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Abstract

Six patents were secured by E. H. Lanier from 1930 to 1933 for aeroplane designs that
were intended to be exceptionally stable. A feature of five of these was a flow-induced
“vacuum chamber” which was thought to provide superior stability and increased lift
compared to typical wing designs. Initially, this chamber was in the fuselage, but later
designs placed it in the wing by replacing a section of the upper skin of the wing with a
series of angled slats. We report upon an investigation of the Lanier wing design using
inviscid aerodynamic theory and viscous numerical simulations. This took place at the
2005 Australia–New Zealand Mathematics-in-Industry Study Group. The evidence from
this investigation does not support the claims but, rather, suggests that any improvement
in lift and/or stability seen in the few prototypes that were built was, most probably, due
to thicker airfoils than were typical at the time.

2020 Mathematics subject classification: primary 76-10; secondary 76G25.

Keywords and phrases: aerodynamics, Edward H. Lanier, vacuplane, slat-wing airfoil,
lift and drag.

1. Introduction

This paper concerns a problem investigated at a mathematics-in-industry study
group. We start with some background on these and then move on to the investigation
itself.

1.1. Mathematics-in-industry study groups Study groups with industry origi-
nated in Oxford in 1968. Subsequently, the concept has spread across the globe. The
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year 1984 saw the commencement of the annual combined Australia–New Zealand
Mathematics-in-Industry Study Group (MISG) [3, 21, 22]; 2023 will mark the 40th
anniversary. During these meetings small teams of participants spend a week working
on challenges brought by industry. Challenges and industries are varied. Sometimes
industrial partners come back multiple times with different problems, for example,
the Australian/New Zealand Steel Industry [21]. Each team reports back at the end of
the week. Typically, the industries report that valuable insight was gained from the
mathematical analysis of their problems. Following the study week, a written report
is, usually, prepared. In recent years (since 2010), these reports have been published in
the electronic supplement to the ANZIAM Journal, but they were previously collected
in a proceedings. Sometimes, the work leads to further research.

A hallmark of the career of Professor Graeme Hocking is his significant support
of and contributions to industry workshops, in particular in Australia, New Zealand,
South Africa and Ireland. He has continuously participated in the MISG over
many years. At the 2005 MISG held at the Albany campus of Massey University,
New Zealand, the authors of this paper had the pleasure of jointly moderating an
investigation of ideas described by Edward H. Lanier in a number of patents [13–18]
on design of an aeroplane wing; this was a somewhat unusual problem for an MISG,
brought by a small company, BackYard TEch, interested in establishing the veracity
of the ideas. Noting that the report appeared only in a not readily accessible MISG
proceedings [10], that a brief uninformative reference to the study-group work has been
made subsequently [11], but without reference to the report itself, and that simplified
models can provide valuable insight to complex problems such as flight, we here
present a revised form of the MISG report.

1.2. The problem Edward H. Lanier obtained a series of six United States patents
between 1930 and 1933 on aircraft design [13–18]. His overall aim was to produce
an exceptionally stable aeroplane that would both fly normally and recover from
undesirable attitudes without pilot intervention. One specific idea Lanier included
in his patents is the creation of a vacuum cavity in the aircraft wing, by replacing
a section of the upper skin of the wing with a series of angled slats. He believed
that this would produce superior lift and stability compared to typical wing designs.
Unfortunately, only very limited information relating to the practical implementation
of Lanier’s designs, that are now ninety years old, can be found. The patents by their
nature are legal rather than scientific documents. A few nontechnical articles appeared
around the time of the patents in contemporary popular science magazines [5, 6, 23],
where the aircraft was described as a “vacuplane” [5]. A more recent discussion paper
was presented at the MODSIM 2013 conference [11]. However, to this day, we are
unable to find any scientific examination of the designs in the literature aside from our
MISG report.

We start in Section 2 with a brief overview of aerodynamic theory and give some
historical context to Lanier’s ideas in the history of flight. In Section 3, we review the
patents and glean some sparse relevant information from them. In Section 4, we first
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infer lift from the performance of the vacuplane as claimed in the existing documents,
and then compare this with lift calculated using an inviscid-flow model. In Section 5,
we compare results of viscous-flow simulations, performed with the finite-element
PDE solver Fastflo [7], for a “slat-wing” airfoil (with open top surface) and a more
conventional closed airfoil. We also use numerical simulations from the Fastflo PDE
solver to study viscous flow over a single slot. Conclusions are given in Section 6.

2. Background theory and historical perspective

The flight characteristics of an aircraft are determined by four different forces: lift,
weight, thrust and drag. Lift and gravitational forces are in the vertical direction and
must balance one another for level flight. Similarly, in the horizontal direction, the
forward thrust and drag act in opposite directions and must cancel each other when the
aircraft is moving at a constant speed. Lift and drag are influenced by the aerodynamics
of the plane’s lifting surfaces and fuselage and, consequently, are the main focus of this
work. The weight is characteristic of the aircraft with its load, and thrust depends upon
the engine. More detailed discussion of the following theory is found elsewhere [2, 12].

The lift and drag properties of an airfoil are usually recorded using the nondimen-
sional lift and drag coefficients, CL and CD, respectively. With these, the lift on the
wing

L = CLρU2A/2 (2.1)

and, similarly, the drag

D = CDρU2A/2, (2.2)

where U is the speed, A = chord × span is the projected area of the lifting surface and
ρ is the air density.

Lift is generated by a difference in airflow velocity above and below a wing. The air
flows more rapidly over the upper surface, and therefore has lower pressure (according
to the Bernoulli equation) than the more slowly moving air under the wing. Factors
influencing lift are the shape of the wing, the angle of attack and the proximity to
the ground. Drag consists of two types, form and induced. Form drag is the effect
of viscosity as the air “sticks” to the surface of the plane. Induced drag results from
the fact that wings have a finite length; the flow of air around the wing tips, from
the high-pressure region below the wing to the low-pressure region above it, creates
trailing vortices that result in further drag.

Flight is a trade-off between lift and drag. Mechanisms that increase lift, such as
additional flaps or small extra airfoils that prevent separation around the leading edge,
usually have the effect of increasing drag. Modern aircraft usually have some of these
additional devices that extend during take-off and landing where higher lift is desirable
and where extra drag is less important or even is desirable as during landing.

Lift is generally proportional to the angle α of the wing relative to the direction
of travel or air flow (the angle of attack) and the square of the velocity. If we assume
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that the wing span S is long relative to its thickness and chord (breadth), then the flow
is essentially two-dimensional enabling us to consider flow in a plane containing a
cross-section of the wing; the term “airfoil” denotes the cross-sectional profile of a
wing. Lift per unit wing-span can then be quantified by the formula � = L/S = ρUΓ,
where the circulation Γ =

∮
q · dr, which is the integral of the flow velocity q around

a loop containing the wing cross-section. This has to be determined subject to the
Kutta condition; that the air flow separates smoothly from the (sharp) trailing edge of
the wing/airfoil. For relatively thin, symmetric wings, Γ ≈ πUC sinα, where C is the
chord length of the wing/airfoil, so that the lift per unit span is � = πρU2C sinα, or
CL = 2π sinα.

However, if the angle of attack becomes too large, the flow no longer follows around
the airfoil, but separates from the upper surface leading to a sudden and dramatic loss
of lift called stall. A thicker airfoil means a greater likelihood that stall will occur since
the air has to divert more rapidly around the blunter leading edge, but it can also be
influenced by the roughness of the surface, and in older aircraft, especially in the early
metallic bodies, this could play a significant role.

Aircraft from the time of the Wright Brothers until after World War I were mostly
bi-planar. Biplanes typically had two thin wings made of wood and canvas held
together by a variety of struts and wires. These were relatively light and so required less
lift, but had high drag due to the wires, struts and rough surfaces. There was, however,
significant loss of aircraft and pilots during World War I due to leading-edge stall at
sufficiently large angle of attack, and consequent aeroplane spin. This motivated the
development (∼1917–1929) by Sir Frederick Handley Page and Dr Gustave Lachmann,
at first independently and then in cooperation, of a slot along the leading edge of the
wing, formed by placing a slat ahead of the front edge of the main wing. Thus, the
leading edge of the slat formed the leading edge of the wing as a whole, and the slot
between the slat and the main wing allowed air flow from the bottom to the top of
the wing in such a way as to prevent leading-edge stall [9]. The year 1927 saw the
development of a moving slat that operated automatically with aerodynamic forces to
close the slot at low angle of attack (reducing drag) and open it at higher angle of attack
when needed to prevent stall. As reported by Green [9], “In the assessment of C. G.
Grey, founder and first editor of The Aeroplane magazine, the importance of the slot
to aeronautics was similar to that of the pneumatic tyre to the motor car.” The increase
in lift and reduction in the lift-to-drag ratio is shown in [1, pp. 227–229].

Lanier’s work seems to have started just as the leading-edge slot and accompanying
slat were being refined and, like that of Page and Lachmann, appears to have
been aimed at increasing lift and improving aircraft safety. By the 1930s, however,
monoplanes were becoming the dominant form of aircraft. Early monoplane wings
were still quite thin, although they were thicker than biplane wings because the
structural framework was internal. The slightly thicker wings generated slightly higher
lift, but more powerful engines enabling higher speeds and hence considerably more
lift (increasing with the square of speed) were a major factor in enabling the evolution
of the monoplane. Leading-edge stall was not a feature of these thicker wings and
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attention was turned to slotted flap design and laminar flow control to reduce drag [9].
Rapid development between the two World Wars led to planes designed for both
long distance travel and high air speed, as adventurers tried to set records of both
types. Further rapid advances in aircraft design during World War II led to the first
jet-powered craft. Interestingly, swept-wing jet aircraft brought back the possibility of
tip stall and the use of slatted wings with a leading-edge slot [9].

3. Lanier’s patents

Lanier’s six US patents for aeroplanes from the early 1930s [13–18] each cover
several aspects of an entire aircraft design rather than focussing on a specific feature.
In this paper, we are specifically interested in the presence of cavities or slats on the
upper surface of the wing and fuselage. The early patents claim that the cavity designs
improved stability while later patents further claim enhanced lift.

The patents attempt to explain increased lift from one or more cavities in the wings
and/or fuselage as an effect of a partial vacuum set up in the aeroplane’s wings and
body. This space would then be at a lower density than the air surrounding the aircraft,
increasing buoyancy. An additional lift effect is anticipated by exposing the inside top
surface of the lower shell of the wing. As patents, the descriptions tend to be rather
general without detailed measurements.

The idea of a “vacuum chamber” is introduced in the first two patents from 1930.
The removal of a portion of the upper wing surface allows flow between the internal
wing cavity and the exterior. The proposed function is improved stability [13]:

. . .it is an object to provide a machine that will not nose dive, side slip or tail
spin under ordinary circumstances, but should this happen, the machine will
right itself without the pilot aid.

The second patent is directed towards larger aircraft. It includes the idea of a system
of slats (or air buffers) across the hole in the upper wing surface with the purpose of
reducing airflow into the vacuum chamber [14]:

When the plane is moving at slow speed or the engine is throttled down, there is
a tendency for the air to flow down into the vacuum chamber from above. The
provision of the air buffers, however, causes this air to be deflected upwardly
and rearwardly, thus preventing it from entering the vacuum chamber to any
considerable extent.

These buffers would not extend to the base of the vacuum chamber and would
preferably be hinged so that they could close the top of the vacuum chamber when
desired. The buffers remained a feature of the later patents and in the fourth patent,
there is the further claim of increased lift [16]:

I have found by experiments and tests that the lifting power of the vacuum
chamber exceeded my expectations, and I have further found that an aeroplane
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can be designed utilising the principle of the vacuum chamber lift in which the
wings can be wholly eliminated or reduced to dwarf wings, . . .

The fifth patent [17] contains many of the earlier features and claims, and is perhaps the
most useful for obtaining an insight into the inventor’s thoughts. As well as reiterating
the goal of safety through stability, it mentions features that would be associated with
a reduced wing size and increased lift. The vacuum chamber here extends to the whole
of the wing and perhaps a portion of the fuselage. There is an explicit claim that the
partial evacuation of air leads to an increased lift. In addition to this lift, due to the
buoyancy of a reduced air density within the plane (as in a balloon), the inventor also
appears to claim a mechanical lift by exposing the bottom inner surface of the wing
(in practice, this would in part be offset by reduced lift on the inner top surface of
the wing). He states that apart from the vacuum pocket, the wings can be otherwise
conventional:

The theory of getting additional lift from a given wing area is applicable to
the conventional wings of today with few changes, simply by making the wing
air-tight and supplying vents or openings in the top surface to evacuate the air,
thus increasing the payload without an increase in structural weight. Lift is also
exerted on the inside bottom skin of the airfoil above the cabin which, on the
conventional wing, is negligible. On planes with large cabins this additional lift
would greatly increase payload.

4. Lift calculations

4.1. Inferences from performance claims In horizontal flight, the lift must bal-
ance the weight of the aircraft. Therefore, we can estimate the lift coefficient for the
aircraft described in Lanier’s patents by considering the weight.

The Lanier Vacuplane of 1935 had a gross weight (including the pilot) of 574
pounds (M = 260 kg), a take-off/landing speed as low as 30 mph (≈ 48 km/h or
13.3 m/s), a cruising speed for level flight of 80 mph (U = 128 km/hr ≈ 35.6 m/s)
and a wing area of 73 square feet (A ≈ 7 m2) [4]. Using the density of air ρ = 1.23
kg/m3 at 15◦C and atmospheric pressure, the lift equation (2.1) gives a lift coefficient
CL ≈ 2Mg/(ρU2A) ≈ 0.47, where g = 9.8 m/s2 is the acceleration due to gravity. This
is comparable with lift coefficients of conventional aircraft.

The Lanier Paraplane Commuter 110 (see [4]) was built by Lanier aircraft corpora-
tion around 1949, 16 years after the original patents were submitted, and is of unknown
design. This aeroplane had similar take-off and cruise speeds but a greater mass
(640 kg), and roughly 30% greater wing area, giving a lift coefficient of CL ≈ 0.88,
again within conventional values.

Further to this, we can estimate the drag coefficient by considering the maximum
speed. The 1935 Vacuplane [4, 19] had a 36 horsepower engine (PE ≈ 27 kW), and an
estimated top speed of 96 mph (≈ 154 km/h or 43 m/s). Drag D = CDρU2A/2 (2.2)
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and the power required to overcome this drag is P = DU ≈ 3.4 × 105CD Watts, so
P ≈ 340CD kW. By comparison, we see that the drag coefficient is CD ≈ 0.079.

The Lanier Paraplane Commuter 110 had a maximum speed of 165 mph (≈ 74 m/s),
a 150 Hp ≈ 112 kW engine and a slightly greater wing area. Using the same approach,
P ≈ 2300CD kW, and therefore the drag coefficient CD ≈ 0.049.

Subsequent calculations use an airfoil shape approximating the Clark-Y wing [12].
For comparison, the lift and drag coefficients of this wing at 0◦ (6◦) angle of attack are
CL = 0.36 (0.80) and CD = 0.0217 (0.045).

These basic calculations are built on less than ideal data extracted from popular
literature. Nevertheless, they indicate that there is nothing extraordinary in the
behaviour of the Lanier aircraft.

A further implication in some of the popular literature and Lanier’s patents (see
Section 3) is that there is a buoyancy effect of air being sucked out of the wing cavity.
However, it is easy to show that the effect of reducing air density within the wings
would have an almost negligible effect, perhaps lightening the aeroplane by a few
hundred grams. For example, the total weight of air in a wing cavity with a volume
of two cubic metres (estimated for the Lanier XL-4) is approximately 2.4 kilograms
or approximately 1% of the total weight. However, since not all of the air could be
evacuated, this is a very generous upper bound. In heavier, larger craft, this proportion
would be greatly reduced.

In a stall situation, the pressure would equalise between the inside and outside of
the wing, causing the air to rush back in, negating any buoyancy effect in free flight.
It may be that the effect of drag on the lighter and slatted (and hence rougher) wings
is greater than that on the engine and cabin, causing the plane to right itself as it falls,
but this will depend on the plane’s attitude at stall.

4.2. Inviscid theory for an elliptic airfoil In this section, we assume a large wing
span relative to its chord length so that we may solve for the two-dimensional flow
about the cross-section of the wing. We also assume an elliptic cross-section and,
hence, compute the lift on an elliptic airfoil, the centre of which is at height H above the
ground, using an integral equation method to determine the effects of wing thickness,
angle of attack and proximity to the ground. The lift on an airfoil can be determined by
inviscid flow theory with the ground effect included using the method of images, that
is, we consider the flow around the ellipse and its image such that the ground is a line
of symmetry between the two. Assuming an inviscid, incompressible fluid, the flow is
irrotational so that the problem reduces to that of solving for the velocity potential Φ,
where the velocity field q = ∇Φ, and Φ must satisfy Laplace’s equation ∇2Φ = 0.

One way to do this is to compute the complex potential w(z) = Φ + iΨ, where
z = x + iy, y being vertical distance above the ground and Ψ is the streamfunction.
For our problem, the complex potential is given by

w(z) = Uz +
iΓ
2π

log(z2 + H2) + χ(z), (4.1)
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where the first term represents the free stream flow with velocity U, the second
the circulation around the airfoil and the third, χ(z), is to be determined to satisfy
the boundary conditions for the flow. From complex function theory, we have that the
velocity potential Φ satisfies Laplace’s equation provided w(z) is an analytic function.
The streamfunction Ψ must be constant on the surface of the airfoil so that there is no
flow through the surface of the airfoil, that is, q · n = 0, where n is the normal to the
boundary of the airfoil which has upper and lower surfaces y = f ±(x). Similarly, Ψ is
constant on the ground z = x + i0.

Using Cauchy’s integral formula to integrate the function χ(z) = ξ + iη around a
contour including the airfoil, its image on reflection in the line of symmetry of the
ground and a circle of infinite limiting radius leaves

χ(z0) =
1

2πi

∫
γ

χ(z)
z − z0

dz,

where γ consists of that part of the contour around the surface of the airfoil and its
image. Defining arclength s, where ds =

√
dx2 + dy2, and using the chain rule together

with the symmetry of the airfoil and its image, it can be shown that the real part of χ,
that is, ξ, is given by the integral equation

ξ(s) =
1
π

∫ sL

0

ξ(t)[y′(t)Δx − x′(t)Δy] − η(t)[x′(t)Δx + y′(t)Δy]
(Δx2 + Δy2)

+
ξ(t)[y′(t)Δx − x′(t)Δy+] − η(t)[x′(t)Δx + y′(t)Δy+]

(Δx2 + Δy2
+)

dt, (4.2)

where sL is the arclength from the trailing edge of the body to the leading edge then
back, Δx = x(t) − x(s), Δy = y(t) − y(s) and Δy+ = y(t) + y(s).

Thus, the method is to write the surface of the airfoil in parametric form (x(s), y(s)),
and then take a discrete form of the integral using steps in arclength, sk, k = 1, 2, . . . , N.
Replacing the integral by a sum, the unknown ξk = ξ(sk) can be obtained by solving N
equations in N unknowns. Further details of the method can be found in [20].

We also know from (4.1) that the function χ(z) = ξ + iη is made up of the following
components:

ξ(s) = Φ(s) − Ux(s) +
Γ

2π
(β1(s) − β2(s)),

η(s) = Ψ0 − Uy(s) − Γ
2π

ln
[
ρ1(s)
ρ2(s)

]
,

where Ψ0 is the (constant) value of the streamfunction on the airfoil surface,

ρ1 = (x2 + (y − H)2)1/2, ρ2 = (x2 + (y + H)2)1/2

are the distances between z = ±iH and points z = x(s) + iy(s) on the surface, and

β1 = arctan
(y − H

x

)
, β2 = arctan

(y + H
x

)
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FIGURE 1. Lift coefficient CL versus angle of attack α for elliptic airfoils of (dimensionless) thickness
(a) τ = 0.1 and (b) τ = 0.2. Also shown for comparison is CL versus α for (c) a flat plate as given by the
analytic formula, and (d) a Clark-Y wing having τ ≈ 0.12 for which stall occurs at α ≈ 18.5◦.

are the angles of lines between z = ±iH and points on the surface. Thus, η is known
everywhere on the surface, and the integral equation (4.2) can be used to find ξ and
hence the velocity potential.

The crucial factor in determining the lift is the Kutta condition, which requires
that the flow detaches smoothly from the end of the airfoil. The circulation Γ must be
chosen to ensure this condition is satisfied. This was achieved by allowing Γ to be one
of the unknowns and including an extra equation to enforce this condition. In the case
of an ellipse having a blunt end, it was required that the stagnation point forms at the
trailing edge (i.e. rear-most point) of the ellipse.

A Fortran program was written to implement this solution method and simulations
were performed using this code for various values of wing chord, thickness, angle of
attack and height above the ground. Figure 1 shows an increase in the theoretical lift
CL with increasing angle of attack α for elliptic airfoils at large height (H → ∞) above
the ground (no ground effect) with maximum dimensionless thickness τ = 0.1, 0.2
(scaled with chord-length C). These data are compared with the lift on a flat plate (or
thin symmetric airfoil), computed using the analytic formula CL = 2π sinα, and with
the lift coefficient for the Clark-Y wing which has τ ≈ 0.12. Clearly, the nonsymmetric
Clark-Y airfoil performs much better at small angle of attack than those used for
numerical experiments. Moreover, its lift coefficient continues to increase through
to α ≈ 18.5◦ beyond which it will stall (lose lift). In contrast, the other airfoils will
undergo stall at much lower angles of attack, which is not apparent from the figure
because separation and stall were not computed. The effect of wing thickness is seen
for the elliptic airfoil; doubling τ from 0.1 to 0.2 increases the lift by approximately
10% at each angle of attack.

Figure 2 shows the effect of proximity to the ground h = H/C on the lift coefficient
for airfoils of several different values of (dimensionless) thickness τ. It is clear that
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FIGURE 2. Lift coefficient CL versus (dimensionless) height h = H/C above ground for elliptic airfoils
of (dimensionless) thickness (a) τ = 0.05, (b) τ = 0.1 and (c) τ = 0.2, all at angle of attack α = 10◦.

ground effect increases lift when the ground is within one or two chord-lengths C of
the airfoil, suggesting that ground effect can be neglected from our deliberations.

In general, wing profile designs must balance lift with drag. Our results confirm
that thicker wings tend to give greater lift for a given speed. However, they also tend to
have increased drag making it more difficult to attain speed. In addition, thicker wings
at higher speed are more likely to induce separation of the flow and, hence, stall.

At the time of Lanier’s patents, wings were generally narrow in profile. However,
one of his patents includes an illustration of a conventional wing together with the
slatted wing of the patent design [18]. The slatted wing is drawn much thicker than
the conventional wing and if this was the case in practice, then this might explain an
increase in lift for the Lanier aeroplane. Note, however, that the simple calculations
in the previous section suggest that the lift of the Lanier craft was not exceptional
compared to conventional airfoils such as the Clark-Y wing.

5. Viscous flow simulations

To investigate viscous effects, a limited numerical exploration was conducted using
the finite-element package Fastflo [7], as described below.

5.1. Two-dimensional viscous flow over an airfoil The form drag of an airfoil is
due to the viscosity of the fluid and to determine this, as well as its lift, we cannot
use inviscid theory. Here, we consider two-dimensional viscous flow around thick and
thin airfoils, with and without Lanier-type cavities, at different angles of attack. We
necessarily neglect induced drag, which is a three-dimensional effect as described
earlier, although this can be significant, especially for short wings. We have also made
no attempt to compute form drag from the aircraft fuselage, focusing rather on the
trade-off between lift and drag for a “slat-wing” airfoil compared to a conventional
airfoil.
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FIGURE 3. Typical “thick” airfoil geometry. Conventional airfoil shown solid; cavity and vertical slats
shown dashed. (Reproduced from [10].)

The geometries of the thick airfoils used in the simulations are shown in Figure 3.
The basic airfoil shape superficially resembles the Clark-Y wing [12]. The chord length
C of the airfoil is eleven times the nose radius R. For comparison with the conventional
shape, the flow around a similar shape with a cut away cavity and slats, to resemble the
Lanier “slat-wing” design, is also considered. The thin airfoil geometries are obtained
by halving lengths in the vertical direction, giving a less blunt elliptical nose. Again, a
conventional closed airfoil and a “slat-wing” geometry are considered.

The flow is assumed to be two-dimensional, incompressible, steady and laminar,
with a Reynolds number of 10. Although, Reynolds numbers of order 105 are to be
expected, this was about the maximum that Fastflo could reliably handle. Further,
the flow would almost certainly be turbulent, but only laminar flow was considered.
Despite these drawbacks, the simulations still allow a comparison of the fundamental
behaviour of a conventional airfoil and a Lanier “slat-wing” airfoil. Separation of the
flow from the airfoil is expected to occur at lower angles of attack for the blunt-nosed
thick airfoil than for the thin airfoil.

The continuity and steady Navier–Stokes equations must be solved for the flow
around four different airfoils (thick/thin × conventional/“slat-wing”), subject to no-slip
on the airfoil boundary. A reference frame is adopted that moves with the airfoil at
speed U. The horizontal and vertical axes are x and y, respectively, with the origin
at the tip of the nose of the airfoil (see Figure 3). Let u, v be the x, y components of
velocity scaled with U, and let p denote pressure scaled with ρU2. Lengths are scaled
with the nose radius R. Then the dimensionless continuity equation is

∂u
∂x
+
∂v
∂y
= 0, (5.1)

and the Navier–Stokes equations are

u
∂u
∂x
+ v
∂u
∂y
= −∂p
∂x
+

1
Re

(
∂2u
∂x2 +

∂2u
∂y2

)
, (5.2)

u
∂v
∂x
+ v
∂v
∂y
= −∂p
∂y
+

1
Re

(
∂2v
∂x2 +

∂2v
∂y2

)
, (5.3)

https://doi.org/10.1017/S1446181123000068 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181123000068


166 Y. M. Stokes et al. [12]

where Re = UR/ν is the Reynolds number, ν being the kinematic viscosity of air
(≈ 1.5 × 10−5 m2/s). On the boundary of the airfoil, we have u = v = 0. Far upstream
of the airfoil, the flow is taken to be a uniform stream of magnitude U at angle of
attack α. Sufficiently far above and below the airfoil, we expect the flow to be that
of a uniform stream also. As the solution must be done over a finite computational
domain, a square far-field boundary is defined with sides of length 20R around the
airfoil, aligned with the far-upstream flow and with centre at the tip of the nose of the
airfoil (x, y) = (0, 0). Thus, on the inlet (left), top and bottom boundaries, the velocity
is specified as u = cosα, v = sinα. The outlet (right) boundary is assumed to be a
stress-free boundary. The far-field boundary is sufficiently far from the airfoil that the
prescribed boundary conditions do not have significant impact on the solution.

The finite-element PDE solver Fastflo was used to solve for the flow. Fastflo’s
automatic mesh generator was used to generate an unstructured mesh of approximately
1900 6-node triangles over the computational domain, with elements clustered more
densely near the airfoil. The “augmented Lagrangian method” [7, Section 13.3] and
quadratic basis functions were used to solve for pressure and velocity.

Having solved for velocity and pressure, lift and drag forces per unit wing-span
were found by integrating the pressure around the surface of the airfoil dΩ, that is,

F
ρU2R

=

∮
dΩ

p dr.

Resolving the force per unit span obtained into two components F = (Fx, Fy), the
drag D = Fx cosα − Fy sinα in the direction of the uniform stream, and the lift
L = Fx sinα + Fy cosα normal to it. From these, the lift and drag coefficients were
computed as

CL =
2L

11ρU2R
, CD ≈

2D
11ρU2R

.

Table 1 shows these coefficients for different angles of attack α for each of the four
airfoils considered, while they are plotted against α in Figures 4 and 5, respectively.
Figure 6 shows the ratio of lift to drag, i.e. CL/CD, again versus angle of attack. In
Figures 7–10, we show stream lines around the airfoils and velocity vectors near the
upper surface behind the nose of the airfoils.

A comparison of the curve for the Clark-Y wing in Figure 1 with those for the thin
wings in Figure 4 shows the lift coefficients to be of a similar order of magnitude at the
same angle of attack and gives some assurance that the general behaviour of the wings
under investigation is captured by the low Reynolds number simulations. It is expected
that at higher Reynolds number, the boundary layers will be thinner and the lift coeffi-
cients a little larger. In keeping with known aerodynamic behaviour, the lift coefficient
for the thick wings is larger than for the thin wings at small angle of attack, however,
the slope of the curve CL versus angle of attack α is greater for thin wings than for
thick wings so that this situation reverses at larger angle of attack. (For thin symmetric
wings, CL/sinα ∼ 2π, while CL/sinα ∼ 4 for the thin asymmetric airfoils considered
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TABLE 1. Lift (CL) and drag (CD) coefficients at angle of attack α for thick and thin conventional and
“slat-wing” airfoils. (Reproduced from [10].)

α Coefficient
Conventional “Slat-wing”

Thick Thin Thick Thin

0 CL 0.31 0.18 0.31 0.21
CD 0.21 0.11 0.24 0.13

5 CL 0.54 0.54 0.53 0.55
CD 0.26 0.15 0.28 0.16

10 CL 0.71 0.81 0.69 0.80
CD 0.33 0.23 0.35 0.23

15 CL 0.83 1.04 0.82 1.05
CD 0.42 0.39 0.44 0.38

20 CL 0.97 1.10 0.96 1.07
CD 0.54 0.46 0.55 0.45

FIGURE 4. Lift coefficient CL versus angle of attack α for the (a) thick conventional, (b) thick “slat-wing”,
(c) thin conventional and (d) thin “slat-wing” airfoils. (Reproduced from [10].)

here.) For the thin wings, there is a sudden decrease in slope beyond α = 15◦

signalling imminent stall (loss of lift). This is due to flow separation which occurs at
approximately α = 15◦, as seen in the plots of streamlines and velocity vectors given
in Figures 9 and 10. The thicker wings experience flow separation at a lower angle of
attack α ∼ 10◦, as seen in Figures 7 and 8, but do not exhibit such a sudden reduction
in lift. It is readily seen that the conventional airfoil and corresponding “slat-wing”
airfoil, whether thick or thin, differ little from one another in terms of lift coefficient.
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FIGURE 5. Drag coefficient CD versus angle of attack α for the (a) thick conventional, (b) thick
“slat-wing”, (c) thin conventional and (d) thin “slat-wing” airfoils. (Reproduced from [10].)

FIGURE 6. Ratio of lift to drag CL/CD versus angle of attack α for the (a) thick conventional, (b) thick
“slat-wing”, (c) thin conventional and (d) thin “slat-wing” airfoils. (Reproduced from [10].)

As is to be expected, the drag coefficient increases with angle of attack, as seen for
all airfoils in Figure 5. For the thin airfoils, we have CD ≈ 0.1 (0.15) at α = 0◦ (5◦)
compared with CD ≈ 0.022 (0.045) for the Clark-Y wing. It is expected that with
thinner boundary layers at higher Reynolds numbers, drag coefficients will be lower
than indicated by our simulations. There is a significant increase in drag for the
thin airfoils from α = 10◦ to α = 15◦, which may be attributable to a relatively large
increase in the projection of the surface area normal to the flow, an effect which would
be smaller for thicker airfoils. There appears to be a slight increase in drag for the
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FIGURE 7. Thick, conventional airfoil. Streamlines and velocity vectors. (Reproduced from [10].)
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FIGURE 8. Thick, “slat-wing” airfoil. Streamlines and velocity vectors. (Reproduced from [10].)
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FIGURE 9. Thin, conventional airfoil. Streamlines and velocity vectors. (Reproduced from [10].)
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FIGURE 10. Thin, “slat-wing” airfoil. Streamlines and velocity vectors. (Reproduced from [10].)
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FIGURE 11. Geometry used for simulations of flow over a slot cavity. The slot aspect ratio is defined as
� = w/d. (Reproduced from [10].)

thick “slat-wing” airfoil compared to the thick conventional airfoil, but the curves of
CD versus α differ little between the two thin airfoils.

The curves of lift to drag ratio CL/CD versus angle of attack (Figure 6) indicate that
both the thick and the thin airfoils are most efficient over the range α = 5–10◦. For the
thick airfoils, it is evident that the conventional shape is superior to the “slat-wing”
in giving slightly more lift, less drag and, consequently, a higher lift to drag ratio at a
fixed angle of attack, over the full range of angles considered. For the thinner airfoils,
the conventional and “slat-wing” profiles are very similar except at α = 10◦ where the
conventional wing again appears to be superior.

Although we are mindful of the fact that the computations are not very accurate,
the clear message emerging from our work is that our simulations certainly provide
no evidence to support the “slat-wing” over conventional airfoils, but, if anything, the
reverse.

5.2. Viscous flow over a slot Further numerical simulations were done to illustrate
the general features of flow over a slot cavity. The typical dimensionless geometry
used for these is shown in Figure 11. The continuity and Navier–Stokes equations
(5.1)–(5.3) were solved, again using Fastflo and the augmented Lagrangian method
with quadratic basis functions. At the inlet (left boundary), we specified the flow to
be that of a unit uniform stream (U = 1), while the outlet (right) was defined to be a
stress-free boundary. The lower boundary containing the cavity is, of course, a no-slip
boundary (u = v = 0); at the upper boundary, we specified no normal flow (v = 0) and
no tangential stress, that is, this is a slip boundary. A mesh of approximately 3000
6-node triangles was used over the computational domain.

The effects of slot aspect ratio (� = w/d) and slot angle β were considered to a
limited extent. Pressure contours and streamlines are shown in Figure 12 for a cavity
of depth d = 1.5 and width w = 1 at angles of inclination β = 60◦, 90◦, 120◦. These
were computed at a Reynolds number of Re = 1000; at higher Reynolds numbers,
convergence difficulties were experienced. The results shown are typical of cavities of
both larger and smaller aspect ratio, although the width and depth of the slot does vary
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FIGURE 12. Flow in the vicinity of a slot of aspect ratio � = 3/2 (d = 1.5, w = 1) at various angles of
inclination β. The colour of contours from blue to red indicates the change in value from lowest to highest.
(Colour available online.) (Reproduced from [10].)

https://doi.org/10.1017/S1446181123000068 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181123000068


[21] An examination of the “Lanier wing” design 175

the vortex flow and pressure. As can be seen, a vortex develops in the slot. The pressure
at the centre of this vortex is lower than the average pressure in the surrounding fluid,
but the overall pressure in the slot is very similar to that in the fluid immediately above
the slot. This confirms the earlier findings that slots in the upper surface of a wing
make little difference to its lifting capacity.

6. Conclusions

We have examined the Lanier “slat-wing” design for aircraft. Our focus is on
how the lift and drag of the modified airfoils compare with conventional ones. We
do not consider the suggestion of improved stability that is also claimed in the
inventor’s patents. Our study indicates that conventional airfoils are superior, or at least
equivalent, to the Lanier “slat-wing” in terms of lift. We suggest that the apparent
improvement in lift and/or stability reported in the popular science literature of the
time, following experiments with one or two prototypes, was a result of using thicker
wings than was typical at the time, so as to accommodate a “vacuum chamber”
within them. As shown herein (for example, Figure 1), thicker wings generate more
lift at small angles of attack compared with thin wings. Possibly, to Lanier and
co-workers, thicker wings also appeared to give greater stability, due to a less sudden
stall compared with thin wings. The increased top surface roughness caused by the
slats would almost certainly lead to separation at lower speeds, and hence prohibit
their use at higher speeds. It is almost certain that even if the “slat-wing” design
provided some improvement on its contemporaries, it has now been superseded by
modern wing designs that include variable wing shapes, leading-edge slots, auxiliary
lifting surfaces and flaps that provide greatly enhanced performance, especially during
take-off and landing.

Investigation of Lanier’s designs could be extended. Probably the most natural
approach is to compare airfoils using wind tunnel experiments. Improved numerical
experiments at higher Reynold’s number might also provide further illumination on
the reported performance of the “slat-wing” design, and more historical research might
yield more information from the 1930s to add to the largely anecdotal information
currently available. The possible stability features at low speed appear to be the most
promising aspect. It could be interesting to see how the Lanier design compared with
contemporary aircraft of the 1930s. However, it is unlikely that any such study would
have any practical impact on modern aircraft design.

Today, concerns over aircraft have shifted to their environmental impacts and the
potential to mitigate this [8]. Reduction of fuel burn through reduction of drag is
one important mitigation strategy. The shift to environmentally focused design was
also discussed in an interesting brief history of aircraft design from around 1910 to
modern times, given in a lecture by Green (FRAeS) [9] at a Royal Aeronautical Science
conference in 2009, in which the development of fully laminar flow aircraft is identified
as having “the greatest potential of all” for maximum drag reduction. Natural laminar
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flow control through design of wing shape and hybrid laminar flow control employing
suction are also discussed as milestones towards this ultimate goal.
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