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1. Introduction

The iterated equation of generalized axially symmetric potential theory [1]
is the equation

(1) Ln
kU) = 0 ,

where, in its simplest form, the operator Lk is defined by

(2) Lk(f) = d2fldx2 + d2fldy2 + ky-'dfldy,

the function / = j\x, y) being assumed to belong to the class of C2n functions
and the parameter k to take any real value. In appropriate circumstances, which
will be indicated later, the operator can be generalized but as this can be done
without altering the methods used, the operator will be taken in the form (2) or
in the corresponding form

™ r (n - d2f • l + k 8f i 1 ~ ^ 82f ( 1 + fc)^ df

(i) L U ) + +

™ r (n • i
(i) LkU)_—+ r ^ + ^ g^2 ^ _ ,

where r, 8 are polar coordinates such that x = rcosd, y = rsind and n = cos0.
It is known that equation (1) has many particular solutions which involve

solutions of the simple equation

(4) Lk(f) = 0

or of similar equations with a different value of the parameter k. (Solutions of
equation (4) will be denoted by fk and solutions of equation (1), for n > 1, by
/£n).) Thus, for example, it is shown in [2] that each member of each of the fol-
lowing sets of terms, denned for 0 g s 5| n — 1, is a solution of (1):

(5) (i)/»_2, (n) y2sfk+2, (iii)*1/* (iv) r2%.
318

https://doi.org/10.1017/S1446788700022916 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022916


[2] Axially symmetric potential theory, VI 319

It follows that all expressions of the form

(6) (i) SA_2. (ii) s W + 2s (iii) Zx%,s (iv) i!r2%,s
s = 0 s=0 s = 0 s = 0

are solutions of the iterated equation (1). (The notation {fk,s} is used to
denote a set of solutions of (4).) It is natural to ask whether these sums of n
particular solutions are general solutions of equation (1); that is, to ask whether
any solution of the equation can be expressed in the given form.

In fact, all four of the sums in (6) are known to be general solutions of (1).
Weinstein [3] showed that (6) (i) is a general solution while Payne [4] proved
the result for (6) (ii). In the same paper, Payne remarks that it is well-known
that (6) (iii) and (6) (iv) are general solutions of (1).

The terms which make up the sum in (6) (ii) (and also those in (6) (i)) are
of the form ysf, and there are many other terms of this form which are solutions
of (1). The complete set of such solutions has been found [2] and a criterion
has been given by which it can be decided whether the sum of any particular
set of n terms chosen from this set forms a general solution [5]. The discussion
of this problem starts with Weinstein's general solution (6) (i) and relates other
solutions to this. It turns out that there are many general solutions of (1) given
by the sum of n terms of the form ysft, among them both (6) (ii) and (6) (i).

In this paper, a similar discussion is given of general solutions of (1) made
up of the sum of n terms chosen from sets of particular solutions of the form
x% or r2sf,. The first step is to find the complete sets of solutions of these kinds.
Then it is shown that, in particular, (6) (iii) and (6) (iv) are general solutions.
Although these results are not new, proofs are given for them as they are necessary
in the argument. Moreover, in each case, the method of proof given here is essenti-
ally that used by Weinstein [3] in establishing that (6) (i) is a general solution
and it seems worth while to demonstrate the unified approach to these problems
made possible by the use of this method. Finally, a criterion is given by which it
can be decided that the sum of n given terms of each of the forms under discus-
sion constitutes a general solution of (1). The procedure is again based on the
recognition that in each case the terms of Weinstein's solution (6) (i) are included
in the family of particular solutions so that the sums of n terms being discussed
can be related to Weinstein's solutions and in this way shown to be general solu-
tions. In each case there are many general solutions of the given form including
(6) (iii) and (6) (iv) respectively (and (6) (i) appears as a specially simple member
of each set of general solutions).

2. Solutions of ££(/) = 0 of the form x*ft

In [2] it is shown that , for any function / and any integers n, s such that

n ^ s ^ 1,
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(7) Ek(??f) = &n.k&n-Uk,-. &„-.+!.&-'(/),

where <£n k = xLk + 2n d/dx. It is further shown in [2] that

(8) Lk(ft) = (k-l- 2)(/c - / - 4)- •• [k - I - 2(n - 1)]@"(/,)

where the operator Si = y~1dj8y.
From (7) and (8) (and the condition Lk(Jk) = 0), it follows that

L"k(x
sfk_2,) = 0 if and only if s and t are non-negative integers such that 0 ^ s +t

^ n — 1. Thus there is a set of in(n + 1) particular solutions of (1) which can
conveniently be denoted by xs/k_2,,s and the problem now is to decide whether
the sum of a given set of terms chosen from this set can form a general solution
of (1).

n - l

3. General solution of Ln
k(f) = 0 of form S x%_,

x = O

3.1 The first step in finding all general solutions of (1) which consist of the
sum of n terms chosen from the family of solutions of the form xsfk_2t,s given
in section 2 is to show that the particular case of the sum of the n terms of this
family for which t = 0 is a general solution. This is the sum, Z" = Jxyt s , given in
(6) (iii).

3.2 From section 2 it is clear that every function of the form Z"~=\)Xsfk,s is
a solution of (1). It must now be proved that every solution of (1) can be expres-
sed as a sum of terms of this kind.

As so frequently happens, it pays to look first at the simplest case and to
prove that every solution of the equation

(9) LlU) = 0

can be expressed in the form / k 0 + xfktl.
Equation (9) is equivalent to the equation

(10) Lk(f)=fk

where fk is an arbitrary solution of (4); for it is clear that every solution of (10)
for any function fk is a solution of (9) and every solution of (9) satisfies (10) with
some fk on the right hand side.

If a function fktl, a solution of (4), could be found such that/* = Lk{xfkil),
equation (10) would become Lk(f— x/k>1) = 0 which clearly has general solution
of the form / = /k>0 + xfktl as required. Since, as is easily verified, Lk{xfk,^
= 2dfktljdx, it is now necessary only to show that when/ t is given, it is possible
to find a function fkA such t h a t / t = 2dfktljdx.

With a slight change of notation, the problem is expressed more conveni-
ently thus: given a function fk, which is a solution of (4), show how to find a
function F such that (i) dFjdx = fk (ii) Lk(F) = 0.
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Condition (i) is satisfied by choosing

= (
Jb

where b is a constant.
It will be possible to find this function F(x, y) provided condition (ii) leads

to an ordinary differential equation for <j>(y, b) as a function of y. The condition
Lk(f) = 0 gives

Since Lk(fk) = 0, the integrand in the second term is equal to — fk(^,y)/^
so the integral is easily evaluated. The result is an ordinary differential equation
for 4>(y,b):

This equation can be solved for 4>{y,b) so the required function F(x, y) can be
obtained.

3.3. Now that it has been shown that, when n = 2, the equation L"k(/) = 0
has a general solution of the form E"I oX%,s, mathematical induction can be used
to show that the result holds generally.

The proof makes use of Weinstein's general solution already referred to:
any solution of (1) can be expressed in the form S"=o/t-2s- Because the required
general solution has been shown to exist when n — 2, it follows that

(12) fk,o + xfk.i~fk+A-2

where the symbol <-+ is used to mean that each side can be expressed in the form
of the other. If now it is assumed that the result holds for the equation L"k(f) = 0
for any integer n, it is similarly true that

(13) l x % s ^

To complete the inductive argument, it is sufficient to prove that (13) still holds
when the upper limit of the two sums is replaced by n.

Since ~L"=ox
sfk,s = fkt0 + xE"=Jxt/it>s+1, it follows from (13) that, for some

functions Fk-2s>
n n— 1

1 4 , . <->A,o + x 2^-2,
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Because of (12), this gives

£*%. »fk + fk-2+x"ZFk_2s

= ft + (fk-2 + xFk-i) + *"l Fk.2s.
s = 2

Once again (12) is applied and the process is repeated until the stage is reached
where

« n-2

IxS/fcs <-• Z/4-2. + (/»-2(.-l) + **»-2(i.-l))-
s = 0 s=0

A final application of (12) then gives the required result.

4. General solutions of L"k(f) = 0 made up of the sum of n terms

of the form xsfk-2,,,

It has been seen that xsfk-2t,s is a solution of (1) provided it is one of the
in(n+ 1) terms for which the non-negative integers s, t satisfy the conditions
O ^ s + f ^ n — 1. It is convenient to think of this set of solutions as represented
by the points of the triangular array in the (s, *)-plane as shown in figure l(a) for
the case n = A.

0 1 2 3 -+ 5

0 . . . . x x x x x . x .

1 . . . . . . x . x

2 . . . .

3 .

I
t

(a) (b) (c)

Figure 1.

The general solution obtained in section 3 is the sum of the n terms for which
t = 0 and these are represented by the points of the top row of the array as in-
dicated in figure l(b). There is one of these points in each of the diagonal rows
of the array for which s + t = N,0^N^n — 1.

It will now be proved that the sum of any set of n terms represented by
points of this array which lie one in each diagonal row (e.g. the one shown in
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figure l(c)) is a general solution of equation (1). Clearly there will be n! such sets
of points and corresponding general solutions.

The result is clearly true when n = 1 and n = 2 and it is proved generally
by mathematical induction. For this purpose it is sufficient to prove that if the
equations L"(f) = 0 for 2 ^ m ^ n have general solutions of the required form,
then so also does the equation L"k

+1(f) = 0.
Because of the inductive hypothesis, any set of n+ 1 terms satisfying the

condition for selection from the solutions of l?k
 x ( /) = 0 of the form xsfk_2ts,

0 ^ s + / g n, can be expressed in the formfk
w+ x"~pfk_2pn_p where L"k(fk

(n)) = 0
and 0 ̂  p ^ n. (The term x"~pfk^2pn-p is represented by the point (n - p,p)
on the longest diagonal row s + t = n of the triangle of points in the (s, f)-plane
representing the family of solutions of the equation L£"+1)(/) = 0.) The function
//n) can be replaced by any of the assumed general solutions of the equation
L(

k\f) = 0 and the one to choose is

p - 1

Z/t-2(
( = 0

n — p— 1

0 + ^ xJk-2ps
s = 0

(In the case p = 0, the first sum is to be taken as zero and when p = n the second
sum is to be taken as zero.) The original sum of n + 1 particular solutions of
L"k

+1(f) = 0 is thus equivalent to

(14) Z / + Z xsf
f = 0 s=0

The terms in (14) are shown in figure 2(a) for the case n = 5, p = 3 .

x x x . . x x x x x

x . . . . .

x . . .

(a) (b)
Figure 2

From Weinstein's general solution (6) (i) and the general solution established
in section 3, it is known that for 0 <,p :g n.

n—p n—p

(15) I 4 , s «-> 2/t_2,.o,
5=0 S=0

both sums being general solutions of the equation I?k~
p(f) = 0. Replacing fc by

k — 2p in (15) gives an equivalence which is used to convert (14) into
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2(,0 + ^ Jk + 2p-2s,0 = S/t-2(,0>
f = 0 s=0 t=0

the sum of the terms illustrated in figure 2(b), which, from Weinstein's solution,
is seen to be a general solution of the equation L"fc

+1 ( /) = 0. This completes
the proof.

5. Solutions of L"k(f) = 0 of the form r2sf,

5.1. The discussion of general solutions of (1) consisting of the sums of n
particular solutions of the form r2sft follows exactly the pattern developed in
sections 2, 3, 4 for general solutions consisting of sums of solutions of the from

5.2. The first requirement is to find the family of particular solutions of (1)
of the form r2sft. It is shown in [2] that, for any function / and any integers n, s
such that n ̂  s ̂  1,

(16) Ll(ruf) =^n,k^n-1,k-^n-s+1,kL
n

k-
s(f),

where^TnJl = r2Lk + 4nrdj8r + 2n(2n + k).

From (8) and (16) (and the condition Lk(fk) = 0) it follows that

L"k(
r2sfk-2t) = 0 if and only if s and t are non-negative integers such that 0 ^ s + (

^ n — 1. Again there is a set of \n(n + 1) particular solutions of (1) which can

be denoted by r2 s/ t_2 r , s and it remains to consider whether the sum of a given

set of n of these particular solutions can form a general solution of (1).

n - l

6. General solution of L\(f) = 0 of form S r*2fk s
s = 0

6.1. As in section 3, the first step in finding all general solutions of (1) made
up of the sum of n terms of the form r2sfk-2t,s given in section 5 is to show that
the particular case of the sum of the n terms for which t = 0 is a general solution.
This sum, S"ljr2i/fcs, is the one given in (6) (iv).

6.2. From section 5 it is clear that every function of the form Z"=or2s/it.,
is a solution of (1). As in section 3, it remains to prove that every solution of
equation (1) can be expressed in this form.

The simpler equation (9), L2
k(f) = 0, is again considered. As in section 3.2,

it is replaced by equation (10) and it is easily seen that if a function fkil, a solution
of (4), can be found such that/fc = Lk(r

2fk<1), then a general solution of (9) is
given b y / = / t , 0 + r 2 / t i l .

With a change of notation, the problem reduces to showing that for a given
function fk, a function Fk can be found such that fk = Lk(r

2Fk). In this case,

(17) Lk(r
2Fk) = 4r3Fk/8r + (4 + 2k)Fk
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and, whereas in the previous case the corresponding expression was a simple
multiple of dFJdx, here the right hand side of (17) is not just a multiple of dFkjdr.

The analogy with the previous case suggests that it should be possible at
least to solve the simpler problem of finding (pk so that fk = r d<j>kjdr. This prob-
lem is: given a function fk, such that Lk(fk) — 0, find a function <f> such that
(i) rd(t>/dr = fk (ii) Lk(<f>) = 0. It turns out that this problem can be solved in
exactly the same way as the problem discussed in section 3.

This simpler theorem both points the way to the solution of the required
result and acts as a model for it. It is easily shown from (17) that

so if new functions g(k) and G(k) are defined by

the problem of finding Fk so that Lk(r
2Fk) = fk becomes that of finding G(t) when

rdGw/dr = gm and gw is given. The problem is now analogous to the simpler
one just described but the equation satisfied by gik) and G(k) has yet to be de-
termined. (These two functions are constructed in the same way from solutions
of the equation Lk(f) — 0 so both will satisfy the same differential equation.)

It is known [2] that, for any function/and any m,

= rmLk(f) + 2mrm~ldf/dr + m(m + k)rm-2f

and from this, with m = 1 + kjl, it is easily deduced that the operator Mk, where

M r 2 + /c 3 l - / c 2 /4
Mk = Lk -=- H

r drr dr r2

1 ~ k2l4
2

dr2 r dr

is such that

Thus Mk(r
l+k/2f) = 0 if and only if Lk(J) = 0 and it follows that the functions

gw and G(k) are solutions of the equation.

(18) Mk(g) = 0.

The problem to be solved now takes the form: given a function g(k\ a solu-
tion of (18), find a function G such that (i) rdG/dr = g(k) (ii) Mk(G) = 0.

The analogies between the two problems of this section and between both
of them and the problem of section 3 are clear. The details of the calculation
required here are exactly like those of section 3 so all that need be said is that
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the function G can indeed be found, the solution depending ultimately on solving
the equation which corresponds to equation (11):

(1 - H2) 0 - 0*. 6) - (1 + k)n | £ (fi,b)

It follows that the equation Ljf(/) = 0 has a general solution of the form
fk.o + r2fkA.

6.3. The extension of this result to show that the equation L"t(/) = 0 has a
general solution of the form ZJ=or2s/*,» follows by the use of mathematical
induction, exactly as in section 3.3.

7. General solutions of L"k(f) = 0 made up of the sum of n terms
of the form r2sfk_2t

If the representative solution of (1) is changed from xs/fc_2,.s to r2sfk-2tJ,
all the discussion of section 4 can be repeated so that again n! general solutions
can be made up of sums of n terms of the given form.

8. Other forms for the operator Lk

It has now been shown, in [2] and in this paper, that the three families of
solutions of the equation L"t(/) = 0 of the form ysft, xsf, and r2sf, all give rise to
general solutions of this equation which are made up of the sums of n suitably
selected members of one of the families.

So far the operator Lk has been taken in the form (2) or in the equivalent
polar form (3) but in some cases it is possible to apply the same results to related
operators. In considering possible generalizations of Lk it is neccessary to pre-
serve the characteristics of the operator which are essential to the argument used
in establishing the general solution.

It turns out that, in the case of general solutions based on the family ysft,
the operator Lk can be replaced by X + d2jdy2 + ky~1d/dy where X is any linear
homogeneous operator independent of y.

Similarly, in the case of general solutions based on the family r2sf,, the es-
sential terms in the operator Lk are those depending only on r and Lk can be
replaced by any operator of the form d2jdr2 + (1 + k)r~' djdr + r~2Q> where $ is
any linear homogeneous operator independent of r.

In the case of general solutions based on the family x*ft however, only a
minor formal change is possible in which Lk is taken in the form Ad2fix2 + d2jdy2

+ ky~ldjdy for any constant A. It will be noted nowever that this change allows
the operator to be hyperbolic.
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