
A TENSOR EQUATION OF ELLIPTIC TYPE 

G. F . D. DUFF 

The theory of the systems of partial differential equations which arise in 
connection with the invariant differential operators on a Riemannian manifold 
may be developed by methods based on those of potential theory. It is therefore 
natural to consider in the same context the theory of elliptic differential equations, 
in particular those which are self-adjoint. Some results for a tensor equation 
in which appears, in addition to the operator A of tensor theory, a matrix or 
double tensor field defined on the manifold, are here presented. The equation 
may be written 

A<£ + A<j> = 0, 

in a notation explained below. 
A maximum principle holds for solutions of this equation, under certain 

conditions on the coefficient tensor A, as is shown in §2. In the following section 
the construction of de Rham for the Green's form of a closed manifold is extended 
to this equation, and the solvability of the Poisson equation corresponding is 
discussed. We then consider Dirichlet and Neumann problems on compact 
manifolds with boundary, treating first the case when A is positive definite, 
and then the general case. The necessary integral equation techniques have 
been developed in [3; 4; 6a; 6b; 8]. 

1. Definitions. We consider orientable Riemannian manifolds of dimension 
n and class C°°. F will denote a closed, compact manifold, M a compact sub-
manifold with (n — 1)-dimensional boundary B also of class Cœ. If a manifold 
with boundary is given alone, we can define a closed C°° manifold (the double) 
of which the given manifold is a sub-manifold [4]. A positive definite metric 
tensor gtj of class C°° is assumed given, and we assume that the curvature of the 
manifold under consideration is uniformly bounded. 

Skew symmetric covariant tensors 

of order p on F are associated with exterior differential forms of degree p 
(Q<p<n); 

(1.1) 0 = 4(u...iv)dxtlA . . . A dxl\ 

We have the differential operator d, the adjoint *, and the co-differential operator 
ô = (— l)np+p+1* d*. The Laplacian A is an elliptic operator defined by 

A = dô + 3d, 
that is, 
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(1.2) (A*), . . . . , , = 
V 

— DlDt <t>ilm..i9 + JLl Fjn...ip
l 1'" P R jn i<l>ji...j»-lhjn+x...jp' 

Here Dt denotes covariant differentiation, 

J- ii...iP 

is the skew symmetrized Kronecker symbol of order p, and Rhijk is the Riemann 
curvature tensor. Brackets enclosing a group of indices shall mean that summa­
tion is to be effected only over those combinations which are in increasing order. 

Suppose that we are given on F a tensor field of order 2p, 

A = { A i l m m m t 9 t j t . m . j 9 ] t 

skew-symmetric in each set of p indices, and symmetric in the two sets of 
indices : 

The Ricci tensor Rijt for p = 1, and the Riemann tensor Ruujxjt, for p — 2, 
are examples of such tensor fields. The components of A are assumed to be of 
class C1 in each admissible coordinate system on the manifold. The differential 
form corresponding to the ^-tensor 

Au...iv(ji...jp) 9 

will be denoted by A$. The tensor A will be non-singular if there exists a second 
tensor B such that 

A T>(ji...jp)Jci...kp _ Tp k!...kp 

Ai1...ip(jl...jp) £> — 1 u...iv 

Again, A will be termed positive definite if the condition 

A(i1...iv)Ux...jp) 0 0 — u 

implies that <t>il'"iv is zero. The generalized Kronecker delta is positive definite 
in this sense. These properties may be interpreted as conditions on the symmetric 
square matrix of order (J) of independent components of A in any coordinate 
system. If A is positive definite, A is non-singular. We have 

*(A<j)) = *^4(*0), 

where *A is a double skew symmetric tensor density of rank n — p: 
. A _ . . A (ii...ip)(hi...hp) 

*^-ji...jn-p,ki...kn-p — e(U...ip)ji...jn-pe(hi...hp)ki...kn-pA 

Here eit . . . in is the volume w-tensor density. 
We introduce the scalar product of two ^-tensors 

( * , * ) * • = f 0 A *<£ = J yp A * 0 = I <t>(u...ip) f i t x ' ~ i 9 ) * l , 
%/ F JF OF 

and the positive definite norm N(<j>) = (0, <t>)F. Corresponding to our differential 
equation 
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(1.3) AA<t> = A 0 + A<i> = 0 

is the Dirichlet integral 

(1.4) £(</>, $) = (<fy, # ) + (ty, ty) + fa A$). 

If A is positive definite, then £>(</>,</>) is also positive definite. The Green's 
formula is 

(1.5) D(<t>, f) - (0, A<£ + Af) = I [0 A *dt - 8$ A *<£], 

where J3 is the bounadry of the domain under consideration. On a closed manifold 
F, if A is positive definite, zero is the only solution of (1.3). 

The boundary operators t and n are defined as in [3 ; 4] ; t<j> is the p-iorm induced 
on B by the £-form 4> defined on M, and ncf) = <j> — t<j>. The relations *t = «*, 
*n = £* hold. 

2. Maximum principle. When p = 0, so that (1.3) is a scalar equation 
and A is a scalar invariant, there holds the following maximum principle: 
if A > 0, no solution has a proper positive maximum, or negative minimum. 
That is, the square of the solution has no proper maximum. Under analogous 
conditions, a similar result holds for p > 0. The square of <f> is the invariant 

(2.1) 4> 2 = <l>(u...iP)<l>Ul-ip)>0. 

We have 

<2'2) = (/?' < ^ - ^ ) 0 D , 0 ( l,... fp)) + ^-VtfDt 4nu...». 

The first term on the right is non-negative. In view of (1.2) and (1.3), if </> is a 
solution of our differential equation, we may write the second term in the form 

[A{u...ip)Ui...jp) + C(ii...ip)(ii...*„)] 0 %x'"%v <t> 1 " P , 

where 

(2.3) 

If therefore the double tensor A + C is positive definite, the quantity D^rf2 

which appears in (2.2) is positive unless <f>2 = 0. On the other hand, this quantity 
is non-positive at a maximum of <j>2. Consequently 4>2 has no maximum value in 
the interior of any domain in which <j> is a solution of (1.3). 

When a maximum principle holds in this form, (1.3) has no non-zero solutions 
regular on a closed manifold F, and furthermore the solution of the Dirichlet 
problem on a manifold with boundairy is unique. If C is positive definite, this 
leads to an improvement of the results which can be obtained by use of the 
Dirichlet integral. Sets of conditions under which C is positive definite have been 
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formulated by Lichnerowicz [7]. We remark that in a space of constant curva­
ture K, C = nKT is positive definite if K is positive. When p = 1, dj = Rij. 

To compare the limitations obtained in a closed manifold by the Dirichlet 
integral and the maximum principle, consider the following example with 
p = l: 

( A 0 ) i + \RiJ <t>j = 0, Xreal; 

or, 

D*Dk4>t + (1 - X) RUj = 0. 

The Dirichlet integral shows that if —Rij is positive definite (positive mean 
curvature) there are no solutions for X < 0 and if Rij is positive definite, no 
solutions for X > 0. The maximum principle shows in the first case (—Rij 
positive definite) there are no solutions if X < + 1 , which is an improvement; 
but in the other case shows only that there are no solutions if X > + 1 . We remark 
that a Killing vector %it with D^t + D£j = 0, satisfies the above equation 
with X = + 2 . If Rij is positive definite, there are no Killing vectors, as is shown 
[2] by both methods. 

3. The Green's form. The method used by de Rham to construct the 
Green's form for Laplace's equation on a closed manifold carries over with but 
minor alterations to the equation (1.3). For completeness, however, we will 
describe the construction [8]. 

We assume that there exists a positive number rj such that if x and y are any 
two points at a distance less than rj, a unique geodesic can be drawn from x to y. 
Let s(x, y) be the geodesic distance so defined, and set 

Let 

be the determinant 

_ I d s(x, y) 

au...iv,ji...jp 

1 &i j |, 1 < P, <r < p. 
P <r 

Let p(x,y) be a function of class C°°, p = p(s(x, y)) = 1 for s(x,y) < Jr;, 
p = 0 for s(x, y) > rj. If un denotes the area of the unit sphere in Em we define 
the parametrix 

(3.1) co(x,y) = o,P(*,y) = ' ^ y l fo^g(«, . . .« , ) ( j , . . . , , ) dxu A . . . 

A dxip dyu A . . . A dy\ 

For n = 2, s~n+2/(n — 2) is to be replaced by (— log s). 
The integral operator 0 with kernel co = up has the following properties [8] : 
(1) Q0(#) = («(*, y), <t>(y))p is of class C00 if <j> is of class C°°. 
(2) 0 is self-adjoint since co is symmetric. 
(3) q(x, y) = Ax(x, y) is 0(s~n+2) as 5 -> 0. 
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We set 
(3.2) QA<t>{x) = (q(x, y)+A (x) œ(x, y), 4>(y))F 

and 
(3.3) Q'A4>{X) = (q(y, x) +A(y) «(y, x), 4>(y))F. 

It then follows that 
(3.4) QAA4> = &A0 + QA<t> = 0 + Q'A<t> 
and 
(3.5) A A ^ = AŒ0 + ^400 = 0 + <2A</>-

Consider the non-homogeneous equation 

(3.6) A ^ + A* = p, 

where p is a given ^-forrn of class C. Let E denote the linear space of solution 
of (1.3) regular in F. If 0 G E, we have from (3.4), 

(3.7) 0 + Q'A <t> = 0, 

and this equation has only a finite number of linearly independent solutions, 
so that E is finite dimensional. For 0 Ç E we also have 

(P, 0) = (A* + 4 * , 0) = (*, A 0 + ,40) = 0. 

A necessary condition for the solvability of (3.6) is therefore that p be orthogonal 
t o E . 

To solve (3.6) set \j/ = 12£, so that (3.5) yields the integral equation 

(3.8) f + QAi = p. 

A solution £ exists if and only if p is orthogonal to all solutions of the homo­
geneous transposed equation (3.7). We must necessarily assume that p is ortho­
gonal to E; let Ei denote the orthogonal complement of E in the space of solu­
tions of (3.7). The following device of de Rham shows that (3.6) may still be 
solved even if p is not orthogonal to E\ but only to E. If 0i G Ei, 0i ^ 0, 

t h e n _ ((A + An, PI) 9é 0 
for every 0 Ç Eu since 

((A + ^)20i , 0i) = N((A + A) P l) > 0 

since 0i is orthogonal to E and is not zero. To each 0i in E\ corresponds a 
linear functional ((A + A)2(j>u 0) defined for 0 G Eu which functional does 
not vanish identically if 0i ^ 0. Conversely therefore, each linear functional 
on the finite-dimensional space E\ can be represented in the form ((A + A)24>u 
0) for a suitable 0i. Thus there exists a 0i with 

( P , 0 ) = ( ( A + 4 ) 2 0 i , 0 ) , P € E . 

It follows that p — (A + A)2(j)i is orthogonal to Eu and also to E since each 
term separately is orthogonal to E. The integral equation 

£ - <2A£ = P - (A + ^) 2 0i 
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therefore has a solution £, and now \p, defined by 

* = 0* + (A + A)fa 

is a solution of (3.6). We therefore have 

THEOREM 1. On a closed Riemannian space there are at most a finite number 
of linearly independent solutions of A<t> + Acj) — 0. If A, or A + C, is positive 
definite, zero is the only solution. The non-homogeneous equation A<£ + Acj) = p 
has a solution if and only if p is orthogonal to all solutions of the homogeneous 
equation. 

Let ap(x, y) be the reproducing kernel of the space E, and let 

(3.9) Ecj> = (a,cb)F 

be the projection of an arbitrary form </> upon E. By Theorem I the equation 

(3.10) A0 + A<j> = p - £ P 

has a solution 0. Furthermore it has a unique solution orthogonal to E. Let this 
solution be denoted by Gp = GAp. It follows as in (8) that GA is an integral 
operator whose kernel, which we denote by gA(x, y) is symmetric, has the 
singularity of a local fundamental singularity for (1.3), and satisfies 

(3.11) (A + A)xgA(x, y) = -a{x, y), x 9* y. 

If A is positive definite, a = 0 since £ is zero, and gA{x, 30 ls a fundamental 
solution in the large for equation (1.3). 

4. Boundary value problems. We shall now assume that the double tensor 
A is defined and positive definite on a compact manifold M with boundary B. 
Let us enlarge M by adjoining to M a neighbourhood B X i" of the boundary 
5 with a fixed closed interval I, 5 being identified with an endpoint of / . If 
we call this enlarged finite manifold Mi, the double F\ of M\ consists of M\ 
and an oppositely oriented replica of Mi, with corresponding boundary points 
identified. Clearly A is defined in a natural way on F\ except in the replica 
of the boundary neighbourhood. By a suitable averaging or interpolation, A 
can now be defined in the combined boundary neighbourhoods so as to be 
positive definite and of the same degree of regularity (up to and including C°°) 
as in M. We may therefore regard A as defined in F, a closed manifold of which 
M is a sub-manifold. Similarly the metric tensor gi} can be extended to F, 
remaining positive definite and of class C°°. Since A is positive definite on F, 
the Green's form gA (x, y) of F is a fundamental singularity in the large for 
(1.3) on M. 

The Dirichlet problem consists of finding a solution <j> of (1.3) with t<j>, t*<j> 
taking assigned continuous boundary values on B. For the Neumann problem 
the assigned data are t*d<t>, t*d*<t>. Since the Dirichlet integral for M is positive 
definite, it follows at once that solutions of these problems are unique. 
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We construct double and single layer potentials [3]: 

(4.1) /*(*)= [p(y) A *dgA(x, y) + p(y) A *d*gA(x, y)], 
•JB 

(4.2) v{x) = [gA{x,y) A *da(y) + *gA(x,y) A *d*a(y)] 
« / B 

with densities p and a respectively, on B. The singularity of gA(pc, y) is, in its 
principal term, the same as the singularity of the de Rham form g(x, y). Con­
sequently the regularity behaviour and discontinuities of (4.1) and (4.2) are 
the same as for the corresponding potentials in [3]. As the argument point 
passes from M across B, the quantities 

tfi, t*fjL, t*dv, t*d*v 

have the respective discontinuities 

tp, t*p, —t*dcr} —t*d*cr. 

On the boundary B we have, as limiting values from the interior of M, 

t-n = itp + t \ (p A *dgA + *p A *d*gA), 
•SB 

•4 ox /-*/* = ¥*P + *̂ J (P A * ^ + *P A *d*gA), 

t-*dv = — \t*d<j + t*d I (gA A *^o- + *^A A *d*cr), 

t-*d*v = — |/*^*o- + /*^* I (gA A *da + *^A A *^*cr). 

The integrals on the right are to be interpreted as principal values. To obtain 
limiting values on B from the complement CM of M in F, the signs of the 
leading terms on the right should be reversed. Limiting values from CM will 
be indicated by a subscript + sign. 

The solution of the Dirichlet problem is therefore to be obtained by solving 
the integral equations 
(4.4) t-n = t(j>, /_*/x = /*</>, 

where t<j>, /*</> are the assigned continuous boundary values. In analogous fashion, 
the Neumann problem may be solved by means of the system. 

(4.5) t-*dv = t*d(j>, t~*d*v = t*d*(f>, 

for given continuous t*d<t>, t*d*<f) on B. These are systems of (J) singular integral 
equations. Since gA(x, y) = gA(y, %), it can be shown as in [3] that the kernels 
of the systems (4.4) and (4.5) are transposes of each other. 

The condition for the existence of a solution is that the assigned non-homo­
geneous term be orthogonal to every solution of the homogeneous transposed 
equation [5]. In each case the homogeneous transposed equation is obtained 
when we attempt to solve the boundary value problem of the complementary 
type for the complementary domain CM. 
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For the Dirichlet problem we must therefore show that 

(4.6) 1 [<t> A *da + *0 A *d*o-] = 0 
J B 

for all solutions a of the equations 

t+*dv = 0, t+*d*v = 0. 

Now (4.7) imply v = 0 in CM. Since v is continuous across B, we have t-v = 0, 
t-*v = 0, and therefore v = 0 in if. Therefore the discontinuity conditions, 
which read 

/_*É/Ï> = /*dcr, t-*d*v = t*d*a, 

imply that t*da and t*d*a vanish. Thus (4.6) holds for all continuous t<f>, t*<t>. 

THEOREM II. If A is positive definite in M, there exists a unique solution of 
the Dirichlet problem for A<t> + A<j> = 0, with t<j>, t*4> having given continuous 
values on B. 

The condition of solvability for the Neumann problem is 

(4.8) I [p A *d,<l> + *p A *d*<t>] = 0 , 

for all solutions p of the equations 

(4.9) t+n = 0, /+*/* = 0. 

These conditions imply that \x vanishes identically in CM It follows as in [3] 
that t*dn and t*d*n are continuous across J3, and therefore 

t-*dfjL = 0, t-*d*ij. = 0. 

It follows now that JJL = 0 in M. The discontinuity conditions show that 

t-ji = —tpj t-*n = —t*pf 

and therefore tp and t*p are zero. Thus (4.8) is always satisfied. 

THEOREM III. If A is positive definite in M, there exists a unique solution of 
the Neumann problem for A4> + A<j> = 0, with t*d<j>, /*^*0 having given continuous 
values on B. 

The Green's and Neumann's forms for M corresponding to the Dirichlet and 
Neumann problems are easily defined by subtracting a regular solution, suitably 
determined, from the fundamental solution gA(%,y)- Representation formulae 
for the solutions of the Dirichlet and Neumann problems follow in the usual 
way from Green's formula (1.5). We note that the boundary conditions are 

(4.10) t GA(x, y) = 0, t*GA(x, y) = 0, t*dNA(x, y) = 0, t*d*NA(x, y) = 0, 

and that GA (x, y) and NA (x, y) are symmetric in their two arguments. As in 
the scalar theory, the difference 
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(4.11) KA (x,y)= NA (x, y) - GA (x, y) 

is the reproducing kernel for solutions of (1.3) in the P-metric (1.4) over M. 
The kernel (4.11) has many of the formal properties developed in [1]. 

5. Boundary value problems (continued). We now consider the Dirichlet 
and Neumann problems for M when the coefficient tensor A is not restricted to 
be positive definite. It is then possible that the solutions of the boundary 
value problems will, if they exist, not be unique. We require A to be of class 
C1 in M + B. Consider the equation (1.3) in the form 

(5.1) A * + A0<t> = (Ao - A)<t> = 50 , 

say, where Ao is yet to be chosen. We shall need to choose Ao positive definite 
and such that B = Ao — A is non-singular. Let A\ be any positive definite 
double tensor of the type of A. 

The characteristic roots of the matrix of independent components of A i in 
any coordinate system are real, since A\ is assumed symmetric, and positive, 
since A i is positive definite. Also the characteristic roots of A i — eA are con­
tinuous functions of e, and of the point where A\ — eA is evaluated. For e 
sufficiently small, and positive, the roots are positive at any point of M. Since 
M is compact, it follows that there is an ei > 0 such that the roots of Ax — e\A 
are positive everywhere in M + B. We now choose A 0 = ef~^41 ; B = e\~lA i — A 
is positive definite and therefore non-singular. 

Denote by Go(x, y) and 7V0(x, y) the Green's and Neumann's tensors of M 
for the equation 

A<t> + Ao<t> = 0 . 
We see that any solution 0 of the Dirichlet problem for (1.3) must satisfy the 
integral equation 
(5.2) «(*) + (B*(y), G0(x, y))M = f(x), 

where A\p + AG\f/ = 0, and hf/, t*$ assume the given boundary values of the 
problem. If we apply the operator A + Ao to (5.2), we find, conversely, 

A 0 + A0cj> - 5 0 = 0, 

so that 0 is a solution of (5.1), that is to say, of (1.3). Also, on taking boundary 
values we note that the integrated term yields zero because of the boundary 
behaviour of the Green's function, and therefore that t<$> = t\f/, t*<j> — t*\p. 
If t\[/, t*\// are assigned continuously, \p is uniquely determined, by Theorem II, 
and any solution of (5.2) is a solution of the Dirichlet problem for (1.3). 

A solution of (5.2) exists if and only if xp is orthogonal to all solutions % 
of the homogeneous transposed equation 

(5.3) x(x) + B(x) ( x(y) , G0(x, y))M = 0. 

Since B is non-singular, B~1 exists, and we have 

0 = B~ix(x) + (BB-*x(y), G0(x,y))M 

= B-lx(x) + (B-lx(y), BG0(x,y))M. 
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Therefore the tensor B~l x is a solution of the homogeneous equation correspond­
ing to (5.2) : 
(5.4) «(*) + (B0ÙO, Go(x,y))M = 0. 

This equation has continuous iterated kernels of sufficiently high order, and 
therefore a finite number of linearly independent solutions <j>r(r = 1, . . . , N). 
Thus any solution x of (5.3) is of the form % = B<t> for some solution 0 = 1] ar<t>r 
of (5.4). The condition of solvability of (5.2) is therefore (x> */0 = Ĝ 0> ^) = 0 
for every solution p of (5.4). We have from (1.5) and (5.4) 

( X ,* ) = ( S * , * ) = ( A 0 + ^ o 0 , rP) 

= (0, At + Aot)+ I [0 A *d<£ - <5<A A *0 

— \p A *d<l> ~\- dcj) A * ^ ] . 

The volume integral vanishes since A ^ + A\p = 0, and /0 = 0, /*</> = 0 since 
4> is a solution of (5.4). We therefore have 

THEOREM IV. There exists a solution of the Dirichlet problem for A 0 + -40 = 0, 
2$ = tip, t*4> = t*\p if and only if 

(5.5) I [^ A *d<pr - b<f>T A * f | = 0 

/or e^er^ solution <j>r of A 0 + Acj) = 0, /0 = 0, /*0 = 0. 

The condition (5.5) involves only the given data t\p, /*^, and the eigentensors 
0 r. The most general solution of the problem is of course of the form 

0 + Z-rf ar0r 

where 0 is any particular solution. 
The Neumann problem may also be treated this way. Any solution of the 

problem must satisfy the integral equation 

(5.6) 0(x) + (Bct>(y), NQ(x, y))M = *(*), 

where \f/(x) is that solution of the equation A ^ + Ao\p = 0 with the assigned 
values of t*d\p, t*d*\p. Conversely, a solution of (5.6) provides a solution of the 
Neumann problem. A solution of (5.6) exists if and only if \p is orthogonal to 
all solutions of the homogeneous transposed equation 

(5.7) x W + B(x)U(y), No(x, y))M = 0. 

As before, x = B<t>r where 0 r is a solution of (5.6) with \p — 0. The orthogonality 
condition can be transformed to read 

0 = (*, x) = (*, B4>) = ( A * + A0cf>, *) 

= (0, Arp + A0\p) + I ( < i > A * # - ^ A ^ 
*/ B 

— \p A *dcj> — 50 A *iA). 

The volume integral and two terms of the surface integral vanish, as before. 
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T H E O R E M V. There exists a solution of the Neumann problem for A<t> + A<f> = 0, 
t*d(t> = t*d\l/, t*d*<j) = t*d*\f/ if and only if 

(5.8) I (0 r A *d$ - ô$ A *0r) = 0 
«/ B 

for every solution 4>r of A4> + A<t> = 0, t*d<j) = 0, t*d*<l> = 0. 

The form of the general solution is obvious. 
We remark that the third, or mixed, boundary value problem of potential 

theory for the equation (1.3) may also be treated this way. The indirect method 
used here circumvents some of the characteristic difficulties of the corresponding 
proofs for the Laplace equation, such as the lack of a fundamental singularity 
in the large. 

6. The Laplace equation. The methods used in the foregoing work enable 
us to give a quite short proof of the following result on the existence of a funda­
mental singularity in the large for the tensor Laplace equation on M: 

THEOREM VI. There exists a fundamental singularity in the large on M for 
A</> = 0 if and only if the Dirichlet problem for A$ = 0 on M has at most one 
solution. 

We first show that, if the Dirichlet problem has at most one solution, the 
fundamental singularity exists. Let F be the double of M, and let us extend the 
differential equation to F in the form 

(6.1) A<£ + A<t> = 0, 

where A is, as before, a matrix or double /?-tensor such that A is Cœ in F, positive 
definite in F — M, and zero in M itself. For instance, the Kronecker tensor V 
multiplied by a suitable scalar factor provides such a tensor. Then we construct 
the Green's form of F for (6.1); from (3.11) we see that this Green's form will 
itself be a fundamental singularity in the large for (6.1), provided only that there 
exist no everywhere regular solutions of (6.1) in F, except zero. If such a regular 
solution did exist, it would have a zero Dirichlet integral over F. Since A is 
positive definite in F — M, the solution must be zero there, and by continuity 
it must be zero on B. Hence it is harmonic in M, and has zero boundary value; 
by hypothesis it must be identically zero. Thus the Green's form does provide 
the desired fundamental singularity. 

The converse part of the theorem may be established as follows. Assume that 
a fundamental singularity exists in M for the Laplace operator, then we may 
use it to solve the Poisson equation A<£ = /3 for arbitrary f3 G C3 in M. From 
Green's formulae (1.4) and (1.5) with A = 0, we see that the conditions 
A * = 0 in M, with ty = 0, t*<t> = 0 on B, imply that d<f> = 0, 50 = 0 in M. 
From Theorem IV we see that there exists a solution in M of the Laplace 
equation having arbitrary continuous boundary values. Suppose now that <j> is 
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a solution of A4> = 0 with t<t> = 0, t*<f> = 0. In view of the remarks just made, 
there exists a p-tensor \[/ with ATA = <t> in M, ty = 0, t*$ = 0 on B. Then 

N{<f>) = (*, A * ) 

= (^, A 0 ) + I [0 A *di£ - ty A *0 - ^ A *di£ + 50 A *iH = 0 

since all terms on the right vanish. Hence </> = 0, which shows that a solution 
of the Dirichlet problem for M is unique. This completes the proof. 
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