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Abstract Let q be a positive integer, let I = I(q) and J = J (q) be subintervals of integers in [1, q]
and let M be the set of elements of I that are invertible modulo q and whose inverses lie in J . We
show that when q approaches infinity through a sequence of values such that ϕ(q)/q → 0, the r-spacing
distribution between consecutive elements of M becomes exponential.
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1. Introduction

There are many sequences of interest in number theory that are believed to have a
Poissonian distribution, but in very few cases has one been able to prove the relevant
conjectures. We mention first of all the classical results of Hooley [10–13] on the distribu-
tion of residue classes which are coprime with a large modulus q, which will be discussed
in more detail below, and also the well-known conditional result of Gallagher [8] on the
distribution of prime numbers.

More recently, in [4], it was proved that the distribution of primitive roots mod p

becomes Poissonian as p → ∞ such that ϕ(p − 1)/p → 0, while the distribution of
squares modulo highly composite numbers was shown to be Poissonian by Kurlberg and
Rudnick in [14]. Fractional parts of polynomial sequences {αP (n)}, n ∈ N , provide
another class of sequences which are believed to have a Poissonian distribution. Rudnick
and Sarnak [16] proved that for almost all α ∈ R the pair correlation of this sequence is
Poissonian (see also [1]). Here the degree of P is at least 2. If deg P = 1, the distribution
is not Poissonian. In fact in this case the gaps between the fractional parts {αP (n)},
1 � n � N , take at most three values (see Sós [17] and Świerczkowski [18]). In this
paper our aim is to find out whether the inverses, modulo a large number q, of integers
from an interval have a Poissonian distribution when the interval’s length is large enough.
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To make things more precise, let q be an integer and let I = I(q) and J = J (q) be
subintervals of integers in [1, q]. For any integer n ∈ [1, q], (n, q) = 1, we denote by n̄ the
inverse of n mod q, that is the unique integer from {1, . . . , q} satisfying nn̄ ≡ 1 (mod q).
We consider the set

M = M(I,J , q) = {γ ∈ I : (γ, q) = 1, γ̄ ∈ J }

and suppose its elements γ1, γ2, . . . , γM are sorted in ascending order. (Here M =
|M(I,J , q)| is the cardinality of M.) One might expect that if |I| and |J | are suffi-
ciently large, then the elements of M are randomly distributed. Let

θ =
ϕ(q)

q

|J |
q

.

We think of θ as being the probability that a randomly chosen integer from [1, q] is
invertible modulo q (i.e. it is coprime with q) and that its inverse modulo q lies in
J . Then M should be about |I|θ and the average distance between two consecutive
elements of M should be |I|/M ∼ 1/θ. Thus, on these probabilistic grounds, concerning
the spacing between consecutive members of M one might conjecture that

#
{

γi ∈ M : γi − γi−1 >
λ

θ

}
∼ e−λ|I|θ,

for each fixed λ > 0. In particular, the proportion of gaps that are greater than the
average should be about e−1. This may be regarded as a generalization of the problem
studied by Hooley in [11] and [12], who investigated the case I = [1, q], J = [1, q], that
is the set of reduced residue classes. He proved that the r-spacing distribution of the gaps
between reduced residue classes becomes exponential as q → ∞ such that ϕ(q)/q → 0.
In this paper we show that this property is inherited by subsets naturally constructed
by the taking the inverse operation.

In [5], Erdös originally made a series of conjectures concerning the distribution of the
residue classes, the most celebrated of which was the special case α = 2 of the bound

ϕ(q)−1∑
i=1

(ai+1 − ai)α = O

{
q

(
ϕ(q)

q

)α−1 }
, (1.1)

where a1, . . . , aϕ(q) are the reduced residues modulo q. Hooley proved (1.1) for 0 � α < 2
in [10], and in [11] he calculated the distribution of the consecutive differences ai+1 −ai,
showing that they behave statistically like a gamma-random variable with parameter 1.
As a consequence he showed that for 0 � α < 2 the estimate (1.1) can be replaced by
an asymptotic formula when ϕ(q)/q → 0. In [12], Hooley proved more generally that
for any r � 1, the groups of r consecutive gaps between the elements of the sequence
a1, . . . , aϕ(q) are statistically independent, in the sense explained below. Later on, in a
famous article [15], Montgomery and Vaughan settled the conjecture by proving (1.1)
for all α > 0.
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Here we show that the distribution function calculated by Hooley remains the same if
one picks up in the sampling only reduced residues from M. To see this, for λ1, . . . , λr > 0
we define

g(λ1, . . . , λr) = g(λ1, . . . , λr; I,J , q)

to be the proportion of γi ∈ M which satisfies γi+j − γi+j−1 � λj/θ, for 1 � j � r.
Based on the presumption that the inverses from a sufficiently large interval are randomly
distributed in [1, q], one would conjecture that the differences of consecutive elements of
M are independent of one another, that is, one expects to have

g(λ1, . . . , λr) ≈ g(λ1) . . . g(λr).

Theorem 1.1 below shows that this is true, providing additionally an explicit expres-
sion for g(λ1, . . . , λr). It also confirms that the same distribution is inherited by shorter
intervals, and that the distribution of r-groups of consecutive differences is essentially
independent of q as ϕ(q)/q → 0. (This was also conjectured by Erdös (see [6]) when
I = J = [1, q] were complete intervals and q was a product q = 2 ·3 · · · · ·p of consecutive
primes.)

Theorem 1.1. Let λ1, . . . , λr > 0. Then, as q → ∞ through a sequence of values such
that ϕ(q)/q → 0 and the lengths of the intervals I and J grow with q satisfying the
conditions |I| > q1−(2/9(log log q)1/2) and |J | > q1−(1/(log log q)2), we have

lim
q→∞

g(λ1, . . . , λr; I,J , q) = (1 − e−λ1) · · · (1 − e−λr ).

2. Bounds for some exponential sums

Let A = {a1, . . . , as} be a set of integers and k = (k1, . . . , ks) a vector with integer
components. If x is an integer, we write x = (x, . . . , x), x + a = (x + a1, . . . , x + as)
and x + a = (x + a1, . . . , x + as). Here and later the bar represents the inverse modulo q

(most often) or modulo an integer understood from the context.
We consider the following exponential sum:

S(u, k,A, q) =
q∑′

x=1

e
(

ux + k · x + a

q

)
.

Here
∑′ means that the summation is only over those x for which (x + a, q) = 1 for

all a ∈ A. Using the Bombieri–Weil inequality [2, Theorem 6], we obtain (see [3]) the
following result.

Lemma 2.1. Suppose that a1, . . . , as are distinct mod p and p � (u, k1, . . . , ks). Then

|S(u, k,A, p)| � 2s
√

p.

These exponential sums behave nicely and, in particular, there is some sort of mul-
tiplicity. Using this property, in order to get bounds for a general modulus, one needs
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estimates only for sums with a prime power modulus. This subject was also treated in [3],
from which we quote the following three lemmas. The proofs of these lemmas are based
on the method used by Esterman in [7].

Lemma 2.2. Let q1, . . . , qr be pairwise coprime positive integers, q = q1 . . . qr,
q̂j = q/qj , and denote by x̄(j) the inverse of x modulo qj , that is 1 � x̄(j) � qj − 1 and
xx̄(j) ≡ 1 (mod qj). Then

S(u, k,A, q) =
r∏

j=1

S( ¯̂q(j)
j u, ¯̂q(j)

j k,A, qj). (2.1)

Let L(y) be the polynomial given by

L(y) =
(

u −
s∑

j=1

kj

(y + aj)2

) s∏
j=1

(y + aj)2.

Lemma 2.3. Let n � 2 and 0 � r � [ 12n] be integers. Suppose that all the coefficients
of L(y) are divisible by pr but at least one of them is not divisible by pr+1. Then

|S(u, k,A, pn)| � 22s−1pn−(([n/2]−r)/(2s)).

Since from the hypothesis of Lemma 2.3 it follows that pr � (p[n/2], u), we have the
following.

Lemma 2.4. Let n � 2. Then

|S(u, k,A, pn)| � 22s−1(p[n/2], u)1/(2s)pn−([n/2]/(2s)).

We also need partial sums, where the variable of summation runs over I, a subinterval
of integers in [1, q]. We write

SI(u, k,A, q) =
∑
x∈I′

e
(

ux + k · x + a

q

)
,

where I ′ = {x ∈ I : (x + a, q) = 1 for all a ∈ A}. The estimation of the incomplete sums
can be reduced to that of complete ones. To see this, we write

SI(u, k,A, q) =
1
q

q∑′

x=1

e
(

ux + k · x + a

q

) ∑
z∈I

q∑
l=1

e
(

l
x − z

q

)
.

Inverting the order of summation, we obtain

SI(u, k,A, q) =
1
q

q∑
l=1

∑
z∈I

e
(

−lz

q

) q∑′

x=1

e
(

(u + l)x + k · x + a

q

)

=
|I|
q

S(u, k,A, q) +
1
q

q−1∑
l=1

∑
z∈I

e
(

−lz

q

)
S(u + l, k,A, q). (2.2)
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3. The s-tuple problem

The key to obtaining Theorem 1.1 is to solve the so-called s-tuple problem. In this
section our aim is to estimate NI(A) = NI(A; J , q), the number of n ∈ I for which
all the components of the s-tuple (n + a1, . . . , n + as) have inverses modulo q in J . If
I = [1, q], we omit the indicial notation and for short write N(A) instead of N[1,q](A).

For q large and A a set of integers distinct modulo q, a probabilistic argument leads
us to expect that NI(A) is about |I|θ|A| when q is prime, and for general q it is a
similar term multiplied by a factor involving the prime factors of q. This is confirmed
by Theorem 5.5 below. The first step in the proof is to write NI(A) in terms of the
exponential sums defined above. For this we introduce the characteristic function

δ(x) =

{
1 if x̄ ∈ J ,

0 if x̄ /∈ J .
(3.1)

This can be written as an exponential sum as follows:

δ(x) =
1
q

q∑
k=1

∑
y∈J

e
(

k
xy − 1

q

)
.

If (x, q) = 1, this is

δ(x) =
1
q

q∑
k=1

∑
y∈J

e
(

k
y − x̄

q

)
. (3.2)

Then, by the definition of the NI(A) and (3.2) we have

NI(A) =
∑
x∈I

∏
a∈A

δ(x + a)

=
1
qs

∑
x∈I′

∏
a∈A

q∑
k=1

∑
y∈J

e
(

k
y − x + a

q

)
.

Inverting the order of summation, we get

NI(A) =
1
qs

∑
x∈I′

q∑
k1=1

· · ·
q∑

ks=1

∑
y1∈J

· · ·
∑

ys∈J
e
(

k1
y1 − x + a1

q

)
· · · e

(
ks

ys − x + as

q

)

=
1
qs

q∑
k1=1

∑
y1∈J

e
(

k1y1

q

)
· · ·

q∑
ks=1

∑
ys∈J

e
(

ksys

q

)
SI(0,−k,A, q),

where k = (k1, . . . , ks). Here the main contribution is (we do not yet know that it is the
dominant term) given by the term with k1 = · · · = ks = q. Isolating this term we obtain

NI(A) =
|I ′| |J |s

qs
+

1
qs

s∏′

j=1

{ q∑
kj=1

∑
yj∈J

e
(

kjyj

q

)}
SI(0,−k,A, q), (3.3)
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190 C. Cobeli, M. Vâjâitu and A. Zaharescu

where the prime in the product means that the terms with k1 = · · · = ks = q are
excluded.

In the next section we show that NI(A) depends proportionally on |I|, so it is enough
to estimate N(A).

4. Reduction to the case I = [1, q]

We need an estimate for |I ′|. Following Hooley [11], we introduce

ν(d, A) = {n : 1 � n � d, (n + a1) · · · (n + as) ≡ 0 (mod d)}.

Clearly, if p is prime, then
1 � ν(p, A) � min(p, s). (4.1)

Note that ν(d, A) is multiplicative, that is

ν(d1d2,A) = ν(d1,A)ν(d2,A) (4.2)

whenever (d1, d2) = 1. Also note that if p is prime, then ν(p, A) equals the number of
a ∈ A that are distinct modulo p. We denote

Π1(q, A) =
∏
p|q

(
1 − ν(p, A)

p

)
. (4.3)

If Π1(q, A) �= 0, then using (4.1) we get the following trivial lower bound for Π1(q, A):

1
q

�
∏
p|q

1
p

=
∏
p|q

(
1 − p − 1

p

)
� Π1(q, A). (4.4)

A better bound is given by the following lemma.

Lemma 4.1. Suppose 0 < s < (log q)1/3 and Π1(q, A) �= 0. Then for q large enough
one has

Π1(q, A) � q−3/((log q)1/3).

Proof. We estimate the factors of the product (4.3) differently according to their size.
Correspondingly, we split Π1(q, A) as follows:

Π1(q, A) =
∏
p|q

p<(log q)2/3

(
1 − ν(p, A)

p

) ∏
p|q

p�(log q)2/3

(
1 − ν(p, A)

p

)
= P1P2, (4.5)

say. Since ν(p, A) � p − 1, for the first product we have

P1 �
∏
p|q

p<(log q)2/3

(
1 − p − 1

p

)
�

∏
p<(log q)2/3

1
p
. (4.6)
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A trivial estimate for π(x), the number of primes � x, gives∏
p�x

p � xπ(x) � x2x/(log x) = e2x, (4.7)

for x � 2. By (4.6) and (4.7) we obtain

P1 � e−2(log q)2/3
= q−2/((log q)1/3). (4.8)

By (4.1), for P2 we have

P2 �
∏
p|q

p�(log q)2/3

(
1 − s

p

)
�

(
1 − s

(log q)2/3

)ω(q)

� e−esω(q)/((log q)2/3), (4.9)

because 1 − x � e−ex for any x ∈ [0, 1/e]. Here ω(q) is the number of distinct prime
factors of q. It is well known that

1 � ω(q) � 2 log q

log log q
(4.10)

for q large enough. Using (4.9), (4.10) and our hypothesis on s, we obtain

P2 � exp
[
− 2e log q

log log q

(log q)1/3

(log q)2/3

]
= q−2e/((log log q)(log q)1/3). (4.11)

The lemma then follows by (4.5), (4.8) and (4.11). �

The next lemma gives an estimate for the number of admissible s-tuples, that is those
s-tuples with all the components invertible modulo q.

Lemma 4.2. Let A = {a1, . . . , as} be a set of integers, I a subinterval of integers in
[1, q], and denote I ′ = {n ∈ I : (n + a, q) = 1 for all a ∈ A}. Then

||I ′| − Π1(q, A)|I|| � (2s)ω(q) (4.12)

and
|[1, q]′| = qΠ1(q, A). (4.13)

Proof. Let P (x) = (x + a1) · · · (x + as). Then we have

|I ′| =
∑
x∈I

(P (x),q)=1

1 =
∑
x∈I

∑
d|P (x)

d|q

µ(d)

=
∑
d|q

µ(d)
∑
x∈I

P (x)≡0 (mod d)

1

=
∑
d|q

µ(d)
(

|I|
d

+ θd

) ∑
1�x�d

P (x)≡0 (mod d)

1,
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where θd are real numbers with |θd| � 1. Using the multiplicativity of the sum∑
1�x�d

P (x)≡0 (mod d)

1,

which coincides with ν(d, A), we obtain

|I ′| = |I|
∑
d|q

µ(d)
d

ν(d, A) +
∑
d|q

µ(d)θdν(d, A)

= |I|
∏
p|q

(
1 − ν(p, A)

p

)
+

∑
d|q

µ(d)θdν(d, A). (4.14)

We bound the last sum trivially:∣∣∣∣∑
d|q

µ(d)θdν(d, A)
∣∣∣∣ �

∑
d|q

ν(d, A) =
∏
p|q

(1 + ν(p, A))

�
∏
p|q

(1 + s) � (1 + s)ω(q) � (2s)ω(q). (4.15)

By combining (4.3), (4.14) and (4.15) we obtain (4.12).
Observing that if I = [1, q] then in the above calculation θd = 0 for all d|q, we see that

(4.13) follows as well. �

We return now to the s-tuple problem. By (3.3) we deduce that∣∣∣∣NI(A) − |I|
q

N(A)
∣∣∣∣ � E1 + E2, (4.16)

where

E1 =
∣∣∣∣ |I ′| |J |s

qs
− |I|

q

|[1, q]′| |J |s
qs

∣∣∣∣
and

E2 =
∣∣∣∣ 1
qs

s∏′

j=1

( q∑
kj=1

∑
yj∈J

e
(

kjyj

q

))(
SI(0,−k,A, q) − |I|

q
S(0,−k,A, q)

)∣∣∣∣.
To bound E1 we use Lemma 4.2 to obtain

E1 =
|J |s
qs

∣∣∣∣|I|Π1(q, A) + θ1(2s)ω(q) − |I|
q

qΠ1(q, A)
∣∣∣∣,

where θ1 is a real number with |θ1| � 1. This gives

E1 � |J |s
qs

(2s)ω(q). (4.17)
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To obtain an upper bound for E2 we first use (2.2) to replace the incomplete exponential
sums by complete ones to get

E2 =
∣∣∣∣ 1
qs

s∏′

j=1

{ q∑
kj=1

∑
yj∈J

e
(

kjyj

q

)}
1
q

q−1∑
l=1

∑
z∈I

e
(

−lz

q

)
S(l, −k,A, q)

∣∣∣∣.
Then we bound the geometric progressions to obtain

E2 � 1
qs+1

s∏′

j=1

( q∑
kj=1

min
{

|J |, 1
2‖kj/q‖

}) q−1∑
l=1

min
{

|I|, 1
2‖ − l/q‖

}
|S(l, −k,A, q)|,

(4.18)
where ‖x‖ is the distance of x from the nearest integer.

5. The estimation of NI(A)

Our aim is to prove a result of the following type. Given the sequence of integers {qn}n∈N

and a sequence {εn}n∈N of real numbers such that qn → ∞ and εn → 0, let us consider
the intervals In,Jn ⊆ [1, qn] with |In|, |Jn| > q1−εn

n . Then, for any positive integer s and
any ε > 0 there exists an integer n(s, ε) such that for any integer n � n(s, ε) and any
An ⊆ [−qεn

n , qεn
n ] with |An| = s we have∣∣∣∣NIn(AN ,Jn, qn) − |In|

(
|Jn|
qn

)s

Π1(qn,An)
∣∣∣∣ � ε|In|

(
|Jn|
qn

)s

Π1(qn,An).

To proceed, we need bounds for exponential sums, which, as we have seen, depend
heavily on the divisors of q, so we need to split the discussion up accordingly.

5.1. More estimates for exponential sums

The first estimate is for the case when the modulus q is square free.

Lemma 5.1. Let p1, p2, . . . , pr be distinct primes and q = p1p2 . . . pr. Then

|S(0,k,A, q)| � (2s)ω(q)
(
2 max

1�j�s
|aj |

)s(s−1)/4
(k1, . . . , ks, q)1/2q1/2.

Proof. Let L1(x) be the polynomial given by

L1(x) =
(

k1

x + a1
+ · · · +

ks

x + as

) s∏
j=1

(x + aj).

We split S(0,k,A, q) using Lemma 2.2 and estimate the factors S(0,k,A, p) with p prime,
either trivially or using Lemma 2.1. Thus we have

|S(0,k,A, p)| �
{

p − ν(p, A), if L1(x) ≡ 0 (mod p),

2sp1/2, otherwise.
(5.1)
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Set
B = {p : p prime, p|q, L1(x) ≡ 0 (mod p)}.

Then Lemma 2.2 and (5.1) give

|S(0,k,A, q)| �
r∏

j=1

|S(0, ¯̂p(j)
j k,A, pj)| �

∏
p∈B

p
∏
p/∈B

2sp1/2. (5.2)

Next let us denote

Dj =
∏
i �=j

(ai − aj)

and

∆ =
∏
i<j

(ai − aj).

With this notation the product over p ∈ B in (5.2) can be written as∏
p∈B

p =
∏
p∈B

p|D1···Ds

p
∏
p∈B

p�D1···Ds

p. (5.3)

Note that p|D1 · · ·Ds is equivalent to p|∆. This implies that

∏
p∈B

p|D1···Ds

p � |∆| �
(
2 max

1�j�s
|aj |

)s(s−1)/2
. (5.4)

To estimate the other product in (5.3) we make the following remark, which will also be
referred to later.

Remark 5.2. If L1(x) ≡ 0 (mod p), then

0 ≡ L1(−ah) = kh

∏
1�j�s

j �=h

(−ah + aj) = khDh (mod p),

therefore p|khDh for all h with 1 � h � s.

Now it is easy to see that Remark 5.2 implies that∏
p∈B

p�D1···Ds

p � (k1, . . . , ks, q). (5.5)

By (5.3)–(5.5) we obtain

∏
p∈B

p � (k1, . . . , ks, q)
(
2 max

1�j�s
|aj |

)s(s−1)/2
. (5.6)

The lemma follows by inserting estimate (5.6) into (5.2). �
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Suppose from now on that the modulus q has the decomposition q = p
αp1
1 · · · pαpr

r ,
where p1, . . . , pr are distinct primes. Here q is not necessarily square free. We use the
following notation:

q0 =
∏
p|q

p, q1 =
∏
p|q
p2�q

p,

and

q2 =
∏
p|q
p2|q

pαp , q̃2 =
∏
p|q2

p[αp/2].

It is clear that q1q2 = q.
To evaluate E2 we use (4.18), and this requires a bound for S(l, k,A, q).

Lemma 5.3. We have

|S(l, k,A, q)| � (2s)ω(q1)2(2s−1)ω(q2)(q1, l)1/2(q̃2, l)1/(2s)q1−(1/(6s)).

Proof. First we split S(l, k,A, q) using Lemma 2.2:

S(l, k,A, q) =
∏
p|q1

S(c(p, q)l, c(p, q)k,A, p)
∏
p|q2

S(c(pαp , q)l, c(pαp , q)k,A, pαp).

Here we used the fact that by their definition all the coefficients c(m, q) are relatively
prime to m. A simple calculation shows that

q
1/2
1 q2q̃

−1/(2s)
2 = qq

−1/2
1 q̃

−1/(2s)
2 � q1−(1/(6s)). (5.7)

We then apply Lemma 2.1 for the primes p|q1 and Lemma 2.4 for the primes p|q2 to
obtain

|S(l, k,A, q)| �
∏
p|q1

(2s(p, l)1/2p1/2)
∏
p|q2

(22s−1(p[αp/2], l)1/(2s)pαp−([αp/2]/(2s)))

� (2s)ω(q1)2(2s−1)ω(q2)(q1, l)1/2(q̃2, l)1/(2s)q
1/2
1 q2q̃

−1/(2s)
2 . (5.8)

The lemma then follows by (5.8) and (5.7). �

Finally, in order to apply (3.3) we need to estimate S(0,k,A, q) and this is done in
the following lemma.

Lemma 5.4. We have

|S(0,k,A, q)| � (2s)ω(q1)2(2s−1)ω(q2)
(
2 max

1�j�s
|aj |

)(s−1)(s+2)/4

× (k1, . . . , ks, q1)1/2(k1, . . . , ks, q̃2)1/(2s)q1−(1/(6s)).
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Proof. We begin by splitting S(0,k,A, q) using Lemma 2.2:

S(0,k,A, q) =
∏
p|q1

S(0, c(p, q)k,A, p)
∏
p|q2

S(0, c(pαp , q)k,A, pαp).

To bound the first product we appeal to Lemma 5.1, which gives∣∣∣∣∏
p|q1

S(0, c(p, q)k,A, p)
∣∣∣∣ � (2s)ω(q1)

(
2 max

1�j�s
|aj |

)s(s−1)/4
(k1, . . . , ks, q1)1/2q

1/2
1 . (5.9)

To bound the second product we introduce the polynomial

L2(x) =
(

k1

(x + a1)2
+ · · · +

ks

(x + as)2

) s∏
j=1

(x + aj)2.

Also, for the primes p|q2 let βp be such that

L2(x) ≡ 0 (mod pβp) and L2(x) �≡ 0 (mod pβp+1).

Then we apply Lemma 2.3 for the primes for which βp < [αp/2], while for the other
primes we use the trivial bound. Thus we get∣∣∣∣∏

p|q2

S(0, c(pαp , q)k,A, pαp)
∣∣∣∣ =

∏
p|q2

βp<[αp/2]

| · · · | ×
∏
p|q2

βp�[αp/2]

| · · · |

� 2(2s−1)ω(q2)q2

∏
p|q2

βp<[αp/2]

(p[αp/2]−βp)−1/(2s). (5.10)

Now using the same argument as in Remark 5.2 we see that if L2(x) ≡ 0 (mod pβp),
then pβp |kjD

2
j for any j (1 � j � s), which further implies that

∏
p|q̃2

pβp divides
(k1, . . . , ks)∆2. This shows that∏

p|q2
βp<[αp/2]

(p[αp/2]−βp)−1/(2s) � q̃
−1/(2s)
2 (k1, . . . , ks, q̃2)1/(2s)|∆|1/s. (5.11)

The lemma follows by (5.9)–(5.11) and (5.4). �

5.2. Reduction to the case I = [1, q]

By Lemma 5.3 and (4.18) we deduce that

E2 � (2s)ω(q1)2(2s−1)ω(q2)q1−(1/(6s)) 1
qs+1

s∏′

j=1

( q∑
kj=1

min
{

|J |, 1
2‖kj/q‖

})

×
q−1∑
l=1

min
{

|I|, 1
2‖ − l/q‖

}
(q1, l)1/2(q̃2, l)1/(2s).
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The sums over kj are bounded by

qs

(
1 +

[q/2]∑
k=1

1
k

)s

� qs(2 + log q)s,

while the sum over l is less than

q

[q/2]∑
l=1

(q1, l)1/2(q̃2, l)1/(2s)

l
� q

∑
d1|q1

∑
d2|q̃2

d
1/2
1 d

1/(2s)
2

[q/2]∑
l=1
d1|l
d2|l

1
l

= q
∑
d1|q1

∑
d2|q̃2

d
−1/2
1 d

(1/(2s))−1
2

[q/(2d1d2)]∑
m=1

1
m

� q(2 + log q)σ−1/2(q1)σ(1/(2s))−1(q̃2).

We remind the reader here that q1 and q̃2 are coprime, so that d1 and d2 are. Putting
these together we get

E2 � (2s)ω(q1)2(2s−1)ω(q2)σ−1/2(q1)σ(1/(2s))−1(q̃2)(2 + log q)s+1q1−(1/(6s)).

We obtain the required reduction formula by combining (4.16), (4.17) and the above
estimation for E2:∣∣∣∣NI(A) − |I|

q
N(A)

∣∣∣∣ � (2s)ω(q1)+ω(q)2(2s−1)ω(q2)

× σ−1/2(q1)σ(1/(2s))−1(q̃2)(2 + log q)s+1q1−(1/(6s)). (5.12)

5.3. Estimation of NI(A)

Using the estimate provided by Lemma 5.4 in (3.3), we obtain∣∣∣∣N(A) − qΠ1(q, A)
(

|J |
q

)s∣∣∣∣
� 1

qs
(2s)ω(q1)2(2s−1)ω(q2)

(
2 max

1�j�s
|aj |

)(s−1)(s+2)/4
q1−(1/(6s))

×
∑′

k (mod q)

s∏
j=1

min
{

|J |, 1
2‖kj/q‖

}
(k1, . . . , ks, q1)1/2(k1, . . . , ks, q̃2)1/(2s).

(5.13)

To evaluate the last line in (5.13), call it Π(s), we separate the sum of the terms with no
kj = q in a sum, denoted by Σ1(s), and the remaining terms in a sum, denoted Σ2(s).
Thus we have

Π(s) = Σ1(s) + Σ2(s), (5.14)
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where

Σ1(s) =
q−1∑
k1=1

· · ·
q−1∑
ks=1

1
2‖k1/q‖ · · · 1

2‖ks/q‖ · (k1, . . . , ks, q1)1/2(k1, . . . , ks, q̃2)1/(2s)

and

Σ2(s) � s · |J | ·
q∑′

k1,...,ks−1=1

(s−1∏
j=1

min
{

|J |, 1
2‖kj/q‖

})

× (k1, . . . , ks, q1)1/2(k1, . . . , ks, q̃2)1/(2s).

(Here the prime means that the terms with k1 = · · · = ks = q are excluded from the
summation.) If we delete ks from the greatest common divisors above, the right-hand
side increases and the sum is exactly Π(s − 1). Therefore,

Σ2(s) � s · |J | · Π(s − 1), (5.15)

so it is enough to get an estimate for Σ1. A standard calculation gives

Σ1 �
(q+1)/2∑

k1=1

· · ·
(q+1)/2∑

ks=1

q

k1
· · · q

ks
· (k1, . . . , ks, q1)1/2(k1, . . . , ks, q̃2)1/(2s)

� qs
∑
d1|q1

d
−1/2
1

∑
d2|q̃2

d
1/2s−1
2

(q+1)/(2d1d2)∑
k′
1=1

· · ·
(q+1)/(2d1d2)∑

k′
s=1

1
k′
1

· · · 1
k′

s

� qsσ−1/2(q1)σ(1/(2s))−1(q̃2)(2 + log q)s. (5.16)

By (5.14)–(5.16) we derive

Π(s) � qsσ−1/2(q1)σ(1/(2s))−1(q̃2)(2 + log q)s + s · |J | · Π(s − 1),

from which, recursively, we get

Π(s) � 2s!qsσ−1/2(q1)σ(1/(2s))−1(q̃2)(2 + log q)s.

Inserting this estimate in (5.13), and then using (5.12), we obtain the following theorem.

Theorem 5.5. We have∣∣∣∣N(A) − qΠ1(q, A)
(

|J |
q

)s∣∣∣∣ � 2s!(2s)ω(q1)2(2s−1)ω(q2)
(
2 max

1�j�s
|aj |

)(s−1)(s+2)/4

× σ−1/2(q1)σ(1/(2s))−1(q̃2)(2 + log q)sq1−(1/(6s))

(5.17)

and∣∣∣∣NI(A) − |I|Π1(q, A)
(

|J |
q

)s∣∣∣∣ � 6s!(2s)ω(q1)2(2s−1)ω(q2)
(
2 max

1�j�s
|aj |

)(s−1)(s+2)/4

× σ−1/2(q1)σ(1/(2s))−1(q̃2)(2 + log q)s+1q1−(1/(6s)).

(5.18)
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We will use the following consequence of Theorem 5.5, which gives a simpler form for
the error term.

Corollary 5.6. Let q be a positive integer. Assume

s = |A| � 1
8 (log log q)1/2, (5.19)

A ⊂ [−q1/(18s3), q1/(18s3)], (5.20)

|J | � q1−(1/(36s2)) (5.21)

and
|I| � q1−(1/(36s)). (5.22)

Then

NI(A) = |I|Π1(q, A)
(

|J |
q

)s

(1 + O(q−(1/(18s))+o(1/s))). (5.23)

Proof. First note that (5.19) implies

2s2 � 2log log q = qo(1/s),

logs q � q(1/s)((log log q)3/(log q)) = qo(1/s)

and
s! � ss � logs q = qo(1/s).

Using (5.19) and (4.10), we see that

sω(q) = qo(1/s),

and
22sω(q) � q2s(1+ε)(log q/ log log q)(log 2/ log q) � q1/(36s).

By (5.20) we get

(
2 max

1�j�s
|aj |

)(s−1)(s+2)/4
�

(
2 max

1�j�s
|aj |

)s2/2
� q1/(36s).

These show that the right-hand side of the relation (5.18) is

O(q1−(1/(6s))+(1/(36s))+(1/(36s))+o(1/s)) = O(q1−(1/(9s))+o(1/s)).

Next, by (5.21) we see that (
q

|J |

)s

� q1/(36s)

and by (5.22) we have
q

|I| � q1/(36s).
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Using these and Lemma 4.1, we then get

NI(A) = |I|Π1(q, A)
(

|J |
q

)s(
1 + O

((
q

|J |

)s
q

|I|q
1−(1/(9s))+o(1/s)

))

= |I|Π1(q, A)
(

|J |
q

)s

(1 + O(q−(1/(18s))+o(1/s))),

as required. �

6. A formula for g(λ1, . . . , λr)

With the notation as in § 1, for any integer r � 1 let y = (y1, . . . , yr) with yj = λj/θ, for
1 � j � r. For any s = (s1, . . . , sr) with integer entries greater than or equal to 2, we
define

Ns = Ns(y, I,J )

to be the number of sets {ξ0, . . . , ξλ1,...,λr−r} ⊂ M satisfying the following conditions:

ξ0 < · · · < ξλ1,...,λr−r,

ξs1−1 − ξ0 � y1,

ξs1+s2−2 − ξs1−1 � y2,

...

ξλ1,...,λr−r − ξs1+···+sr−1−(r−1) � yr.

Also, let G(λ1, . . . , λr) denote the number of γi ∈ M for which γi+j − γi+j−1 � λj/θ,
for 1 � j � r. By definition, g(λ1, . . . , λr) is the probability that an element of M is
counted by G(λ1, . . . , λr). Therefore,

g(λ1, . . . , λr) =
G(λ1, . . . , λr)

|M| . (6.1)

This shows that we need to know the size of G(λ1, . . . , λr), and ultimately that of Ns,
which is closely related to G(λ1, . . . , λr). Using the inclusion–exclusion principle, we get
a lower as well as an upper bound for G(λ1, . . . , λr). Indeed (see [9]), for any positive
integer n > 2r we have

G(λ1, . . . , λr) =
∑

2r�λ1,...,λr<n

(−1)λ1,...,λrNs + η
∑

λ1,...,λr=n

Ns, (6.2)

for some real number η, with |η| � 1.

7. Estimation of Ns

We first express Ns(y, I,J ) in terms of NI(A) and then we use our earlier work to bound
NI(A). We have

Ns(y, I,J ) =
∑

cond(s,y)

NI({0, m1, . . . , mλ1,...,λr−r}),
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in which cond(s,y) indicates that the summation is over the integers m1, . . . mλ1,...,λr−r

satisfying the set of conditions

0 < m1 < · · · < mλ1,...,λr−r,

ms1−1 � y1,

ms1+s2−2 − ms1−1 � y2,

...

mλ1,...,λr−r − ms1+···+sr−1−(r−1) � yr.

We wish to apply Corollary 5.6, and for that we need to make sure that the hypotheses
are satisfied. For this we take |I| and |J | large enough, specifically

|I| > q1−(2/(9(log log q)1/2)) and |J | > q1−(1/(log log q)2).

Then, since ϕ(q)/q > b/ log log q, for some positive constant b, one can check all the
required conditions for A = {0, m1, . . . , mλ1,...,λr−r}. Substituting NI(A) with the esti-
mate (5.23), we get

Ns(y, I,J ) =
∑

cond(s,y)

|I|Π1(q, A)
(

|J |
q

)λ1,...,λr−r+1

[1 + o(1)]

=
|I|
q

(
|J |
q

)λ1,...,λr−r+1( ∑
cond(s,y)

qΠ1(q, A)
)

[1 + o(1)].

The sum above is in fact equal to Ns(y, [1, q], [1, q]), therefore we find that

Ns(y, I,J ) =
|I|
q

(
|J |
q

)λ1,...,λr−r+1

Ns(y, [1, q], [1, q])[1 + o(1)]. (7.1)

In [11, § 9, (22)] for r = 1 and in [12, § 2] for r � 2, Hooley shows that if yj = cjq/ϕ(q)
for 1 � j � q, one has

Ns(y, [1, q], [1, q]) =
cs1−1
1

(s1 − 1)!
· · · csr−1

r

(sr − 1)!
ϕ(q)[1 + o(1)].

If further applied in (7.1), this estimation gives

Ns(y, I,J ) =
|I|
q

(
|J |
q

)λ1,...,λr−r+1
cs1−1
1

(s1 − 1)!
· · · csr−1

r

(sr − 1)!
ϕ(q)[1 + o(1)]

=
|I|
q

(
|J |
q

)λ1,...,λr−r+1(
ϕ(q)

q

)λ1,...,λr−r
ys1−1
1

(s1 − 1)!
· · · ysr−1

r

(sr − 1)!
ϕ(q)[1 + o(1)].

(7.2)

With λj given by

yj =
λj

θ
=

cjq

ϕ(q)
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for 1 � j � r, we get

Ns(y, I,J ) = |I|θ λs1−1
1

(s1 − 1)!
· · · λsr−1

r

(sr − 1)!
[1 + o(1)]. (7.3)

8. Completion of the proof

The way we deduce the final expression of g(λ1, . . . , λr) follows the procedure indicated
for r = 1 in [11, § 10]. Substituting the estimation (7.3) in (6.2) we have, for any integer
n > 2r,

G(λ1, . . . , λr) = |I|θ
∑

2r�λ1,...,λr<n

(−1)r (−λ1)s1−1

(s1 − 1)!
· · · (−λr)sr−1

(sr − 1)!
[1 + o(1)]

+ η|I|θ
∑

λ1,...,λr=n

λs1−1
1

(s1 − 1)!
· · · λsr−1

r

(sr − 1)!
[1 + o(1)].

Since
∞∑

s=m

λs−1

(s − 1)!
� λm−1

(m − 1)!
,

by taking n sufficiently large, we see that

G(λ1, . . . , λr) = |I|θ(1 − e−λ1) . . . (1 − e−λr ) + |I|θOr

(
λn

1

n!
+ · · · +

λn
r

n!

)
[1 + o(1)].

By letting n go to infinity, we find that

G(λ1, . . . , λr)
|I|θ = (1 − e−λ1) · · · (1 − e−λr )[1 + o(1)]. (8.1)

On the other hand, although we know a sharp estimate for the number of elements of
M, for our needs it suffices to use (5.23), which gives

|M| = |I|θ[1 + o(1)].

By combining this with (6.1) and (8.1), we obtain

g(λ1, . . . , λr) = (1 − e−λ1) · · · (1 − e−λr )[1 + o(1)],

which completes the proof of Theorem 1.1.
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