A group is *covered* by a collection of subgroups if it is the union of the collection. The intersection of an irredundant cover of n subgroups is known to have index bounded by a function of n, though in general the precise bound is not known. Here we confirm a claim of Tompkinson that the correct bound is 16 when n is 5. The proof depends on determining all the 'minimal' groups with an irredundant cover of five maximal subgroups.

1. Introduction

A *covering* or *cover* of a group G is a collection of subgroups of G whose union is G. We use the term n-cover for a cover with n members. The cover is *irredundant* if no proper sub-collection is also a cover. Neumann [5] obtained a uniform bound for the index of the intersection of an irredundant n-cover; see Tompkinson [7] for an improved bound. We shall write $f(n)$ for the largest index $|G : D|$ over all groups G with an irredundant n-cover with intersection D. An immediate consequence is that such a group G has a permutation representation of degree at most $f(n)$, with kernel $\text{core}_G(D)$. In particular $G/\text{core}_G(D)$ is a finite group with an irredundant n-cover whose intersection is core-free.

The groups with an irredundant core-free intersection covering are known precisely when $n = 3$ (Scorza [6]) and when $n = 4$ (Greco [4, p.58]): see Propositions 2.3 and 2.4 below. Partial results are known for $n = 5$: Greco [3] lists all groups with an irredundant 5-cover in which all pairwise intersections are the same; and Tompkinson [7] claims that $f(5) = 16$.

The aim of the present article is to fill in some of the missing detail when $n = 5$. We are concerned with irredundant, core-free intersection 5-covers in which all five subgroups of the cover are maximal. A cover in which all subgroups are maximal we shall call *maximal*.

Theorem 1.1. Let G be a group with a maximal irredundant cover of five subgroups with core-free intersection D. Then either

(a) $D = 1$ and G is elementary Abelian of order 16; or

(b) $D = 1$ and $G \cong \text{Alt}_4$; or

(c) $|D| = 3$, $|G| = 48$ and G embeds in $\text{Alt}_4 \times \text{Alt}_4$.
THEOREM 1.2. \(f(5) = 16 \).

2. PRELIMINARY RESULTS

The following results will be needed below. Where no proof is given it is either very easy or a reference is given.

LEMMA 2.1. Let \(\{A_i; 1 \leq i \leq m\} \) be a (maximal) irredundant covering of a group \(G \) with intersection \(D \). If \(N \) is a normal subgroup of \(G \) contained in \(D \) then \(\{A_i/N; 1 \leq i \leq m\} \) is a (maximal) irredundant cover of \(G/N \).

LEMMA 2.2. (See [1, Lemma 2.2]) Let \(A = \{A_i; 1 \leq i \leq m\} \) be an irredundant covering of a group \(G \) whose intersection is \(D \).

(a) If \(p \) is a prime, \(x \) a \(p \)-element of \(G \) and \(|\{i: x \in A_i\}| = n \) then either \(x \in D \) or \(p^m - n \).

(b) \(\bigcap_{j \neq i} A_j = D \) \((1 \leq i \leq m) \).

(c) If \(\bigcap_{i \in S} A_i = D \) whenever \(|S| = n \) then \(\left| \bigcap_{i \in T} A_i : D \right| \leq m - n + 1 \) whenever \(|T| = n - 1 \).

(d) If \(A \) is maximal and \(U \) is an Abelian minimal normal subgroup of \(G \) then, if \(|\{i: U \subseteq A_i\}| = n \), either \(U \subseteq D \), or \(|U| \leq m - n \).

PROPOSITION 2.3. (Scorza [6]) Let \(\{A_i; 1 \leq i \leq 3\} \) be an irredundant cover with core-free intersection \(D \) of a group \(G \). Then \(D = 1 \) and \(G \cong C_2 \times C_2 \).

PROPOSITION 2.4. (Greco [4]) Let \(\{A_i; 1 \leq i \leq 4\} \) be an irredundant cover with core-free intersection \(D \) of a group \(G \). If the cover is maximal then either

(a) \(D = 1 \) and \(G \cong Sym_3 \) or \(G \cong C_3 \times C_3 \); or

(b) \(|D| = 2, \ |G| = 18 \) and \(G \) embeds into \(Sym_3 \times Sym_3 \).

If the cover is not maximal then either

(c) \(D = 1 \) and \(G \cong D_8 \), or \(G \cong C_4 \times C_2 \), or \(G \cong C_2 \times C_2 \times C_2 \); or

(d) \(|D| = 2 \) and \(G \cong D_8 \times C_2 \).

LEMMA 2.5. Let \(G \) be a group with a maximal irredundant \(5 \)-cover with core-free intersection \(D \).

(a) \(G \) is a 2-group if and only if \(D = 1 \) and \(G \) is elementary of order 16.

(b) \(G \) is not a 3-group.

PROOF: Let \(G = M_1 \cup M_2 \cup M_3 \cup M_4 \cup M_5 \) be a maximal irredundant cover for a \(p \)-group \(G \), with core-free intersection \(D \). Now \(\Phi(G) \subseteq D \) so \(D \leq G \), therefore \(D = 1 \), and \(G \) is elementary Abelian. By Lemma 2.2(b), (c), \(|M_i \cap M_j \cap M_k| \leq 2 \) whenever \(i, j, k \) are distinct. When \(p = 2 \), therefore, \(|G| \leq 16 \). Also \(|G| \geq 8 \) since otherwise \(G \)
does not have five maximal subgroups. However \(|G| = 8 \) is impossible. For, if \(|G| = 8 \)
and \(|M_1 \cap M_2 \cap M_3| = 2 \) then \(G = M_1 \cup M_2 \cup M_3 \), contradicting the irredundance
of the cover; and if \(M_1 \cap M_2 \cap M_3 = 1 \) then \(|M_1 \cup M_2 \cup M_3| = 7 \), so \(G \) is covered by four
of the \(M_i \), again a contradiction. Conversely if \((a, b, c, d) \) is elementary of order 16,
then \((a, b, c), (a, b, d), (a, c, d), (b, c, d), (ab, bc, cd) \) provide a maximal irredundant
core-free intersection cover.

When \(p = 3 \) we conclude that \(M_i \cap M_j \cap M_k = 1 \) for all distinct \(i, j, k \). \(|G| > 9 \)
since an elementary Abelian group of order 9 has only four maximal subgroups; in particular,
no pairwise intersection is trivial. Hence \(|M_i \cap M_j| = 3 \ (i \neq j) \). By the
inclusion-exclusion principle \(|G| = 5.9 - 10.3 + 10.1 - 5.1 + 1 = 21 \), which is not a power
of 3, a contradiction.

Lemma 2.6. Let \(F \) be finite field with \(q \) elements. Suppose that

\[
F^2 = S_1 \cup S_2 \cup \ldots \cup S_m
\]

where \(S_i \) is a translate of a one dimensional subspace \(U_i \) \((1 \leq i \leq m)\). Then \(m \geq q \)
and

(a) if \(m = q \), \(U_1 = U_i \ (1 \leq i \leq q) \);

(b) if \(m = q + 1 \) and the union (2.1) is irredundant, then the subspaces \(U_i \)
are distinct and, for some \(r \in F \), \(S_i = U_i + r \ (1 \leq i \leq q + 1) \);

and

(c) if \(m = q + 2 \) and the union (2.1) is irredundant then the subspaces \(U_i \)
\((1 \leq i \leq q + 2) \) do not cover \(F^2 \).

Proof: Firstly note that \(mq \geq q^2 \) so \(m \geq q \). Now observe that \(F^2 \) can be
thought of as an affine plane in which the lines are the translates of one-dimensional vector subspaces. The result then has an easy, and presumably well known, geometrical
proof. We give a sketch.

(a) In this case the space is covered by the \(q \) lines \(S_i \), each containing exactly \(q \)
points. Hence these lines are parallel and one of them passes through the origin.

(b) We are to prove that \(q + 1 \) lines have a common point if their union is irredundant and equal to \(F^2 \). There are at most \(q \) mutually parallel lines, so \(S_1 \) and \(S_2 \) say,
meet at a point \(P \). Let \(A = S_1 \cup S_2 \). Every line \(S_i \ (3 \leq i \leq q + 1) \) meets \(A \) in at least
one point. Since \(|F^2 \setminus A| = q^2 - (2q - 1) = (q - 1)^2 \) no line \(S_i \ (3 \leq i \leq q + 1) \) meets
\(A \) in more than one point. If \(q = 2 \) then \(S_3 \) is incident with \(P \) since neither \(S_1 \) nor
\(S_2 \) is redundant. Hence we may suppose that \(q > 2 \). Now no two \(S_i \ (3 \leq i \leq q + 1) \)
meet outside \(A \). Suppose \(P \in S_i \) but \(P \notin S_j \) for some \(i, j \) satisfying \(3 \leq i, j \leq q + 1 \).
Then \(S_j \) is parallel to just one of \(S_1, S_2 \), say to \(S_1 \), and also parallel to just one of \(S_2, S_i \)
therefore to \(S_i \), a contradiction since \(S_1 \) and \(S_i \) are not parallel. That is, if three of
the lines S_i ($1 \leq i \leq q + 1$) pass through P then all do, and we are done. Suppose that none of S_i ($3 \leq i \leq q + 1$) is incident with P. Then all S_j ($3 \leq j \leq d$) are parallel to S_1 and all S_k $(d + 1 \leq k \leq q + 1)$ are parallel to S_2, for some d satisfying $3 \leq d < q + 1$, or else the union (2.1) is redundant. It follows that $|S_i \cap S_j| = 1$ if $i \in \{1, 3, \ldots, d\}$ and $j \in \{2, d + 1, \ldots, q + 1\}$, and is zero otherwise; in particular all three-fold intersections are empty. Hence, counting points,

$$q^2 = q(q + 1) - (d - 1)(q - d + 2)$$

whence $q = (d - 1)(q - d + 2)$. However, both right-side factors are greater than 1, and hence have a prime common factor which therefore divides both q and $q + 1$, a contradiction.

(c) In this case $q > 2$. Two of the lines, say S_1 and S_2, are parallel. It is enough to show that there is another pair of parallels. If there is not, all the lines S_i ($3 \leq i \leq q + 2$) are incident in pairs, and each is incident with each of S_1 and S_2. Since the complement of $S_1 \cup S_2$ has cardinality $q^2 - 2q = q(q - 2)$, it follows that $S_i \cap S_j \subseteq S_1 \cup S_2$ ($3 \leq i < j \leq q + 2$). If all these intersections are the same, say lying in S_1, then counting shows that S_2 is redundant. Hence $S_1 \cap S_h \neq S_1 \cap S_k$ for some h, $k \in \{3, \ldots, q + 2\}$. Then $S_h \cap S_k$ is incident with S_2, and there is some S_t ($3 \leq t \leq q + 2$) for which $S_2 \cap S_t \neq S_2 \cap S_h$. But then one of $S_h \cap S_t$ or $S_k \cap S_t$ is not incident with S_1, a contradiction.

Lemma 2.7. Let G be a group with the following structure: $O_3(G)$ is elementary Abelian of index 2 in G, and G has trivial centre. There does not exist a maximal irredundant 5-cover of G.

Proof: Let us suppose that the result is false, and that G is a minimal counterexample. Note that $|G| > 6$ since Sym$_3$ is not a counterexample.

Let

$$G = M_1 \cup M_2 \cup M_3 \cup M_4 \cup M_5$$

be a maximal irredundant cover of G with core-free intersection D. Then $|M_i| > 2$ ($1 \leq i \leq 5$). Therefore either

(a) for some i, $M_i = V := O_3(G)$ and $|G : M_j| = 3$ ($j \neq i$); or

(b) $|G : M_j| = 3$ for all j.

Now $D \cap V = 1$ by Lemma 2.1 since $D \cap V \leq G$. Let a be an involution of G. Since (a) is a Sylow 2-subgroup of G every 2-element of G is conjugate to a. Define

$$S_i := \{x \in V : a^x \in M_i\}, \quad 1 \leq i \leq 5.$$

Either $S_i = \emptyset$ or S_i is a coset of $X_i := V \cap M_i$ in V, and there is at most one of the first type. For all $x \in V$, there is an i for which $a^x \in M_i$ so

$$V = S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_5.$$
From Lemma 2.2(c) the intersection of every triple of the subgroups $X_i \ (1 \leq i \leq 5)$ is trivial. In the case (a) suppose that $M_5 = V$, so that the pairwise intersections $X_i \cap X_j \ (1 \leq i < j \leq 4)$ are all trivial. In particular $|V| = 9$. Also $S_5 = \emptyset$ and

$$V = S_1 \cup S_2 \cup S_3 \cup S_4.$$

In this union all the S_i are essential since if, say, S_1 were omissible, then M_1 would be omissible in (2.2). However Lemma 2.6 now shows that the subgroups $X_i \ (1 \leq i \leq 4)$ are distinct. They therefore cover V making M_5 redundant, a contradiction. This shows that case (a) does not arise.

In case (b) we have $V = X_1 \cup X_2 \cup X_3 \cup X_4 \cup X_5$. From Lemma 2.5 this union is redundant; and from Proposition 2.3 just one term, say X_i, is omissible. Since $1 = \bigcap_{j \neq i} X_j$, by Lemma 2.2(b), it follows from Proposition 2.4 that $|V| = 9$. Now we apply Lemma 2.6. Firstly, by (c) of that result, the union (2.3) is redundant, and at most two terms on the right are omissible. If omitting S_5 say, leaves an irredundant union then, by Lemma 2.6(b), $V = X_1 \cup X_2 \cup X_3 \cup X_4$ and M_5 is omissible from (2.2), contradiction. If omitting S_4 and S_5 from (2.3) leaves $V = S_1 \cup S_2 \cup S_3$ then Lemma 2.6(a) yields $X_1 = X_2 = X_3 \subseteq D \cap V = 1$, another contradiction.

Finally we note the following well known fact which is used repeatedly, and without explicit reference, throughout what follows: if M is a maximal subgroup, and U an Abelian minimal normal subgroup, of a group then either $U \subseteq M$ or $U \cap M = 1$.

3. PROOF OF THEOREM 1.1

We have already determined the 2-groups which have maximal irredundant core-free intersection 5-covers. The next lemma addresses non-2-groups

Lemma 3.1. Suppose that the intersection of a maximal irredundant cover of five subgroups of a group G is core-free. If G is not a 2-group then every minimal normal subgroup of G has order 4.

Proof: By Lemma 2.2(a) G is a $\{2, 3\}$-group. Since G is soluble, by Burnside's Theorem, every minimal normal subgroup U of G is Abelian. Moreover, by Lemma 2.2(d), $|U| \leq 4$.

If $|U| = 2$ then, again by Lemma 2.2(d), U is contained in at most three of the subgroups A_i, say $U \not\subseteq A_4 \cup A_5$. Since U is central, and since $G = A_4 U = A_5 U$, every 3-element of G is in $A_4 \cap A_4$. However if $1 \neq u \in U$ and if y is a 3-element, then $uy \not\subseteq A_4 \cup A_5$. Hence $uy \in A_1 \cup A_2 \cup A_3$ and therefore $y \in A_1 \cup A_2 \cup A_3$. It follows that a Sylow 3-subgroup S of G is in $A_1 \cup A_2 \cup A_3$ and therefore, by Proposition 2.3, in one of $A_i \ (1 \leq i \leq 3)$, say in A_3. Therefore $S \subseteq A_3 \cap A_4 \cap A_5$ and so, by Lemma
2.2(c), \(S \subseteq D \). Since, therefore, every 3-element of \(G \) is in \(D \) so is the subgroup \(T \) which they generate. Of course \(T \subseteq G \) so \(T = 1 \). But this contradicts the fact that \(G \) is not a 2-group. Therefore \(G \) has no normal subgroups of order 2.

If \(|U| = 3 \) then \(U \) is contained in at most two of the subgroups \(A_i \), say \(U \nsubseteq A_3 \cup A_4 \cup A_5 \). It follows that \(G = UA_i \) (3 \(\leq i \leq 5 \)). An argument similar to that of the last paragraph shows that every 2-element of \(C := C_G(U) \) is in \(D \). Since the subgroup they generate is normal it is 1, and we see that \(C \) is a 3-group. Also, \(\Phi(C) \subseteq \Phi(G) \subseteq D \), so \(\Phi(C) = 1 \). That is, \(C \) is elementary Abelian. By Lemma 2.5(b) \(C \neq G \). That is, no minimal normal subgroup of \(G \) is central. However \(|G : C| = 2 \), and so \(G \) satisfies the hypotheses of Lemma 2.7, contradiction.

PROOF OF THEOREM 1.1: Let \(G \) be a group with a maximal irredundant cover \(\bigcup_{i=1}^{5} A_i \) with core-free intersection \(D \). By Lemma 2.5 we may suppose that \(G \) is not a 2-group. Suppose that \(U \) is a minimal normal subgroup of \(G \). It follows from Lemma 3.1 that \(|U| = 4 \). Also, by Lemma 2.2(d), \(U \) is in at most one of the subgroups \(A_i \), say \(U \nsubseteq A_2 \cup A_3 \cup A_4 \cup A_5 \). A familiar argument gives that \(C := C_G(U) \) is an elementary 2-group. Moreover \(G/C \) embeds into \(\text{Aut}(U) \cong \text{Sym}_3 \), and \(O_3(G/C) \neq 1 \). As \(G/C \)-module, \(C \) has no non-trivial fixed points for the action of \(O_3(G/C) \), using Lemma 3.1. It follows that \(C \) is the first or second nilpotent residual of \(G \). Therefore \(C \) is complemented in \(G \), using the result in [2, (5.18) p.383], say \(G = CH \) where \(H \cong C_3 \) or \(H \cong \text{Sym}_3 \). As \(H \)-module \(C \) is completely reducible, and every minimal normal subgroup of \(G \) is of order 4.

If \(C = U \) then \(G \cong \text{Alt}_4 \) or \(G \cong \text{Sym}_4 \). The first case is (b) of the theorem. The second does not arise because \(\text{Sym}_4 \) has no maximal irredundant cover of five subgroups. For, \(D \) is core-free, does not contain the monolith of \(\text{Sym}_4 \) so, by Lemma 2.2(d), four of the five subgroups of the cover are copies of \(\text{Sym}_3 \) whilst the fifth, therefore, contains all the elements of \(\text{Sym}_4 \) of order 4. However this is a contradiction because these elements generate \(\text{Sym}_4 \).

If \(C \neq U \) then \(C_{A_i}(U) \neq 1 \) (2 \(\leq i \leq 5 \), and \(C = U \times C_{A_i}(U) \). Since \(D \) is core-free, it follows from Lemma 3.1 and Lemma 2.2(d) that \(1 = C_{A_i}(U) \cap C_{A_j}(U) \) (2 \(\leq i < j \leq 5 \)). Then, for \(i \neq j \),

\[
|C_{A_j}(U)| |U| = |C| \geq |C_{A_i}(U)C_{A_j}(U)| = |C_{A_i}(U)||C_{A_j}(U)|
\]

so that \(|U| \geq |C_{A_i}(U)| \geq |U| \). It follows that each \(C_{A_i}(U) \) is minimal normal in \(G \). That is, \(C \) is the direct product of two minimal normal subgroups of \(G \). If \(H \) were isomorphic to \(\text{Sym}_3 \) then \(C \), as \(H \)-module, would contain just three proper non-zero submodules instead of the (at least) five it does contain. Hence \(|H| = 3 \).

Now we examine the nature of this cover for \(G \). Choose \(a \in G \) of order 3. Then \(\langle a \rangle \) is a Sylow 3-subgroup of \(G \), and every 3-element of \(G \) is conjugate either to \(a \) or
Covering groups with subgroups

to a^2. Define $S_i := \{w \in C: a^w \in A_i\}$ ($1 \leq i \leq 5$) and $N_i := A_i \cap C$ ($1 \leq i \leq 5$). S_i is a coset on N_i in C: it is not empty since otherwise A_i would contain no 3-element, would therefore be equal to C, and some N_j would be in two of the A_k whence, by Lemma 2.2(d), in D, which is core-free. We have

(3.1) $C = S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_5$

since every a^w is in some A_i. We may regard C as a space of dimension 2 over the field F of 4 elements, where (a) is the multiplicative group of F, and apply Lemma 2.6(b). If the union (3.1) is irredundant then $S_i = N_i c$ ($1 \leq i \leq 5$) for some $c \in C$. Hence $a^c \in A_i$ ($1 \leq i \leq 5$), so $|D| = 3$ and G has the structure required by (c) of the theorem. If, however, (3.1) is redundant then, by Lemma 2.6, at most one term, say S_5, is omissible and $N_i = N_i$ ($1 \leq i \leq 4$). This gives $N_1 = \bigcap_{i=1}^{4} N_i \subseteq \bigcap_{i=1}^{4} A_i = D_1$, a contradiction to the core-freeness of D.

4. Proof of Theorem 1.2

If the result is false, let G be a group with an irredundant cover C of five subgroups, with core-free intersection D, for which $|G : D| > 16$. In the light of Theorem 1.1, C is not maximal. Suppose C chosen from among such 5-covers of G with as many maximal subgroups as possible. Let C^* be a cover of G got from C by replacing one of its non-maximal subgroups by a maximal subgroup containing it. Write D^* for the intersection of $C^*: D^* \supseteq D$. C^* is redundant; for, if not, $D^* = D$ by Lemma 2.2(b), and so is core-free, while C^* has more maximal subgroups than does C. It follows that we may write $C = \bigcup_{i=1}^{5} A_i$ where A_1 is not maximal, and if A^*_1 is a maximal subgroup containing it, then $C^* = \{A^*_1, A_2, A_3, A_4, A_5\}$ is redundant as a cover for G.

If G is an irredundant union of four of the subgroups in C^*, then we may suppose that

(4.1) $G = A^*_1 \cup A_2 \cup A_3 \cup A_4$

since A^*_1 is certainly essential. If $D_1 := A^*_1 \cap A_2 \cap A_3 \cap A_4$ then it follows from Proposition 2.4 that $|G : D_1| \leq 9$ with equality only if $A^*_1 \cap A_i = D_1$ ($2 \leq i \leq 4$). If we have equality therefore, it follows that

(4.2) $A^*_1 = A_1 \cup D_1 \cup (A_5 \cap A^*_1)$,

an irredundant union. However from (4.1) we deduce that $|A^*_1 : D_1| = 3$, and from (4.2) and Proposition 2.3 that $|A^*_1 : D_1| = 2$, a contradiction. Hence $|G : D_1| \leq 8$. Then,
since $D_1 = A_2 \cap A_3 \cap A_4$, we have $|D_1 : D| \leq 2$ by Lemma 2.2(c), so $|G : D| \leq 16$, a contradiction.

Lastly, if G is an irredundant union of three of the subgroups in C^*, we may suppose that

(4.3) \[G = A_1^* \cup A_2 \cup A_3 \]

since A_1^* is surely included. Let us write $N := A_2 \cap A_3 \cap A_4 = A_1^* \cap A_3$. Now

(4.4) \[A_1^* = A_1 \cup N \cup (A_1^* \cap A_4) \cup (A_1^* \cap A_5). \]

If the union (4.4) is irredundant then $|A_1^* : D| = |A_1^* : A_1 \cap N \cap A_4 \cap A_5| \leq 9$. However, by (4.3), $|A_1^* : A_2 \cap A_3| = 2$, so $|A_1^* : D| \neq 9$. Hence $|G : D| = |G : A_1^*||A_1^* : D| \leq 16$, a contradiction. On the other hand if the union (4.4) is redundant then three of the subgroups on the right side are essential, and the possible intersections I satisfy $|I : D| \leq 2$, using Lemma 2.2(c). Hence $|G : D| = |G : A_1^*||A_1^* : I||I : D| \leq 2.4.2 = 16$. This contradiction completes the proof of Theorem 1.2. \[\square \]

REFERENCES