream impingement and trip-dependent region with
attenuation of the perturbations. E: crossflow and pressure gradient reversal region. F: transition to turbulence
and primary separation. G: windward stern adverse pressure gradient and transition. H: unsteady primary vortex
impingement and secondary separation. I: unsteady, sub-vortex and secondary reattachment region. J: leeward
stern relaminarization. Black and red dotted line: primary separation. Green and red dotted line: meridian
reattachments. Blue and red dotted line: secondary separation. The black arrows show the direction of the flow
across the interfaces.

respectively, where the curvature of the wall becomes larger and the pressure gradient
along the spheroid axis reverses. Region G has an adverse pressure gradient, with higher
skin friction, and looks unsteady. Although both tripped and non-tripped cases show
similar behaviour in this location, the former has a larger area. This could be attributed to
the earlier transition from the disturbance created by the trip. Region J, on the other hand,
has a favourable pressure gradient that relaminarizes the boundary layer and leads to a
decrease in unsteadiness and smaller values of skin friction. Experimentally, the spheroid
is attached by a sting on the aft of the geometry, which was not accounted for in the current
results. The effect of the sting on the flow in regions G and J has not been studied.

5. Conclusion

Wall-resolved and trip-resolved large-eddy simulation was used to study the effect
of tripping on the prolate spheroid at 10◦ and 20◦ angles of attack, in conditions
representative of the experiments of Chesnakas & Simpson (1994). Comparison between
the flow with and without trip showed that at large angle of attack, the effect of the
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trip on the transverse flow at x/L = 0.772 was negligible. Several mechanisms were
identified to explain the limited effect from the trip: (i) an attenuation of the initial
disturbance from the trip due to pressure gradient, streamline curvature effects; (ii) a strong
advection and diffusion of the perturbation limiting the region of influence of the trip. The
advection of the trip wake is amplified by wall-normal and wall-parallel curvatures that
are responsible for a secondary flow moving low-momentum fluid to the leeward side at a
higher angle. Streamline curvatures are also associated with instabilities in the spanwise
direction, streaks visible on the skin friction, and large 〈u′

SLw′
SL〉 values. The boundary

layer subsequently becomes fully turbulent downstream of the primary separation. This
influences the location of separation and the topology of the primary vortex pair.

The state of the attached boundary layer determines the location of separation, which
in turn influences the size and location of the counter-rotating vortex pair and the global
loads on the spheroid. For this reason, the occurrence of transition on the tripped prolate
spheroid has implications for the macroscale topology of the flow and the prediction of
the loads. The present work underscores the importance of windward measurements and
accounting for transition even for tripped flows.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2023.175.
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Appendix A

A.1. Resolved kinetic energy equation
The equation for the resolved TKE k is used in the current study to study the mechanisms
of amplification or attenuation of the perturbations. It can be derived in a non-inertial
frame of reference (such as the streamline reference frame) as

∂k
∂t

(I) + 〈uj〉 ∂k
∂xj

(II) = − 1
ρ

∂

∂xi
〈u′

iP
′〉 (III) + ν

∂2k
∂xj ∂xj

(IV)

− ∂

∂xj

〈
1
2

u′
iu

′
iu

′
j

〉
(V) − 〈u′

iu
′
j〉

∂〈ui〉
∂xj

(VI) − ν

〈
∂u′

i
∂xj

∂u′
i

∂xj

〉
(VII) −

〈
u′

i
∂

∂xj

(
ν′

t
∂u′

i
∂xj

)〉
(VIII)

−
(

〈u′
SLu′

2〉
〈uSL〉

Ry
+ 〈u′

SLu′
3〉

〈uSL〉
Rz

+ 〈u′
SLu′

SLu′
2〉

Ry
+ 〈u′

SLu′
SLu′

3〉
Rz

)
(IX), (A1)

where (I) is the temporal variation of TKE, (II) is the advection of k with the mean flow,
(III) is the pressure diffusion term, (IV) is the molecular diffusion of k, (V) is the turbulent
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diffusion of k, and (VI) is the production term, contributing to an increase of TKE if the
shear and Reynolds stress tensor term have opposite signs. The latter term also appears
in the mean kinetic budget and is thus understood as a transfer term between the two
equations. For convenience, the production term is written as P . (VII) is the molecular
dissipation term, which is always strictly negative or zero; it is written as ε. (VIII) is the
contribution of the SGS to the turbulent kinetic budget, written as DSGS. (IX) are additional
production terms due to the curvature of the streamline (Bradshaw 1973). Here, R2 and R3
are the radii of curvature in the wall-normal and spanwise directions; they are signed with
the direction of curvature with respect to the sign of the shear, and are calculated as R−1

i =
〈uSL〉−1(Ωk + ∂uSL/∂xi), where k is the index corresponding to the direction orthogonal
to the streamline vector and the i component (Morse & Mahesh 2021). Each term can be
either positive or negative, i.e. be a source or a sink of TKE. The triple-product terms are
small compared to the Reynolds stress terms and are thus neglected. The production terms
due to curvature are written as Py

x and Pz
x .

A.2. Estimation of boundary layer integral quantities
The determination of several metrics used in the present work assumes knowledge of some
measure of boundary layer thickness. This measurement is complicated by the fact that the
flow velocity is not constant outside the boundary layer. This problem has been a topic of
research in the past. Griffin, Fu & Moin (2021) proposed a methodology to estimate the
boundary layer thickness in general flows in a manner that remains consistent with the
definition for the flow over a flat plate with zero-pressure gradient. The authors consider
the potential velocity

Up ≡
√

2
P0 − P

ρ
, (A2)

where P0 is the pressure at the stagnation point, and P is the pressure at the measurement
location. The nth percentile boundary layer thickness can then be defined as the location
closest to the wall where Up/U < n/100, where U is the velocity magnitude at the
measurement location.

In the case of the prolate spheroid, the stagnation pressure is difficult to obtain
numerically. Instead, the potential velocity is obtained using the location of the profile
that maximizes the velocity magnitude:

Up ≡
√

2
Pmax − P

ρ
+ U2

max. (A3)

Figure 47 shows a comparison between the two velocities. Despite the fact that the
velocity is not constant outside the boundary layer, the computed velocity is a very good
approximation of the actual velocity in the potential region.

Other integral quantities may then be obtained from this definition, including the
displacement thickness δ∗, the momentum thickness θ , and the shape factor H = δ∗/θ ,
as well as Reθ based on momentum thickness and freestream velocity, the streamwise
pressure gradient parameter β1 = (δ∗/τw)(∂Pe/∂xSL) (where Pe is the pressure at yFL =
δ99) and the spanwise pressure gradient parameter β3 = (δ∗/τw)(∂Pe/∂zSL). In addition,
the direction set by the velocity vector at δ99 can then be used as a reference to create the
friction line coordinate system.
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Figure 47. Calculated potential velocity Up (green) and measured velocity magnitude (purple) versus
wall-normal coordinate, for the case without trip.

A.3. Acceleration parameters
Launder (1965) observed that relaminarization of a turbulent boundary layer flat plate
in favourable pressure gradient occurs for values of the acceleration parameter Kx > 3 ×
10−6 with

Kx = ν

U2
e

∂Ue

∂xSL
, (A4)

where Ue is the edge velocity in the streamwise direction. The pressure gradients in the
wall-normal and spanwise directions are extended in the current study and defined as

Ky = ν

U2
e

∂Ve

∂ySL
, Kz = ν

U2
e

∂We

∂zSL
. (A5)

The idea behind this generalization is to use the components of the velocity gradient tensor
that appear in the normal production terms of TKE, P22 and P33. The gradients ∂Ve/∂ySL
and ∂We/∂zSL modulate the normal components of the Reynolds stress tensor and are,
depending on their sign, a source or a sink of TKE. Note that while the acceleration
parameter is a convenient tool to assess the relaminarization due to pressure gradient,
it is based on a two-dimensional boundary layer without streamline curvature.
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