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Abstract

For any subfield K ⊆ C, not contained in an imaginary quadratic extension of Q, we construct
conjugate varieties whose algebras of K-rational (p, p)-classes are not isomorphic. This compares
to the Hodge conjecture which predicts isomorphisms when K is contained in an imaginary
quadratic extension of Q; additionally, it shows that the complex Hodge structure on the complex
cohomology algebra is not invariant under the Aut(C)-action on varieties. In our proofs, we
find simply connected conjugate varieties whose multilinear intersection forms on H2(−,R) are
not (weakly) isomorphic. Using these, we detect nonhomeomorphic conjugate varieties for any
fundamental group and in any birational equivalence class of dimension ≥10.
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1. Introduction

For a smooth complex projective variety X and an automorphism σ of C, the
conjugate variety Xσ is defined via the fiber product diagram

Xσ

��

// X

��
Spec(C) σ∗ // Spec(C).

To put it another way, Xσ is the smooth variety whose defining equations in
some projective space are given by applying σ to the coefficients of the equations
of X. As abstract schemes – but in general not as schemes over Spec(C) – X and
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Xσ are isomorphic. This has several important consequences for the singular
cohomology of conjugate varieties. For instance, pullback of forms induces a
σ -linear isomorphism between the algebraic de Rham complexes of X and Xσ .
This induces an isomorphism of complex Hodge structures

H∗(X,C)⊗σ C ∼−→ H∗(Xσ ,C), (1)

where⊗σC means that the tensor product is taken where C maps to C via σ ; see
[4]. In particular, Hodge and Betti numbers of conjugate varieties coincide.

The singular cohomology with Q`-coefficients coincides on smooth complex
projective varieties with `-adic étale cohomology. Since étale cohomology does
not depend on the structure morphism to Spec(C), we obtain isomorphisms of
graded Q`-algebras and C-algebras, respectively:

H∗(X,Q`)
∼−→ H∗(Xσ ,Q`) and H∗(X,C) ∼−→ H∗(Xσ ,C), (2)

depending on an embedding Q` ⊆ C. Since the latter isomorphism is C-linear, it
is not induced by (1).

Only recently, Charles discovered that there are however aspects of singular
cohomology which are not invariant under conjugation:

THEOREM 1 (Charles [3]). There exist conjugate smooth complex projective
varieties with distinct real cohomology algebras.

It is the aim of this paper to further investigate to what extent cohomological
data are invariant under the Aut(C)-action on varieties.

1.1. Algebras of K-rational (p, p)-classes. For any subfield K ⊆ C, we denote
the space of K-rational (p, p)-classes on X by

Hp,p(X,K) := Hp,p(X) ∩ H2p(X,K);
the corresponding graded K-algebra is denoted by H∗,∗(X,K). The Hodge
conjecture predicts that H∗,∗(X,Q) is generated by algebraic cycles. Since each
algebraic cycle Z ⊆ X induces a canonical cycle Zσ ⊆ Xσ and vice versa, the
Hodge conjecture implies:

CONJECTURE 2. The graded Q-algebra H∗,∗(−,Q) is conjugation invariant.

Apart from the (few) cases where the Hodge conjecture is known, and
apart from Deligne’s result [5] which settles Conjecture 2 for abelian varieties,
the above conjecture remains wide open; see [4, 19].

The above consequence of the Hodge conjecture motivates the investigation
of potential conjugation invariance of H∗,∗(−,K) for an arbitrary field of
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coefficients K ⊆ C. If K = Q(iw) with w2 ∈ N is an imaginary quadratic
extension of Q, then the real part, as well as 1/w times the imaginary part, of
a Q(iw)-rational (p, p)-class is Q-rational. Hence,

H∗,∗(−,Q(iw))∼= H∗,∗(−,Q)⊗Q Q(iw).

It follows that the Hodge conjecture predicts the conjugation invariance of
H∗,∗(−,K), when K is contained in an imaginary quadratic extension of Q. In
this paper, we are able to settle all remaining cases:

THEOREM 3. Let K ⊆ C be a subfield, not contained in an imaginary quadratic
extension of Q. Then there exist conjugate smooth complex projective varieties
whose graded algebras of K-rational (p, p)-classes are not isomorphic.

By Theorem 3, there are conjugate smooth complex projective varieties X, Xσ

with

H∗,∗(X,C)� H∗,∗(Xσ ,C).

This shows the following:

COROLLARY 4. The complex Hodge structure on the complex cohomology
algebra of smooth complex projective varieties is not invariant under the
Aut(C)-action on varieties.

Corollary 4 is in contrast to (1) and (2) which show that the complex Hodge
structure in each degree, as well as the C-algebra structure of H∗(−,C), is
Aut(C)-invariant. The above corollary also shows that there is no embedding
Q` ↪→ C which guarantees that the isomorphism (2), induced by isomorphisms
between `-adic étale cohomologies, respects the complex Hodge structures.

Theorem 3 will follow from Theorems 5 and 6 below. Firstly, if K is different
from R and C, then Theorem 3 follows from:

THEOREM 5. Let K ⊆ C be a subfield, not contained in an imaginary quadratic
extension of Q. If K is different from R and C, then there exist for any p ≥ 1
and in any dimension ≥ p+ 1 conjugate smooth complex projective varieties X,
Xσ with

Hp,p(X,K)� Hp,p(Xσ ,K).

It is worth noting that Theorem 5 does not remain true if one restricts to smooth
complex projective varieties that can be defined over Q; see Remark 18.

Next, the case K = R in Theorem 3 follows from the case where K = C since

H∗,∗(X,R)⊗R C∼= H∗,∗(X,C)
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holds; so it remains to deal with K = C. As the isomorphism type of theC-vector
space Hp,p(−,C) coincides on conjugate varieties, we now really need to make
use of the algebra structure of H∗,∗(−,C). Remarkably, it turns out that it suffices
to use only a very little amount of the latter, namely the symmetric multilinear
intersection form

H1,1(X,C)⊗n −→ H2n(X,C),

where n = dim(X). We explain our result, Theorem 6 below, in the next
subsection.

1.2. Multilinear intersection forms on H1,1(−, K) and H2(−, K). We say
that two symmetric K-multilinear forms V⊗n → K and W⊗n → K on two
given K-vector spaces V and W are (weakly) isomorphic if there exists a
K-linear isomorphism V ∼= W which respects the given multilinear forms (up
to a multiplicative constant). If K is closed under taking nth roots, then weakly
isomorphic intersection forms are already isomorphic.

For a smooth complex projective variety X of dimension n, the cup product
defines symmetric multilinear forms

H1,1(X,K)⊗n −→ H2n(X,K)∼= K and H2(X,K)⊗n −→ H2n(X,K)∼= K,

where H2n(X,K)∼= K is the canonical isomorphism that is induced by integrating
de Rham classes over X. The weak isomorphism types of the above multilinear
forms are determined by the isomorphism types of the graded K-algebras
H∗,∗(X,K) and H2∗(X,K) respectively.

By the Lefschetz theorem, the Hodge conjecture is true for (1, 1)-classes and
so it is known that the isomorphism type of the intersection form on H1,1(−,Q)
is conjugation invariant. Additionally, it follows from (2) that the isomorphism
types of the intersection forms on H2(−,Q`) and H2(−,C) are invariant under
conjugation. Our result, which settles the case K = C in Theorem 3, contrasts
with these positive results:

THEOREM 6. There exist in any dimension ≥ 4 simply connected conjugate
smooth complex projective varieties whose R-multilinear intersection forms on
H2(−,R), as well as C-multilinear intersection forms on H1,1(−,C), are not
weakly isomorphic.

The examples that we will construct in the proof of Theorem 6 in Section 6 are
defined over cyclotomic number fields. For instance, one series of examples is
defined over Q[ζ12]; their complex (1, 1)-classes are spanned by Q[√3]-rational
ones. This yields examples X, Xσ such that the intersection forms on the
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equidimensional vector spaces H1,1(X,Q[√3]) and H1,1(Xσ ,Q[√3]) are not
weakly isomorphic; see Corollary 29.

It follows from Theorem 6 that the even-degree real cohomology algebra
H2∗(−,R), as well as the subalgebra SH2(−,R) which is generated by
H2(−,R), is not invariant under conjugation. Since Charles’s examples have
dimension ≥ 12 and fundamental group Z8, Theorem 6 generalizes Theorem 1
in several different directions. Another generalization of Theorem 1, namely
Theorem 7 below, is explained in the following subsection.

1.3. Applications to conjugate varieties with given fundamental group.
Conjugate varieties are homeomorphic in the Zariski topology but in general
not in the analytic one. Historically, this was first observed by Serre in
[13], who constructed conjugate varieties whose fundamental groups are
infinite but nonisomorphic. The first nonhomeomorphic conjugate varieties with
finite fundamental group were constructed by Abelson [1]. His construction
however only works for nonabelian finite groups which satisfy some strong
cohomological condition.

Other examples of conjugate varieties which are not homeomorphic (or,
weaker: not deformation equivalent) are constructed in [2, 3, 6, 10, 15]. Again,
the fundamental groups of these examples are of special shapes. In particular,
our conjugate varieties in Theorem 6 are the first known nonhomeomorphic
examples which are simply connected. This answers a question, posed more
than 15 years ago by Reed in [11]. Reed’s question was our initial motivation
for studying conjugate varieties and leads us to the more general problem of
determining those fundamental groups for which nonhomeomorphic conjugate
varieties exist. Since the fundamental group of smooth varieties is a birational
invariant, the problem of detecting nonhomeomorphic conjugate varieties in
a given birational equivalence class refines this problem. Building upon the
examples that we will construct in the proof of Theorem 6, we will be able to
prove the following:

THEOREM 7. Any birational equivalence class of complex projective varieties in
dimension ≥ 10 contains conjugate smooth complex projective varieties whose
even-degree real cohomology algebras are nonisomorphic.

Theorem 7 implies immediately:

COROLLARY 8. Let G be the fundamental group of a smooth complex
projective variety. Then there exist conjugate smooth complex projective varieties
with fundamental group G, but nonisomorphic even-degree real cohomology
algebras.

https://doi.org/10.1017/fms.2013.7 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2013.7


S. Schreieder 6

In Theorem 34 in Section 8 we show that the examples in Theorem 7 can be
chosen to have nonisotrivial deformations. This is in contrast to the observation
that the previously known nonhomeomorphic conjugate varieties tend to be
rather rigid; see Remark 35.

1.4. Constructions and methods of proof. Using products of special surfaces
with projective space, we will prove Theorem 5 in Section 3. The key idea is to
construct real curves in the moduli space of abelian surfaces and Kummer K3
surfaces, on which dim(H1,1(−,K)) is constant. Using elementary facts about
modular forms, we then prove that each of our curves contains a transcendental
point, that is a point whose coordinates are algebraically independent over Q.
The action of Aut(C) being transitive on the transcendental points of our moduli
spaces, Theorem 5 follows as soon as we have seen that our assumptions on K
ensure the existence of two real curves as above on which dim(Hp,p(−,K)) takes
different (constant) values.

For the proof of Theorem 6 in Section 6 we use the Charles–Voisin method
[3, 18]; see Section 4. We start with simply connected surfaces Y ⊆ PN with
special automorphisms, constructed in Section 5. Then we blow up five smooth
subvarieties of Y × Y × PN , for example the graphs of automorphisms of Y .
In order to keep the dimensions low, we then pass to a complete intersection
subvariety T of this blow-up. If dim(T) ≥ 4, then the cohomology of T encodes
the action of the automorphisms on H2(Y,R) and H1,1(Y,C). The latter can
change under the Aut(C)-action, which will be the key ingredient in our
proofs.

In order to prove Theorem 7 in Section 7, we start with a smooth
complex projective variety Z of dimension ≥ 10, representing a given birational
equivalence class. From our previous results, we will be able to pick a
four-dimensional variety T and an automorphism σ of C with Z ∼= Zσ such that
T and Tσ have nonisomorphic even-degree real cohomology algebras. Since T
is four-dimensional, we can embed it into the exceptional divisor of the blow-up
Ẑ of Z at a point and define W = BlT(Ẑ). Then, Wσ = BlTσ (Ẑσ ) is birational
to Zσ ∼= Z. Moreover, we will be able to arrange that b2(T) is larger than
b4(Z)+ 4. This will allow us to show that any isomorphism between H2∗(W,R)
and H2∗(Wσ ,R) induces an isomorphism between H2∗(T,R) and H2∗(Tσ ,R).
Theorem 7 will follow.

1.5. Conventions. Using Serre’s GAGA principle [14], we usually identify
a smooth complex projective variety X with its corresponding analytic space,
which is a Kähler manifold. For a codimension p subvariety V in X, we denote
the corresponding (p, p)-class in H∗(X,Z) by [V].
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2. Preliminaries

2.1. Cohomology of blow-ups. In this subsection we recall important
properties about the cohomology of blow-ups, which we will use (tacitly)
throughout Sections 4, 6 and 7. Let Y ⊆ X be Kähler manifolds and let X̃ =
BlY(X) be the blow-up of X in Y with exceptional divisor D⊆ X̃. We then obtain
a commutative diagram

D

p

��

j // X̃

π

��
Y

i // X,

where i denotes the inclusion of Y into X and j denotes the inclusion of the
exceptional divisor D into X̃. Letting r denote the codimension of Y in X, we
then have the following; see [17, p. 180].

LEMMA 9. There is an isomorphism of integral Hodge structures

Hk(X,Z)⊕
( r−2⊕

i=0

Hk−2i−2(Y,Z)
)
∼−→ Hk(X̃,Z),

where on Hk−2i−2(Y,Z), the natural Hodge structure is shifted by (i+ 1, i+ 1).
On Hk(X,Z), the above morphism is given by π∗. On Hk−2i−2(Y,Z) it is given by
j∗ ◦ hi ◦ p∗, where h denotes the cup product with c1(OD(1)) ∈ H2(D,Z) and j∗
is the Gysin morphism of the inclusion j : D ↪→ X̃.

By the above lemma, each cohomology class of X̃ is a sum of pullback classes
from X and push-forward classes from D. The ring structure on H∗(X̃,Z) is
therefore uncovered by the following lemma:

LEMMA 10. Let α, β ∈ H∗(D,Z) and η ∈ H∗(X,Z). Then,

π∗(η) ∪ j∗(α)= j∗(p∗(i∗η) ∪ α) and j∗(α) ∪ j∗(β)=−j∗(h ∪ α ∪ β),
where h= c1(OD(1)) ∈ H2(D,Z).

Proof. Using i ◦ p = π ◦ j, the first assertion follows immediately from the
projection formula. For the second assertion, one first proves

j∗(α) ∪ j∗(β)= j∗(1) ∪ j∗(α ∪ β) (3)

by realizing that the dual statement in homology holds. Next, note that j∗(1) =
c1(OX̃(D)). Moreover, the restriction of OX̃(D) to D is isomorphic to OD(−1).
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This implies −h= j∗(j∗(1)) and so the projection formula yields

−j∗(h ∪ α ∪ β)= j∗(1) ∪ j∗(α ∪ β).
This concludes the proof by (3). �

2.2. Eigenvalues of conjugate endomorphisms. Let X be a smooth complex
projective variety with endomorphism f and let σ be an automorphism of C. Via
base change, f induces an endomorphism f σ of Xσ . If an explicit embedding of X
into some projective space PN with homogeneous coordinates z = [z0 : . . . : zN]
is given, then f σ is determined by

f σ (σ (z)))= σ(f (z))
for all z ∈ X, where σ acts on each homogeneous coordinate simultaneously. On
cohomology, we obtain linear maps

f ∗ : Hp,q(X)−→ Hp,q(X) and (f σ )∗ : Hp,q(Xσ )−→ Hp,q(Xσ ).

These maps commute with the σ -linear isomorphism

Hp,q(X)
∼−→ Hp,q(Xσ )

induced by (1). This observation proves:

LEMMA 11. The set of eigenvalues of (f σ )∗ on Hp,q(Xσ ) is given by the
σ -conjugate of the set of eigenvalues of f ∗ on Hp,q(X).

2.3. The j-invariant of elliptic curves. Recall that the j-invariant of an elliptic
curve E with affine Weierstrass equation y2 = 4x3 − g2x− g3 equals

j(E)= g3
2

g3
2 − 27g2

3

.

Two elliptic curves are isomorphic if and only if their j-invariants coincide.
From the above formula, we deduce j(Eσ ) = σ(j(E)) for all σ ∈ Aut(C). For
an element τ in the upper half-plane H, we use the notation

Eτ := C/(Z+ τZ) and j(τ ) := j(Eτ ). (4)

Then, j induces an isomorphism between any fundamental domain of the action
of the modular group SL2(Z) onH and C. Moreover, j is holomorphic onH with
a cusp of order one at i · ∞.

2.4. Kummer K3 surfaces and theta constants. Let M ∈ M2(C) be a
symmetric matrix whose imaginary part is positive definite. Then,

AM := C2/(Z2 +MZ2)

1728 ·
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is a principal polarized abelian surface. The associated Kummer K3 surface
K3(AM) is the quotient of the blow-up of AM at its 16 2-torsion points by the
involution ·(−1). Equivalently, K3(AM) is the blow-up of AM/(−1) at its 16
singular points.

Let LM be a symmetric line bundle on AM which induces the principal
polarization on AM. The linear series |L⊗2

M | then defines a morphism AM −→
P3. This morphism induces an isomorphism of AM/(−1) with a degree-four
hypersurface

{FM = 0} ⊆ P3.

The coefficients of FM are given by homogeneous degree-12 expressions in the
coordinates of Riemann’s second-order theta constant Θ2(M) ∈ P3; see [8] and
also [12, Example 1.1]. This constant is defined as

Θ2(M) := [Θ2[0, 0](M) :Θ2[1, 0](M) :Θ2[0, 1](M) :Θ2[1, 1](M)]. (5)

Here, for δ ∈ {0, 1}2, the complex number Θ2[δ](M) denotes the Fourier series

Θ2[δ](M) :=
∑
n∈Z2

e2π i·QM(n+δ/2), (6)

where QM(z) is the quadratic form ztMz, associated with M.
The above discussion allows us to calculate conjugates of K3(AM) explicitly.

LEMMA 12. If σ(Θ2(M))=Θ2(M′) holds for some automorphism σ ∈ Aut(C),
then

K3(AM)
σ ∼= K3(AM′).

Proof. As mentioned above, the coefficients of FM and FM′ are polynomial
expressions in the coordinates of Θ2(M) and Θ2(M′) respectively. The action
of σ therefore maps the polynomial FM to FM′ and hence {FM = 0} to {FM′ = 0}.
Moreover, this action maps the 16 singular points of {FM = 0} to the 16 singular
points of {FM′ = 0}. The lemma follows from the above description of K3(AM)

and K3(AM′) as smooth models of {FM = 0} and {FM′ = 0} respectively. �

REMARK 13. The linear series |L⊗3
M | defines an embedding of AM into P8. It is in

principle possible to use this embedding in order to calculate conjugates AσM of
AM. In the preceding section we only presented the analogous (easier) calculation
for the associated Kummer K3 surface which will suffice for our purposes.
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3. Proof of Theorem 5

In this section, we prove Theorem 5 from the introduction. For this purpose,
let us fix a subfield K ⊆ C, different from R and C, which is not contained in
an imaginary quadratic extension of Q. We then need to construct for any p ≥ 1
and in any dimension n ≥ p + 1 conjugate smooth complex projective varieties
X, Xσ with Hp,p(X,K)� Hp,p(Xσ ,K). After taking products with Pn−2, it clearly
suffices to settle the case p= 1 and n= 2.

We denote by KR := K ∩R the real subfield of K. The proof of Theorem 5 for
p= 1 and n= 2 is now divided into four different cases. Cases 1 and 2 deal with
KR 6=Q; in Cases 3 and 4 we settle KR =Q.

In Cases 1–3 we will consider for τ ∈ H the elliptic curve Eτ with associated
j-invariant j(τ ) from (4), and use the following:

LEMMA 14. Let L⊂ C be a subfield. Then we have, for any a, b ∈ R>0,

dim(H1,1(Eia × Eib,L))=


2 if a/b 6∈ L and a · b 6∈ L,

3 if a/b ∈ L and a · b 6∈ L,

or if a/b 6∈ L and a · b ∈ L,

4 if a/b ∈ L and a · b ∈ L.

Proof. For j = 1, 2, we denote the holomorphic coordinate on the jth factor of
Eia × Eib by zj = xj + iyj. Then there are basis elements

α1, β1 ∈ H1(Eia,Z) and α2, β2 ∈ H1(Eib,Z)

such that

dz1 = α1 + ia · β1 ∈ H1,0(Eia) and dz2 = α2 + ib · β2 ∈ H1,0(Eib).

We deduce that the following four (1, 1)-classes form a basis of H1,1(Eia × Eib):

α1 ∪ β1, α2 ∪ β2, α1 ∪ α2 + ab · β1 ∪ β2 and α1 ∪ β2 + (a/b) · α2 ∪ β1.

The lemma follows. �

Case 1. KR is uncountable.
The restriction of the j-invariant to i ·R≥1 is injective. Since KR is uncountable,

it follows that there is some λ≥ 1 in KR such that j(iλ) is transcendental.
By the assumptions, KR is different from R. The additive action of KR on R

has therefore more than one orbit and so R≥1 \ KR is uncountable. As above, it
follows that there is some µ ∈ R≥1 \KR such that j(iµ) is transcendental. Hence,
there is some σ ∈ Aut(C) with σ(j(iλ)) = j(iµ). Since j(i) = 1, it follows from
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the discussion in Section 2.3 that

X := Eiλ × Ei with Xσ ∼= Eiµ × Ei.

Since λ ∈ K and µ 6∈ K, it follows from Lemma 14 that H1,1(X,K) and
H1,1(Xσ ,K) are not equidimensional. This concludes Case 1.

Case 2. KR is countable and KR 6=Q.
Here we will need the following lemma.

LEMMA 15. Let λ ∈ R>0 be irrational, and let U ⊆ R>0 be an uncountable
subset. Then there is some µ ∈ U such that j(µ) and j(λµ) are algebraically
independent over Q.

Proof. For a contradiction, suppose that j(µ) and j(λµ) are algebraically
dependent over Q for all µ ∈ U. Since the polynomial ring in two variables over
Q is countable, whereas U is uncountable, we may assume that j(µ) and j(λµ)
satisfy the same polynomial relation for all µ ∈ U. Any uncountable subset of R
contains an accumulation point. Hence, the identity theorem yields a polynomial
relation between the holomorphic functions j(τ ) and j(λτ) in the variable τ ∈H.
That is,

n∑
l=0

cl(j(τ )) · j(λτ)l = 0,

where cl(j(τ )) is a polynomial in j(τ ) which is nontrivial for l = n. We may
assume that n is the minimal integer such that a polynomial relation as above
exists. The modular form j(τ ) does not satisfy any nontrivial polynomial relation
since it has a cusp of order one at i∞. Thus, n ≥ 1. For k ∈ Z, we have
j(τ )= j(τ + k) and so the above identity yields

n∑
l=0

cl(j(τ )) · (j(λτ)l − j(λτ + λk)l)= 0,

for all k ∈ Z. Since λ is irrational, λτ and λτ + λk do not lie in the same SL2(Z)
orbit and so j(λτ)− j(λτ + λk) is nonzero for all k ∈ Z. Thus,

n∑
l=1

cl(j(τ )) ·
l−1∑
h=0

j(λτ)hj(λτ + λk)l−1−h = 0.

If we now choose a sequence of integers (km)m≥1 such that λkm tends to zero
modulo Z, then the above identity tends to the identity

n∑
l=1

cl(j(τ )) · l · j(λτ)l−1 = 0.

This contradicts the minimality of n. Lemma 15 follows. �
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Since KR is countable, it follows that, for any t > 0,

Ut := {µ ∈ R≥1 | tµ2 6∈ K}
is uncountable. By the assumptions in Case 2, KR contains a positive irrational
number λ. Additionally, we pick a positive irrational number λ′ 6∈ K.

Then, by Lemma 15, there are elements µ ∈ Uλ and µ′ ∈ Uλ′ such that j(iµ)
and j(iλµ), as well as j(iµ′) and j(iλ′µ′), are algebraically independent over Q.
It follows that for some σ ∈ Aut(C), we have

X := Eiλµ × Eiµ with Xσ ∼= Eiλ′µ′ × Eiµ′ .

Since λ ∈ K and λµ2, λ′, λ′µ′2 6∈ K, it follows from Lemma 14 that H1,1(X,K)
and H1,1(Xσ ,K) are not equidimensional. This concludes Case 2.

Case 3. K is uncountable and KR =Q.
Since K is uncountable, there are elements τ, τ ′ ∈ H with τ, τ ′ ∈ K such that

j(τ ) and j(τ ′) are algebraically independent over Q. Also, there are positive
numbers µ,µ′ ∈ R>0 with µµ′, µ/µ′ 6∈ KR = Q such that j(iµ) and j(iµ′) are
algebraically independent over Q. For some σ ∈ Aut(C), we then have

X := Eτ × Eτ ′ with Xσ ∼= Eiµ × Eiµ′ .

Since τ, τ ′ ∈ K, the space H1,1(X,K) is at least three-dimensional. Conversely,
H1,1(Xσ ,K) is two-dimensional by Lemma 14. This concludes Case 3.

Case 4. K is countable and KR =Q.
This case is slightly more difficult; instead of using products of elliptic curves,

we will use Kummer K3 surfaces and their theta constants; see Section 2.4. We
begin with the definition of certain families of such surfaces. For t = t1+ it2 ∈ C
with t1 6= 0 and µ ∈ R>0, we consider the symmetric matrix

M(µ, t) := i
µ

2t1
·
(

2t1 1

1 |t|2
)
.

For a suitable choice of t ∈ C, the matrix −iM(µ, t) is positive definite for all
µ > 0 and so the abelian surface AM(µ,t), as well as its associated Kummer K3
surface, exists. For such t, we have the following lemma, where Â denotes the
dual of the abelian surface A.

LEMMA 16. Let L⊆ C be a subfield, let µ > 0 and let t = t1+ it2 ∈ C such that
−i ·M(µ, t) is positive definite. If t1, |t|2 and det(M(µ, t)) do not lie in L, then

dim(H1,1(K3(ÂM(µ,t)),L))=
{

17 if (|t|2 + 2t1 · L) ∩ L= ∅,
18 otherwise.
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Proof. Fix t ∈ C and µ > 0 such that−i ·M(µ, t) is positive definite and assume
that t1, |t|2 and det(M(µ, t)) do not lie in L. The rational degree-two Hodge
structure of a Kummer surface K3(A) is the direct sum of 16 divisor classes
with the degree-two Hodge structure of A. It therefore remains to

dimension of H1,1(ÂM(µ,t),L).
We denote the holomorphic coordinates on C2 by z = (z1, z2), where zj =

xj + iyj. The cohomology of ÂM(µ,t) is given by the homology of AM(µ,t) and so

α1 = dx1, α2 = dx2, α3 = µ/(2t1) · (2t1dy1 + dy2),

α4 = µ/(2t1) · (dy1 + |t|2dy2)

form a basis of H1(ÂM(µ,t),Q). Next, H1,1(ÂM(µ,t)) has basis dz1 ∪ dz1, dz1 ∪ dz2,
dz2 ∪ dz1 and dz2 ∪ dz2. This basis can be expressed in terms of αj ∪ αk, where
1≤ j< k ≤ 4. Applying the Gauss algorithm then yields the following new basis
of H1,1(ÂM(µ,t)):

Ω1 := α2 ∪ α4 + α1 ∪ α3,

Ω2 := α1 ∪ α4 − |t|2 · α1 ∪ α3,

Ω3 := α2 ∪ α3 − 2t1 · α1 ∪ α3,

Ω4 := α3 ∪ α4 − det(M(µ, t)) · α1 ∪ α2.

From this description it follows that if a linear combination
∑
λiΩi is L-rational,

then all λi lie in L. Moreover, since det(M(µ, t)) 6∈ L, the coefficient λ4 needs to
vanish.

Since t1, |t|2 6∈ L, neither Ω2 nor Ω3 is L-rational. We conclude that
H1,1(ÂM(µ,t),L) is two-dimensional if |t|2 + 2t1 · l1 = l2 has a solution l1, l2 ∈ L,
and it is one-dimensional otherwise. The lemma follows. �

In the following we will stick to parameters t that are contained in a sufficiently
small neighborhood of 1/3 + 3i. For such t, the matrix −i · M(µ, t) is positive
definite. The reason for the explicit choice of the base point 1/3 + 3i is that it
slightly simplifies the proof of the subsequent lemma. In order to state it, we
call a point in P3 transcendental if its coordinates in some standard affine chart
are algebraically independent over Q. Equivalently, z ∈ P3 is transcendental if
and only if P(z) 6= 0 for all nontrivial homogeneous polynomials P with rational
coefficients. That is, the transcendental points of P3 are those which lie in the
complement of the (countable) union of hypersurfaces which can be defined over
Q. It is important to note that Aut(C) acts transitively on this set of points.

LEMMA 17. There is a neighborhood V ⊆ C of 1/3 + 3i, such that for all
t = t1 + it2 ∈ V with 1, t1 and |t|2 linearly independent over Q, the following
holds. Any uncountable subset U ⊆ R>0 contains a point µ ∈ U with:

investigate the
rational
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(1) the matrix −i ·M(µ, t) is positive definite;

(2) the determinant of M(µ, t) is not rational;

(3) the theta constant Θ2(M(µ, t)) is a transcendental point of P3.

Proof. We define the quadratic form

Q(z) := 2t1z2
1 + 2z1z2 + |t|2z2

2,

where z = (z1, z2) ∈ R2. For δ ∈ {0, 1}2, the homogeneous coordinate
Θ2[δ](M(µ, t)) of the theta constant Θ2(M(µ, t)) is then given by

Θ2[δ](M(µ, t))=
∑
n∈Z2

exp
(
−πµ

t1
· Q(n+ δ/2)

)
; (7)

see (6). At the point t = 1/3+ 3i, we have

Q(z)|t=1/3+3i = 2
3
· (z1 + 3z2/2)2 + 137

18
· z2

2.

This shows that there is a neighborhood V of 1/3 + 3i such that −i ·M(µ, t) is
positive definite for all t ∈ V and all µ > 0. For such t, the function in (7) is a
modular form in the variable i · µ ∈H; see [7].

Let us now pick some t ∈ V with 1, t1 and |t|2 linearly independent over Q.
Then −i ·M(µ, t) is positive definite and so det(M(µ, t)) is a nonzero multiple
of µ2. After possibly removing countably many points of U, we may therefore
assume

det(M(µ, t)) 6∈Q
for all µ ∈ U.

For a contradiction, we now assume that there is no µ ∈ U such that
Θ2(M(µ, t)) is a transcendental point of P3. Since the polynomial ring in
four variables over Q is countable, we may then assume that there is one
homogeneous polynomial P with P(Θ2(M(µ, t))) = 0 for all µ ∈ U. Since
U ⊆ R>0 is uncountable, it contains an accumulation point. Then the identity
theorem yields

P(Θ2(M(−iτ, t)))= 0, (8)

where the left hand side is considered as a holomorphic function in τ ∈H.
For τ → i∞, the modular formΘ2[δ](M(−iτ, t)) from (7) is dominated by the

summand where the exponent Q(n) with n ∈ N2 + δ is minimal. After possibly
shrinking V , these minima nδ ∈ N2 + δ of Q(n) are given as follows:

n0,0 = (0, 0), n1,0 =±(1/2, 0), n0,1 =±(−1, 1/2)
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and

n1,1 =±(−1/2, 1/2).

Noting that Q(n0,0) vanishes, we conclude that for τ → i∞, the monomial

Θ2[0, 0](M(−iτ, t))h ·Θ2[1, 0](M(−iτ, t))j

·Θ2[0, 1](M(−iτ, t))k ·Θ2[1, 1](M(−iτ, t))l

is dominated by the summand

2 · exp
(
π iτ

t1
· (j · Q(n1,0)+ k · Q(n0,1)+ l · Q(n1,1))

)
.

The left hand side in (8) is then dominated by those summands for which

j · Q(n1,0)+ k · Q(n0,1)+ l · Q(n1,1)

is minimal. We will therefore arrive at a contradiction as soon as we have seen
that this summand is unique. That is, it suffices to see that Q(n1,0), Q(n0,1) and
Q(n1,1) are linearly independent over Q. In order to see the latter, we calculate

Q(n1,0)= t1/2, Q(n0,1)= |t|2/4+ 2t1 − 1

and

Q(n1,1)= |t|2/4+ t1/2− 1/2.

The claim is now obvious since 1, t1 and |t|2 are linearly independent over Q by
the assumptions. This finishes the proof of the lemma. �

We are now able to conclude Case 4. Let V be the neighborhood of 1/3 + 3i
from Lemma 17. Since KR = Q and since K is not contained in any imaginary
quadratic extension of Q, we may pick some t = t1 + it2 ∈ K ∩ V which is not
quadratic over Q. Then t1 is not rational since otherwise (t − t1)

2 would lie
in KR = Q, which yielded a quadratic relation for t over Q. It follows that 1,
t + t = 2t1 and t · t = |t|2 are linearly independent over Q, as otherwise t would
lie in K and so t + t = 2t1 ∈ KR =Q would have rational. Hence,

of Lemma 17 are satisfied and so there is some µ ∈ R>0 such that
(µ, t) satisfies (1)–(3) in Lemma 17.

Next, we consider t′ = t′1 + 3i ∈ V with 1, t′1 and t′21 linearly independent over
Q. Since V is a neighborhood of 1/3+3i, there are uncountably many values for
t′1 such that t′ has the above property. We claim that we can choose t′1 within this
uncountable set such that additionally

2t′1λ1 = λ2 + |t′|2 (9)

has no solution λ1, λ2 ∈ K. In order to prove this, suppose that t′1 is a solution
of (9) for some λ1, λ2 ∈ K. Since |t′|2 is a real number, it follows that t′1 lies

the pair
assumptions

been the
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in the set of quotients x/y where x and y are imaginary parts of some elements
of K. Since K is countable, so is the latter set. Our claim follows since we can
choose t′1 within an uncountable set. That is, we have just shown that there is a
point t′ = t′1 + 3i ∈ V with 1, t′1 and |t′|2 linearly independent over Q such that
additionally, (9) has no solution in K. Then again the assumptions of Lemma 17
are met and so there is some µ′ ∈ R>0 such that the pair (µ′, t′) satisfies (1)–(3)
in Lemma 17.

Since (µ, t) and (µ′, t′) satisfy Lemma 17, Θ2(M(µ, t)) and Θ2(M(µ′, t′)) are
transcendental points of P3. Because Aut(C) acts transitively on such points it
follows that there is some automorphism σ ∈ Aut(C) with

σ(Θ2(M(µ, t)))=Θ2(M(µ
′, t′)).

As the functor A 7→ Â on the category of abelian varieties commutes with the
Aut(C)-action, it therefore follows from Lemma 12 that

X := K3(ÂM(µ,t)) with Xσ ∼= K3(ÂM(µ′,t′)).

By our choices, t1, |t| and det(M(µ, t)) lie in R \ Q and the same holds for the
pair (µ′, t′). Since KR = Q, it follows that (µ, t), as well as (µ′, t′), satisfies the
assumptions of Lemma 16. Since (9) has no solution in K, whereas

2t1λ1 = λ2 + |t|2
has the solution λ1 = t and λ2 = t2 in K, it follows from Lemma 16 that
H1,1(X,K) and H1,1(Xσ ,K) are not equidimensional. This concludes Case 4 and
hence finishes the proof of Theorem 5.

REMARK 18. Theorem 5 does not remain true if one restricts to smooth complex
projective varieties which can be defined over Q. Indeed, for each smooth
complex projective variety X there is a finitely generated extension KX of Q
such that for all p ≥ 0 the group Hp,p(X,C) is generated by KX-rational classes.
As there are only countably many varieties over Q, it follows that there is an
extension K of Q which is generated by countably many elements such that
for each smooth complex projective variety X over Q and for each p ≥ 0, the
dimension of Hp,p(X,K) equals hp,p(X). The above claim follows, since hp,p(X)
is invariant under conjugation.

4. The Charles–Voisin construction

In this section we carry out a variant of a general construction method due to
Charles and Voisin [3, 18]. The proofs of Propositions 19 and 20 below will then
be the technical heart of the proof of Theorem 6 in Section 6.
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We start with a smooth complex projective surface Y with b1(Y) = 0 and
automorphisms f , f ′ ∈ Aut(Y). Then we pick an embedding

i : Y ↪→ PN

and assume that f ∗ and f ′∗ fix the pullback i∗h of the hyperplane class h ∈
H2(PN,Z).

For a general choice of points u, v, w and t of PN and y of Y , the following
smooth subvarieties of Y × Y × PN are disjoint:

Z1 := Y × y× u, Z2 := ΓidY × v, Z3 := Γf × w,

Z4 := Γf ′ × t, Z5 := y× Γi,
(10)

where Γ denotes the graph of a morphism. The blow-up

X := BlZ1∪···∪Z5(Y × Y × PN)

of Y × Y × PN along the union Z1 ∪ · · · ∪ Z5 is a smooth complex projective
variety. Since b1(Y) = 0 and dim(Y) = 2, it follows from the description of the
cohomology of blow-ups (see Section 2.1) that the cohomology algebra of X is
generated by degree-two classes.

Next, let σ be any automorphism of C. Then the automorphisms f and f ′ of
Y induce automorphisms f σ and f ′σ of Yσ . Since conjugation commutes with
blow-ups, we have

Xσ = BlZσ1 ∪···∪Zσ5
(Yσ × Yσ × PN),

where we identified PN with its conjugate PNσ , and where

Zσ1 = Yσ × yσ × uσ , Zσ2 = ΓidYσ
× vσ , Zσ3 = Γfσ × wσ ,

Zσ4 = Γf ′σ × tσ , Zσ5 = yσ × Γiσ .

Here uσ , vσ , wσ and tσ are points on PN , yσ ∈ Yσ , and iσ : Yσ ↪→ PN is the
inclusion induced by i. The pullback of the hyperplane class via iσ is denoted by
iσ ∗hσ .

In the next proposition, we will assume that the surface Y has the following
properties:

(A1) There exist elements α, β ∈ H1,1(Y,Q) with α2 = β2 = 0 and α ∪ β 6= 0.

(A2) The sets of eigenvalues of f ∗ and f ′∗ on H2(Y,C) are distinct.

Then, for a smooth complete intersection subvariety

T ⊆ X,

with dim(T)≥ 4, the following holds:
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PROPOSITION 19. Suppose that (A1) and (A2) hold, and let K ⊆ C be a
subfield. Then any weak isomorphism between the K-multilinear intersection
forms on H2(T,K) and H2(Tσ ,K) induces an isomorphism of graded
K-algebras

ψ : H∗(Y,K)
∼−→ H∗(Yσ ,K),

with the following two properties:

(P1) in degree two, ψ maps i∗h to a multiple of iσ ∗hσ ;

(P2) the isomorphism ψ commutes with the induced actions of f and f ′, that is

ψ ◦ f ∗ = (f σ )∗ ◦ ψ and ψ ◦ (f ′)∗ = (f ′σ )∗ ◦ ψ.

Proposition 19 has an analogue for isomorphisms between intersection forms
on H1,1(−,K). In order to state it, we need the following variant of (A2):

(A3) the sets of eigenvalues of f ∗ and f ′∗ on H1,1(Y,C) are distinct and
Aut(C)-invariant.

Note that f ∗ and f ′∗ are defined on integral cohomology and so their sets
of eigenvalues on H2(Y,C) – but not on H1,1(Y,C) – are automatically
Aut(C)-invariant. For this reason, we did not have to impose this additional
condition in (A2).

PROPOSITION 20. Suppose that (A1) and (A3) hold, and let K ⊆ C be a
subfield which is stable under complex conjugation. Then any weak isomorphism
between the K-multilinear intersection forms on H1,1(T,K) and H1,1(Tσ ,K)
induces an isomorphism of graded K-algebras

ψ : H∗,∗(Y,K)
∼−→ H∗,∗(Yσ ,K),

which satisfies (P1) and (P2) of Proposition 19.

REMARK 21. The assumption (A1) in the above propositions is only needed if
dim(T)= 4.

In the following two subsections we prove Propositions 19 and 20 respectively;
important steps will be similar to the Charles–Voisin arguments in [3, 18].

4.1. Proof of Proposition 19. Suppose that there is a K-linear isomorphism

φ′ : H2(T,K)
∼−→ H2(Tσ ,K), (11)

which induces a weak isomorphism between the respective multilinear
intersection forms.
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By the Lefschetz hyperplane theorem, the natural maps

Hk(X,K)−→ Hk(T,K) and Hk(Xσ ,K)−→ Hk(Tσ ,K) (12)

are isomorphisms for k < n and injective for k = n, where n := dim(T). Using
this we will identify classes on X and Xσ of degree ≤ n with classes on T and Tσ

respectively.
We denote by SH2(−,K) the subalgebra of H∗(−,K) that is generated

by H2(−,K). Its quotient by all elements of degree ≥ r + 1 is denoted
by SH2(−,K)≤r. Since dim(T) ≥ 4, we obtain from (12) the canonical
isomorphisms

SH2(X,K)≤4 ∼−→ SH2(T,K)≤4 and SH2(Xσ ,K)≤4 ∼−→ SH2(Tσ ,K)≤4.

CLAIM 1. The isomorphism φ′ from (11) induces a unique isomorphism

φ : SH2(X,K)≤4 ∼−→ SH2(Xσ ,K)≤4

of graded K-algebras.

Proof. In degree two, we define φ to coincide with φ′ from (11). Since the
respective algebras are generated in degree two, this determines φ uniquely as
a homomorphism of K-algebras; we have to check that it is well-defined though.
In order to see the latter, let α1, . . . , αr and β1, . . . , βr be elements in H2(T,K).
Then we have to prove∑

i

αi ∪ βi = 0 ⇒
∑

i

φ′(αi) ∪ φ′(βi)= 0.

Let us assume that
∑

i αi∪βi = 0. Since φ′ induces a weak isomorphism between
the corresponding intersection forms, this implies∑

i

φ′(αi) ∪ φ′(βi) ∪ η = 0 in H2n(Tσ ,K),

for all η ∈ SH2(Tσ ,K)2n−4. The class
∑

i φ
′(αi) ∪ φ′(βi) ∪ η lies in SH2(Tσ ,K)

and hence it is a pullback of a class on X. Therefore, the above condition is
equivalent to saying that∑

i

φ′(αi) ∪ φ′(βi) ∪ η ∪ [Tσ ] = 0 in H2N+8(Xσ ,K),

for all η ∈ SH2(Xσ ,K)2n−4. Since the cohomology of X is generated by
degree-two classes, Poincaré duality shows∑

i

φ′(αi) ∪ φ′(βi) ∪ [Tσ ] = 0 in H2N−2n+12(Xσ ,K).
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Since [Tσ ] is the (N + 4− n)th power of some hyperplane class on Xσ , the hard
Lefschetz theorem implies∑

i

φ′(αi) ∪ φ′(βi)= 0 in H4(Xσ ,K),

as we wanted. Similarly, one proves that φ′−1 induces a well-defined inverse of
φ. This finishes the proof of the claim. �

From now on, we will work with the isomorphism φ of K-algebras from
Claim 1 instead of the weak isomorphism of intersection forms φ′ from (11).

In order to describe the degree-two cohomology of X, we denote by Di ⊆ X the
exceptional divisor above Zi and we denote by h the pullback of the hyperplane
class of PN to X. Then, by Lemma 9:

H2(X,K)=
( 5⊕

i=1

[Di] · K
)
⊕ H2(Y × Y,K)⊕ h · K. (13)

Similarly, we denote by Dσ
i ⊆ Xσ the conjugate of Di by σ and we denote by hσ

the pullback of the hyperplane class of PN to Xσ . This yields

H2(Xσ ,K)=
( 5⊕

i=1

[Dσ
i ] · K

)
⊕ H2(Yσ × Yσ ,K)⊕ hσ · K. (14)

Next, we pick a base point 0 ∈ Y and consider the projections

Y × Y −→ Y × 0 and Y × Y −→ 0× Y.

Using pullbacks, this allows us to view H∗(Y × 0,K) and H∗(0 × Y,K) as
subspaces of H∗(Y × Y,K). By assumption, the first Betti number of Y vanishes
and so we have a canonical identity

H2(Y × Y,K)= H2(Y × 0,K)⊕ H2(0× Y,K), (15)

of subspaces of H2(X,K). A similar statement holds on Xσ .

CLAIM 2. The isomorphism φ respects the decompositions in (13) and (14),
that is,

φ(H2(Y × Y,K)) = H2(Yσ × Yσ ,K), (16)

φ([Di] · K) = [Dσ
i ] · K for all i= 1, . . . , 5, (17)

φ(h · K) = hσ · K. (18)

Proof. In order to prove (16), we define S to be the linear subspace of H2(X,K)
which is spanned by all classes whose square is zero. By the ring structure of
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the cohomology of blow-ups (see Lemma 10), S is contained in H2(Y × Y,K).
Furthermore, let S2 be the subspace of H4(X,K) which is given by products of
elements in S. By assumption (A1), this subspace contains H4(Y × 0,K) and
H4(0× Y,K). By the ring structure of the cohomology of X, it then follows that
H2(Y × Y,K) in (13) is equal to the linear subspace of H2(X,K) that is spanned
by those classes whose square lies in S2.

By Lefschetz’s theorem on (1, 1)-classes, the cohomology of Yσ also satisfies
(A1). Hence, H2(Yσ × Yσ ,K) inside SH2(Xσ ,K)≤4 has an intrinsic description
similar to the one that we have found for H2(Y×Y,K) inside SH2(X,K)≤4. This
proves (16).

In order to prove (17) and (18), we need the following lemma, also used in [3,
18]. In order to state it, we define for i= 1, . . . , 5 the following kernels:

Fi := ker(∪[Di] : H2(Y × Y,K)−→ H4(X,K)). (19)

Using Lemmas 9 and 10, we obtain the following lemma, which is the analogue
of Charles’s Lemma 7 in [3].

LEMMA 22. Using the identification (15), the kernels Fi ⊆ H2(Y × Y,K) are
given as follows:

F1 = {(0, β) : β ∈ H2(Y,K)}, (20)

F2 = {(β,−β) : β ∈ H2(Y,K)}, (21)

F3 = {(f ∗β,−β) : β ∈ H2(Y,K)}, (22)

F4 = {(f ′∗β,−β) : β ∈ H2(Y,K)}, (23)

F5 = {(β, 0) : β ∈ H2(Y,K)}. (24)

In addition to the above lemma, we have as in [3] the following:

LEMMA 23. Let α ∈ H2(Y × Y,K) be a nonzero class. Then the images of

∪α,∪h,∪[D1], . . . ,∪[D5] : H2(Y × Y,K)−→ H4(X,K)

are in direct sum, ∪h is injective and

dim(ker∪α) < b2(Y). (25)

Proof. Apart from (25), the assertions in Lemma 23 are immediate consequences
of the ring structure of the cohomology of blow-ups; see Lemmas 9 and 10.

In order to proof (25), we write

α = α1 + α2

according to the decomposition (15). Without loss of generality, we assume that
α1 6= 0. Then, ∪α restricted to H2(0× Y,K) is injective. Moreover, by Poincaré
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duality there is some β1 ∈ H2(Y × 0,K) with

β1 ∪ α1 6= 0.

Then, β1 ∪ α is nontrivial and does not lie in the image of ∪α restricted to
H2(0× Y,K). Thus, dim(im(∪α)) > b2(Y) and (25) follows. �

Of course, the obvious analogues of Lemmas 22 and 23 hold on Xσ .
Note the following elementary fact from linear algebra. If a finite number of

linear maps l1, . . . , lr between two vector spaces have images in direct sum, then
the kernel of a linear combination

∑
λili is given by the intersection of all ker(li)

with λi 6= 0.
By Lemma 22, each Fi has dimension b2(Y) and hence the above linear algebra

fact together with Lemma 23 shows that there is a permutation ρ ∈ Sym(5) with

φ([Di] · K)= [Dσ
ρ(i)] · K.

We are now able to prove (18). For some real numbers a0, . . . , a5 and for some
class βσ ∈ H2(Yσ × Yσ ,K) we have

φ(h)= a0hσ +
5∑

j=1

aj[Dσ
j ] + βσ .

For i= 1, . . . , 4, the cup product h ∪ [Di] vanishes and hence

a0hσ ∪ [Dσ
ρ(i)] +

5∑
j=1

aj[Dσ
j ] ∪ [Dσ

ρ(i)] + βσ ∪ [Dσ
ρ(i)] = 0.

Since the cup product [Dσ
j ] ∪ [Dσ

k ] vanishes for j 6= k, we deduce

a0hσ ∪ [Dσ
ρ(i)] + aρ(i)[Dσ

ρ(i)]2 + βσ ∪ [Dσ
ρ(i)] = 0

for all i = 1, . . . , 4. From Lemma 9, it follows that aρ(i) vanishes for all i =
1, . . . , 4.

If i is such that ρ(i) ∈ {1, . . . , 4}, then

hσ ∪ [Dσ
ρ(i)] = 0 and so βσ ∪ [Dσ

ρ(i)] = 0.

By Lemma 22, the intersection
⋂

j6=k Fj is zero for each k = 1, . . . , 5. Since the
same holds on Xσ , we deduce that βσ vanishes. Hence,

φ(h)= a0hσ + aρ(5)[Dσ
ρ(5)].

In H4(X,K) we have the identity

h ∪ [D5] = (i∗h) ∪ [D5] ∈ H2(Y × Y) ∪ [D5],
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and similarly on Xσ . Since (16) is already proven, we deduce

a0hσ ∪ [Dσ
ρ(5)] + aρ(5)[Dσ

ρ(5)]2 ∈ H2(Yσ × Yσ ) ∪ [Dσ
ρ(5)].

This implies aρ(5) = 0. Since φ is an isomorphism, a0 6= 0 follows, which proves
(18).

It remains to prove (17). That is, we need to see that ρ ∈ Sym(5) is the identity.
This will be achieved by an argument similar to that in [3, Lemma 11].

Note that h∪ [Di], as well as hσ ∪ [Dσ
i ], vanishes for i 6= 5 and is nontrivial for

i= 5. Since (18) is already proven, ρ(5)= 5 follows.
By the assumption on Y , f ∗ and f ′∗ fix i∗h. Therefore, the intersection F2 ∩

F3 ∩ F4 is nontrivial. Conversely, F1 ∩ Fi = 0 for all i= 2, 3, 4. Since analogue
statements hold on Xσ , we obtain ρ(1)= 1.

Next, we use that Fi ⊕ Fj = H2(Y × Y,K) for all i= 1, 5 and j= 2, 3, 4. This
allows us to define for 2 ≤ j, k ≤ 4 endomorphisms gj,k of F1 via the following
composition:

gj,k : F1 ↪→ F5 ⊕ Fj
pr1−→F5 ↪→ F1 ⊕ Fk

pr1−→F1.

There is a canonical identification between F1 and H2(Y,K). Using Lemma 22,
a straightforward calculation then shows

g3,2 = f ∗, g4,2 = f ′∗, g4,3 = (f ′ ◦ f−1)∗,
gj,j = id and gj,k = g−1

k,j ,
(26)

for all 2≤ j, k ≤ 4.
We define, in analogy to (19),

Fσ
i := ker(∪[Dσ

i ] : H2(Yσ × Yσ ,K)−→ H4(Xσ ,K)).

These subspaces are described by the corresponding statements of Lemma 22.
Thus, the above construction yields for any 2 ≤ j, k ≤ 4 endomorphisms
gσj,k of Fσ

1 . Using the canonical identification of Fσ
1 with H2(Yσ ,K), these

endomorphisms are given by

gσ3,2 = (f σ )∗, gσ4,2 = (f ′σ )∗, gσ4,3 = (f ′ ◦ f−1)σ∗,
gσj,j = id and gσj,k = (gσk,j)−1,

(27)

for all 2≤ j, k ≤ 4.
Since φ maps [D1] to a multiple of [Dσ

1 ], it follows that the restriction of φ to
F1 induces a K-linear isomorphism

ψ : F1 = H2(Y,K)
∼−→ H2(Yσ ,K)= Fσ

1 . (28)

https://doi.org/10.1017/fms.2013.7 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2013.7


S. Schreieder 24

Since φ maps Fi isomorphically to Fσ
ρ(i), the above isomorphism satisfies

ψ ◦ gj,k = gσρ(j),ρ(k) ◦ ψ (29)

for all 2≤ j, k ≤ 4.
We now denote the eigenvalues of gj,k by Eig(gj,k), and similarly for gσj,k. Since

f and f ′ are automorphisms, it follows from (A2) and (26) that Eig(g3,2) and
Eig(g4,2) are distinct Aut(C)-invariant sets of roots of unity. By Lemma 11 and
since gj,k = g−1

k,j , we deduce

Eig(g3,2)= Eig(g2,3)= Eig(gσ3,2)= Eig(gσ2,3),

Eig(g4,2)= Eig(g2,4)= Eig(gσ4,2)= Eig(gσ2,4).

Since g4,3 = g2,3 ◦ g4,2 and g3,4 = g2,4 ◦ g3,2, it also follows that each of the
sets Eig(g3,4), Eig(g4,3), Eig(gσ3,4) and Eig(gσ4,3) is distinct from Eig(g2,3) and
Eig(g4,2). Therefore, (29) implies that ρ respects the subsets {2, 3} and {2, 4}.
Hence, ρ = id, as we wanted. This finishes the proof of Claim 2. �

Since b1(Y) = 0 and dim(Y) = 2, the cohomology algebra H∗(0 × Y,K) is
a subalgebra of SH2(X,K)≤4. Restriction of φ therefore extends the K-linear
isomorphism ψ from (28) to an isomorphism

ψ : H∗(Y,K)
∼−→ H∗(Yσ ,K) (30)

of graded K-algebras which we denote with the same letter. Since ρ in the proof
of Claim 2 is the identity, it follows from (26), (27) and (29) that ψ satisfies (P2).

In order to prove (P1), we note that

ker(∪[D5] : F1 ⊕ h · K −→ H4(X,K))= (i∗h− h) · K,
where i∗h ∈ F1 = H2(0× Y,K). A similar statement holds on Xσ . Since φ maps
F1 to Fσ

1 , [D5] ·K to [Dσ
5 ] ·K and h ·K to hσ ·K, it follows that φ maps i∗h ·K to

iσ ∗hσ · K. This finishes the proof of Proposition 19.

4.2. Proof of Proposition 20. As in the proof of Proposition 19, we use (12)
in order to identify classes of degree ≤ n on T with classes on X. Further,
SH1,1(−,K) denotes the subalgebra of H∗(−,K) that is generated by H1,1(−,K);
its quotient by elements of degree ≥ r + 1 is denoted by SH1,1(−,K)≤r.

Let us now suppose that there is a K-linear isomorphism

φ′ : H1,1(T,K)
∼−→ H1,1(Tσ ,K), (31)

which induces a weak isomorphism between the respective intersection forms.
Then we have the following analogue of Claim 1 in the proof of Proposition 19:
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CLAIM 3. The isomorphism from (11) induces a unique isomorphism

φ : SH1,1(X,K)≤4 ∼−→ SH1,1(Xσ ,K)≤4

of graded K-algebras.

Proof. As in the proof of Claim 1, this claim reduces to showing the following:
suppose that we have K-rational (1, 1)-classes α1, . . . , αr and β1, . . . , βr on T
such that ∑

i

φ′(αi) ∪ φ′(βi) ∪ η ∪ [Tσ ] = 0 in H2N+8(Xσ ,K), (32)

for all η ∈ SH1,1(Xσ ,K)2n−4. Then,
∑

i φ
′(αi) ∪ φ′(βi) vanishes.

In order to prove the latter, let ω be the hyperplane class on Xσ with
[Tσ ] = ωN+4−n. We obtain with respect to this Kähler class a decomposition into
primitive pieces: ∑

i

φ′(αi) ∪ φ′(βi)= δ0 · ω2 + δ1 ∪ ω + δ2,

where δj ∈ Hj,j(X,C)pr. Since ω is an integral class, it follows that δj lies in
Hj,j(X,K)pr. The above identity then shows δ2 ∈ SH1,1(X,K).

At this point, we use the assumption in Proposition 20 which ensures that K is
stable under complex conjugation. Indeed, this assumption allows us to choose
for j= 0, 1, 2 the following K-rational classes:

ηj := δj · ωn−2−j ∈ SH1,1(Xσ ,K)2n−4.

For j = 0, 1, 2, we put η = ηj in (32). Then, the Hodge–Riemann bilinear
relations yield δj = 0 for j= 0, 1, 2. This finishes the proof of Claim 3. �

Exploiting the isomorphism of K-algebras φ from Claim 3, the proof of
Proposition 20 is now obtained by changing the notation in the corresponding
part of the proof of Proposition 19. This finishes the proof of Proposition 20.

5. Some simply connected surfaces with special automorphisms

In this section we construct for any integer g≥ 1 a simply connected surface Yg

of geometric genus g and with special automorphisms. In the proof of Theorem 6
in Section 6, we will then apply the construction from Section 4 to these
surfaces. In Section 7, we will use the examples from Section 6 in order to prove
Theorem 7. It is only for the proof of the latter theorem that it will become
important that b2(Yg) tends to infinity if g does.
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5.1. Hyperelliptic curves with special automorphisms. For g ≥ 1, let Cg

denote the hyperelliptic curve with affine equation y2 = x2g+1 − 1; see [16]. The
complement of this affine piece in Cg is a single point which we denote by∞.
For a primitive (2g+ 1)th root of unity ζ2g+1, the maps

(x, y) 7→ (ζ2g+1 · x, y) and (x, y) 7→ (x,−y)

induce automorphisms of Cg which we denote by ηg and ι respectively. Then, ι
has the (2g+ 2) fixed points

(1, 0), (ζ2g+1, 0), . . . , (ζ 2g
2g+1, 0) and ∞.

The automorphism ηg fixes ∞ and performs a cyclic permutation on the
remaining fixed points. The corresponding permutation matrix has eigenvalues
1, ζ2g+1, . . . , ζ

2g
2g+1.

The holomorphic 1-forms

xi−1

y
· dx,

where i = 1, . . . , g, form a basis of H1,0(Cg). Therefore, η∗g has eigenvalues
ζ2g+1, . . . , ζ

g
2g+1 on H1,0(Cg). Moreover, ι acts on H1(Cg,Z) by multiplication

with −1.

5.2. The elliptic curve Ei. Let Ei be the elliptic curve C/(Z ⊕ iZ);
see Section 2.3. Multiplication by i and −1 induces automorphisms ηi and ι
of Ei respectively. The involution ι has four fixed points. The action of ηi fixes
two of those fixed points and interchanges the remaining two. On H1,0(Ei), the
automorphisms ι and ηi act by multiplication with −1 and i respectively.

5.3. Products modulo the diagonal involution. For g ≥ 1, we consider the
product Cg × Ei, where Cg and Ei are defined above. On this product, the

involution ι acts via the diagonal. This action has 8g+8 fixed points. Let C̃g × Ei

be the blow-up of these fixed points. Then,

Yg := C̃g × Ei/ι (33)

is a smooth surface. For instance, Y1 = K3(C1 × Ei) is a Kummer K3 surface;
see Section 2.4.

LEMMA 24. The surface Yg is simply connected.

Proof. It suffices to prove that the normal surface

Y ′g := (Cg × Ei)/ι
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is simply connected. Projection to the second coordinate induces a map

π : Y ′g −→ P1.

Let U ⊆ P1 be the complement of the four branch points of Ei → P1. Then,
restriction of π to V := π−1(U) yields a fiber bundle π |V : V → U with fiber
Cg. Since U is homotopic to a wedge of three circles, the long exact homotopy
sequence yields a short exact sequence

0−→ π1(Cg)−→ π1(V)−→ π1(U)−→ 0.

Since π has a section, this sequence splits. Since V is the complement of a divisor
in Y ′g, the natural map π1(V)→ π1(Y ′g) is surjective; see [9, Proposition 2.10].
Therefore, the above split exact sequence shows that π1(Y ′g) is generated by the
fundamental group of a general fiber together with the image of the fundamental
group of a section of π . The latter is clearly trivial. Furthermore, the inclusion of
a general fiber Cg ↪→ Y ′g is homotopic to the inclusion of a special fiber Cg/ι ∼=
P1, which is simply connected. It follows that the image of π1(Cg)→ π1(Y ′g) is
trivial. This proves the lemma. �

DEFINITION 25. Let Yg be as in (33). Then we define the automorphisms f and
f ′ of Yg to be induced by ηg × id and id× ηi respectively.

LEMMA 26. The surface Yg with automorphisms f and f ′ as above satisfies
(A1)– (A3).

Proof. In order to describe the second cohomology of Yg, we denote the
exceptional P1-curves of Yg by D1, . . . ,D8g+8. Then, for any field K,

H2(Yg,K)= H2(Cg × Ei,K)⊕
(8g+8⊕

i=1

[Di] · K
)
. (34)

It follows from the discussion in Section 5.1 (respectively 5.2) that the
action of f (respectively f ′) on H2(Yg,C) has eigenvalues 1, ζ2g+1, . . . , ζ

2g
2g+1

(respectively ±1,±i). Moreover, the same statement holds for their actions on
H1,1(Yg,C). This proves (A2) and (A3).

By (34), nontrivial rational (1, 1)-classes on Cg and Ei induce classes α and β
in H1,1(Yg,Q) which satisfy (A1). This finishes the proof of the lemma. �

6. Multilinear intersection forms on H2(−,R) and H1,1(−C)

Here we prove Theorem 6. This will be achieved by Lemma 27 and
Theorem 28 below, where more precise statements are proven.
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Let n ≥ 4 and g ≥ 1. Moreover, let Yg be the simply connected surface with
automorphisms f and f ′ from Definition 25. We pick an ample divisor on Yg

which is fixed by f and f ′. A sufficiently large multiple of this divisor gives an
embedding

i : Yg ↪→ PN

with n≤ N+4 such that the actions of f and f ′ fix the pullback of the hyperplane
class.

Next, let

Xg := BlZ1∪···∪Z5(Yg × Yg × PN)

be the blow-up of Yg×Yg×PN along Z1∪· · ·∪Z5, where Zi is defined in (10). Since
n≤ N+ 4, Xg contains a smooth n-dimensional complete intersection subvariety

Tg,n ⊆ Xg. (35)

Since Yg, f and f ′ are defined over Q[ζ8g+4] = Q[ζ2g+1, i], so is Xg and we may
assume that the same holds true for Tg,n.

LEMMA 27. Let n ≥ 2; then the variety Tg,n from (35), as well as each of its
conjugates, is simply connected.

Proof. Since Yg is simply connected by Lemma 24, so is Xg. By the Lefschetz
hyperplane theorem, Tg,n is then simply connected for n≥ 2.

Since the curves Cg and Ei in the definition of Yg are defined over Z, it follows
that Yg is isomorphic to any conjugate Yσg . Thus, Yσg is simply connected and the
above reasoning shows that the same holds true for Tσg,n, as long as n ≥ 2. This
proves the lemma. �

The next theorem, which implies Theorem 6 from the introduction, shows that
certain automorphisms σ ∈ Aut(C) which act nontrivially on Q[ζ8g+4] change
the analytic topology as well as the complex Hodge structure of Tg,n.

THEOREM 28. Let g≥ 1 and n≥ 4 be integers and let σ ∈ Aut(C) with σ(i)= i
and σ(ζ2g+1) 6= ζ2g+1 or vice versa. Then, theR-multilinear intersection forms on
H2(Tg,n,R) and H2(Tσg,n,R), as well as the C-multilinear intersection forms on
H1,1(Tg,n,C) and H1,1(Tσg,n,C), are not weakly isomorphic.

Proof. For ease of notation, we assume σ(i) = i and σ(ζ2g+1) = ζ−1
2g+1. The

general case is proven similarly.
Since the curves Cg and Ei from Sections 5.1 and 5.2 are defined over Z,

it follows that the isomorphism type of Yg is invariant under any automorphism
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of C. Hence, we may identify Yg with Yσg . Under this identification, f ′σ = f ′ since
i is fixed by σ . Moreover, f σ = f−1, since it is induced by the automorphism

η−1
g × id ∈ Aut(Cg × Ei).

Suppose that the R-multilinear intersection forms on H2(Tg,n,R) and
H2(Tσg,n,R) are weakly isomorphic. By Lemma 26, Proposition 19 applies and
we obtain an R-algebra automorphism of H∗(Yg,R) with properties (P1) and
(P2). By (P1),

ψ(i∗h)= b · i∗h
for some b ∈ R×. Since the square of i∗h generates H4(Yg,R), it follows that in
degree four, the automorphism ψ is given by multiplication with a positive real
number.

We extend ψ now C-linearly and obtain an automorphism

ψ : H∗(Yg,C)
∼−→ H∗(Yg,C),

which we denote by the same letter and which satisfies

ψ ◦ f = f−1 ◦ ψ and ψ ◦ f ′ = f ′ ◦ ψ. (36)

Let us now pick nontrivial classes ω ∈ H1,0(Cg) and ω′ ∈ H1,0(Ei) with η∗gω =
ζ2g+1 ·ω and η∗i ω

′ = i ·ω′. Then, ω∪ω′ lies in H1,1(Yg) and we consider ψ(ω∪ω′)
in H2(Yg,C). By (36), f−1 and f ′ act on this class by multiplication with ζ2g+1 and

with this properties are ω ∪ ω′ and so

ψ(ω ∪ ω′)= λ · ω ∪ ω′ (37)

for some nonzero λ ∈ C. Indeed, since ηi interchanges two of the fixed points
of ι on Ei and fixes the remaining two, f ′∗ has eigenvalues ±1 on the subspace
of exceptional divisors in (34). Therefore, ψ(ω ∪ ω′) needs to be contained in
H2(Cg × Ei,C). On this subspace, f−1∗ and f ′∗ are given by (η−1

g × id)∗ and
(id× ηi)

∗ respectively. Our claim follows by the explicit description of ηg and ηi

in Sections 5.1 and 5.2.
Together with its complex conjugate, Equation (37) shows

ψ(ω ∪ ω′ ∪ ω ∪ ω′)=−|λ|2 · ω ∪ ω′ ∪ ω ∪ ω′.
Since the above degree-four class generates H4(Yg,C), we deduce thatψ is given
in degree four by multiplication with−|λ|2. As we have seen earlier, this number
should be positive, which is a contradiction. This finishes the proof of the first
assertion in Theorem 28.

For the proof of the second assertion, assume that the C-multilinear
intersection forms on H1,1(Tg,n,C) and H1,1(Tσg,n,C) are weakly isomorphic.

−i respectively. H2(Yg,C) thesewithclasses inWe claim that the only
multiples of
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By Lemma 26 and Proposition 19, this yields an automorphism ψ of H1,1(Yg,C)
which satisfies (36). Then, f−1 and f ′ act on ψ(ω ∪ ω′) by multiplication with
ζ2g+1 and −i respectively. This is a contradiction, since H1,1(Yg,C) does not
contain such a class. This finishes the proof of the theorem. �

Recall from (35) that Tg,n is defined over the cyclotomic number fieldQ[ζ8g+4].
This number field contains the totally real subfield

Kg :=Q[ζ8g+4 + ζ−1
8g+4].

For instance, K1 =Q[
√

3]. From Theorem 28, we deduce the following:

COROLLARY 29. Let Kg ⊆ K ⊆ C be fields, and let σ ∈ Aut(C) with σ(i) =
i and σ(ζ2g+1) 6= ζ2g+1 or vice versa. Then the intersection forms on the
equidimensional vector spaces H1,1(Tg,n,K) and H1,1(Tσg,n,K) are not weakly
isomorphic.

Proof. By Theorem 28 it suffices to prove that the (1, 1)-classes on Tg,n are
spanned by Kg-rational ones. Modulo divisor classes, H1,1(Tg,n) is given by
H1,1(Yg) ⊕ H1,1(Yg). Furthermore, modulo divisors, H1,1(Yg) is given by the
ι-invariant classes on Ei × Cg. The complex Hodge structure of Ei and Cg is
generated by Q[i]-rational and Q[ζ2g+1]-rational classes respectively; see [16]
for the latter. We may now arrange that the induced generators of H1,1(Yg) are
invariant under complex conjugation and thus lie in the subspace of Kg-rational
classes. This concludes the proof of the corollary. �

REMARK 30. Our types of arguments are consistent with Conjecture 2 in the
sense that they cannot detect conjugate varieties with nonisomorphic algebras of
Q-rational (p, p)-classes. This is because the essential ingredient in the proof of
Theorem 28 is a variety Y with an automorphism whose action on Hp,p(Y,K)
has a set of eigenvalues which is not Aut(C)-invariant. (In our arguments, this
role is played by the surface Yg with the automorphism f ◦ f ′.) For K = Q, the
characteristic polynomial of such an action has rational coefficients and so the
above situation cannot happen.

REMARK 31. Using Freedman’s classification of simply connected topological
4-manifolds, one can prove that simply connected conjugated smooth complex
projective surfaces are always homeomorphic. On the other hand, Theorem 6
shows that in any dimension at least four, there are simply connected conjugate
smooth complex projective varieties which are not homeomorphic. The case of
dimension three remains open.
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7. Nonhomeomorphic conjugate varieties in each birational equivalence
class

In this section we prove Theorem 7. For this purpose, let Z be a given
smooth complex projective variety of dimension ≥ 10. Next, let Tg,4 be the
four-dimensional smooth complex projective variety, defined in (35). By (13)
and (34), the second Betti number of Tg,4 equals 24g + 26. We may therefore
choose an integer g≥ 1 with

b2(Tg,4) > b4(Z)+ 4. (38)

From some projective space, Z is cut out by finitely many homogeneous
polynomials. We denote the field extension of Q which is generated by the
coefficients of these polynomials by L. Since L is finitely generated, and after
possibly replacing g by a suitable larger integer, we may pick an automorphism
σ of C which fixes L and i but not ζ2g+1.

Since Tg,4 has dimension four, it can be embedded into P9. The assumption
dim(Z) ≥ 10 therefore ensures that we may fix an embedding of Tg,4 into the
exceptional divisor of the blow-up Ẑ of Z at a point p ∈ Z. We then define the
following element in the birational equivalence class of Z:

W := BlTg,4(Ẑ). (39)

Since conjugation commutes with blow-ups, the σ -conjugate of W is given by

Wσ = BlTσg,4
(Ẑσ ), (40)

where Ẑσ is the blow-up of Zσ at a point pσ ∈ Zσ and Tσg,4 is embedded in the
exceptional divisor of this blow-up. Since σ fixes L, we have Zσ ∼= Z. Therefore,
W and Wσ are both birational to Z. Hence, Theorem 7 follows from the following
result:

THEOREM 32. Let W and σ be as above. Then the graded even-degree real
cohomology algebras of W and Wσ are nonisomorphic.

Proof. For a contradiction, let us assume that there is an isomorphism

γ : H2∗(W,R)−→ H2∗(Wσ ,R)

of graded R-algebras. Using pullbacks, we regard H2∗(Z,R) ⊆ H2∗(Ẑ,R)
and H2∗(Zσ ,R) ⊆ H2∗(Ẑσ ,R) as subalgebras of H2∗(W,R) and H2∗(Wσ ,R)
respectively. By Lemma 9,

H2(W,R) = H2(Z,R)⊕ [H] · R⊕ [D] · R, (41)

H2(Wσ ,R) = H2(Zσ ,R)⊕ [Hσ ] · R⊕ [Dσ ] · R, (42)
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where H ⊂ Ẑ and Hσ ⊂ Ẑσ are the exceptional divisors above the blown-up
points, and

j : D ↪→W and jσ : Dσ ↪→Wσ

are the exceptional divisors of the blow-ups along Tg,4 and Tσg,4 respectively.
Any cohomology class of positive degree on Z is Poincaré dual to a homology

class which does not meet the center of the blow-up Ẑ→ Z. This shows that for
any η ∈ Hk(Z,R), with k ≥ 1, and for any α ∈ H∗(D,R),

η ∪ [H] = 0 and η ∪ j∗(α)= 0.

A similar statement holds on Wσ and we will use these properties tacitly.
The restriction of −[H] to H ⊂ Ẑ is given by c1(OH(1)); its restriction to Tg,4

is therefore ample. By Lemma 9, we have

b4(W)= b4(Z)+ b2(Tg,4)+ 2.

It then follows from (38) that the second primitive Betti number of Tg,4 is bigger
than b4(W)/2. Since Tg,4 is four-dimensional, and since −[H] restricts to an
ample class on Tg,4, it follows that H2(Z,R)⊕ [H] · R inside H2(W,R) is given
by those classes whose multiplication on H4(W,R) has kernel of dimension
bigger than b4(W)/2. A similar statement holds for H2(Zσ ,R)⊕ [Hσ ] ·R inside
H2(Wσ ,R) and so γ needs to take H2(Z,R)⊕ [H] ·R to H2(Zσ ,R)⊕ [Hσ ] ·R.
Since γ is an isomorphism, it follows that

γ ([D])= ασ + a · [Hσ ] + b · [Dσ ] (43)

holds for some ασ ∈ H2(Zσ ,R) and b 6= 0.
The cup product with [D] on H2(W,R) has a two-dimensional image, spanned

by [D] ∪ [H] and [D]2. For any βσ ∈ H2(Zσ ,R), the following classes are
therefore linearly dependent:

γ ([D]) ∪ βσ , γ ([D]) ∪ [Hσ ] and γ ([D]) ∪ [Dσ ].
Since b 6= 0, this is only possible if ασ ∪ βσ = 0 for all βσ . Hence, ασ = 0.

Since ασ = 0, it follows from [D]∪[H] 6= 0 that γ ([H]) ∈ H2(Zσ ,R)⊕[Hσ ]·R
cannot be contained in H2(Zσ ,R) and hence

γ ([H])= α̃σ + c · [Hσ ]
for some α̃σ ∈ H2(Zσ ,R) and c 6= 0. As the cup product with [H] on H2(W,R)
has a two-dimensional image, the above argument which showed that ασ = 0
also implies that α̃σ = 0. Thus, γ takes [H] ·R to [Hσ ] ·R. It follows that γ takes
H2(Z,R) to H2(Zσ ,R), since these are the kernels of the cup product with [H]
and [Hσ ] respectively.
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Since Tg,4 is four-dimensional, we have [H]5 ∪ [D] = 0. Then application of γ
yields

c5 · [Hσ ]5 ∪ (a · [Hσ ] + b · [Dσ ])= 0.

Since [Hσ ]5 ∪ [Dσ ] vanishes, whereas [Hσ ]6 is nontrivial, it follows from c 6= 0
that a vanishes. Thus, γ maps [D] ·R to [Dσ ] ·R and we conclude that γ respects
the decompositions (41) and (42).

The latter implies that γ induces an R-linear isomorphism between the ideals
([D])⊆ H2∗(W,R) and ([Dσ ])⊆ H2∗(Wσ ,R). In order to state the key property
of this isomorphism, we identify cohomology classes on Tg,4 and Tσg,4 with their
pullbacks to the exceptional divisors D and Dσ respectively.

LEMMA 33. For every α ∈ H2k(Tg,4,R), there exists a unique ασ ∈ H2k(Tσg,4,R)
such that

γ ([D] ∪ j∗(α))= [Dσ ] ∪ jσ∗ (α
σ ).

Proof. For 0≤ k ≤ 2, let us fix some α ∈ H2k(Tg,4,R) and note that

H2k+2(Wσ ,R)= H2k+2(Zσ ,R)⊕ [Hσ ]k+1 · R⊕ jσ∗ (H
2k(Dσ ,R)).

Since γ maps [D] to a multiple of [Dσ ], and since products of [Dσ ] with
positive-degree classes on Zσ always vanish, the above identity shows

γ ([D] ∪ j∗(α))= [Dσ ] ∪ jσ∗ (α
σ )+ e · [Dσ ] ∪ [Hσ ]k+1

for some ασ ∈ H2k(Dσ ,R) and e ∈ R. The restrictions of−[H] to Tg,4 and−[Hσ ]
to Tσg,4 are ample classes ω ∈ H2(Tg,4,R) and ωσ ∈ H2(Tσg,4,R) respectively.

Now suppose that α in the above formula is primitive with respect to ω. Then
the cup product of the above class with γ ([H])5−2k vanishes. Since γ ([H]) is a
multiple of [Hσ ],

[Dσ ] ∪ jσ∗ (α
σ ∪ (ωσ )5−2k)+ e · (−1)k+1jσ∗ ((ω

σ )6−k)= 0.

This implies firstly that e= 0 and secondly that ασ ∪ (ωσ )5−2k vanishes as a class
on Dσ . By the hard Lefschetz theorem, the latter already implies that ασ , which
a priori is only a class on Dσ , is in fact a primitive class on Tσg,4.

For arbitrary α ∈ Hk(Tg,4,R), the existence of ασ now follows – since γ takes
[H] · R to [Hσ ] · R – from the Lefschetz decompositions with respect to ω and
ωσ ; the uniqueness is immediate from Lemma 9. This concludes Lemma 33. �

By Lemma 33, we are now able to define an R-linear map

φ : H2∗(Tg,4,R)−→ H2∗(Tσg,4,R),

by requiring

γ ([D] ∪ j∗(α))= b · γ ([D]) ∪ jσ∗ (φ(α))
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for all α ∈ H∗(Tg,4,R), where b is, as above, the nontrivial constant with
γ ([D]) = b · [Dσ ]. Applying the same argument to γ −1, we obtain an R-linear
inverse of φ.

By Theorem 28, φ cannot be an isomorphism of algebras and so we will obtain
a contradiction as soon as we have seen that φ respects the product structures.
For this purpose, let α and β denote even-degree cohomology classes on Tg,4.
Then, by Lemmas 9 and 10, it suffices to prove

b · γ ([D])3 ∪ jσ∗ (φ(α ∪ β))= b · γ ([D])3 ∪ jσ∗ (φ(α) ∪ φ(β)).
Using (3), the latter is seen as follows:

b · γ ([D])3 ∪ jσ∗ (φ(α ∪ β)) = γ ([D])2 ∪ γ ([D] ∪ j∗(α ∪ β))
= γ ([D]2 ∪ j∗(1) ∪ j∗(α ∪ β))
= γ ([D] ∪ j∗(α) ∪ [D] ∪ j∗(β))

= b2 · γ ([D])2 ∪ jσ∗ (φ(α)) ∪ jσ∗ (φ(β))

= b2 · γ ([D])2 ∪ jσ∗ (1) ∪ jσ∗ (φ(α) ∪ φ(β))
= b · γ ([D])3 ∪ jσ∗ (φ(α) ∪ φ(β)).

This concludes the proof of Theorem 32. �

8. Examples with nonisotrivial deformations

In this section we prove that the examples in Theorem 7 may be chosen to have
nonisotrivial deformations. Here, a family (Xs)s∈S of varieties over a connected
base S is called nonisotrivial if there are two points s0, s1 ∈ S with Xs0 � Xs1 .
The idea of the proof is to vary the blown-up point p ∈ Z in the construction of
Section 7. In order to state our result, we write X ∼ Y if two varieties X and Y
are birationally equivalent.

THEOREM 34. Let Z be a smooth complex projective variety of dimension ≥
10. Then there is a nonisotrivial family (Wp)p∈U of smooth complex projective
varieties Wp over some smooth affine variety U, and an automorphism σ ∈
Aut(C) such that, for all p ∈ U,

Wp ∼ Z ∼Wσ
p and H2∗(Wp,R)� H2∗(Wσ

p ,R).

Proof. As in Section 7, we may pick some σ ∈ Aut(C) and some g≥ 1 such that

Z ∼= Zσ , σ (i)= i, σ (ζ2g+1) 6= ζ2g+1 and b2(Tg,4) > b2(Z)+ 4.

Next, let U ⊆ Z be a Zariski open and dense subset with trivial tangent bundle.
Let 1 ⊆ U × Z be the graph of the inclusion U ↪→ Z and consider the blow-up

https://doi.org/10.1017/fms.2013.7 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2013.7


Multiplicative sub-Hodge structures of conjugate varieties 35

Bl1(U×Z). The normal bundle of1 in U×Z is trivial, since U has trivial tangent
bundle. Hence, the exceptional divisor of Bl1(U×Z) is isomorphic to1×Pn−1.
Since n≥ 10, we may fix an embedding of 1× Tg,4 into this exceptional divisor
and consider the blow-up

Bl1×Tg,4(Bl1(U × Z)).

Projection to the first coordinate then gives a family

(Wp)p∈U

of smooth complex projective varieties, birational to Z. Then, for all p ∈ U, the
conjugate varieties Wp and Wσ

p are as in (39) and (40) respectively. Thus, Wp ∼ Z
and Wσ

p ∼ Zσ . By Theorem 32 and since Z ∼= Zσ , we obtain, for all p ∈ U,

Wp ∼ Z ∼Wσ
p and H2∗(Wp,R)� H2∗(Wσ

p ,R).

To conclude Theorem 34, it therefore remains to prove:

CLAIM 4. After replacing Z by another representative of its birational
equivalence class, and for a suitable choice of U, the family (Wp)p∈U is
nonisotrivial.

Let us prove this claim. By the arguments of Theorem 32, one sees that any
isomorphism g : Wp → Wq induces an isomorphism g∗ on cohomology which
respects the decomposition (41). This implies that g respects the exceptional
divisors and thus induces an isomorphism of Z which takes p to q.

The above argument, applied to p= q, shows that Wp admits no automorphism
which takes points from the exceptional divisors to Z − {p}. In particular, Wp

contains a Zariski open subset with trivial tangent bundle and with two points
that cannot be interchanged by an automorphism of Wp. Since Wp is birational to
Z, we may therefore, after possibly replacing Z by another representative of its
birational equivalence class, assume that U already contains points p and q which
cannot be interchanged by any automorphism of Z. Then, as we have seen, Wp

and Wq are not isomorphic. This finishes the proof of Claim 4 and so concludes
Theorem 34. �

REMARK 35. In contrast to Theorem 34, most of the previously known
examples of nonhomeomorphic pairs of conjugate varieties tend to be rather rigid
and do not in general occur in nonisotrivial families. This was already observed
by Reed in [11]. However, it is often possible to obtain nonisotrivial families as
products of previously known examples with nonrigid varieties; for example one
could take products of Serre’s examples [13] with a smooth hypersurface of
degree at least four in P3, since the latter are simply connected and come in
nonisotrivial families.
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