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Abstract We give a characterization of composition operators between algebras of analytic functions
on a Banach space. We show (under fairly general conditions) that they are precisely the multiplicative
operators that are transposes of operators of between the preduals of the algebras. The special cases
of H∞(U) and Hb(U) are considered. In these cases, the composition operators are those which are
pointwise-to-pointwise continuous and/or τ0-to-τ0 continuous (where τ0 is the compact-open topology).
We obtain Banach–Stone-type theorems for these algebras.
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1. Introduction

In this paper we give a characterization of composition operators on algebras of analytic
functions on a Banach space. Consider F(U), an algebra of scalar-valued analytic func-
tions on an open subset U of a Banach space E. An operator A : F(U) → F(V ) is a
composition operator if there exists a mapping g : V → U (of the vector-valued class F ,
to be appropriately defined) such that Af = f ◦ g for each f ∈ F(U). Several authors
have dealt with composition operators in different spaces or algebras of analytic functions
on infinite dimensional spaces (see, for example, [1–3,8,12]). Many of these works relate
properties of the operator A (such as compactness, complete continuity, etc.) to proper-
ties of the function g (‘size’ of the range, different kinds of continuity, etc.). Consequently,
the representation of an operator A as a composition operator proves useful for studying
different characteristics of A. Motivated by this, we want to determine conditions for
the existence of such a representation. In other words, we want a characterization of the
operators A : F(U) → F(V ), which are composition operators. For this, the existence
of preduals of the algebra under consideration and the description of the multiplicative
elements of these preduals are the main tools. We show under fairly general conditions
that a multiplicative operator is a composition operator if and only if it is the transpose
of a continuous operator between the preduals of the algebras. We also focus on two par-
ticular cases: the algebras of bounded holomorphic functions H∞(U) and of holomorphic
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functions of bounded type Hb(U). In both cases, we give more equivalent conditions for
a mapping to be a composition operator. This allows us to prove a Banach–Stone-type
result for these algebras.

In the next section we describe a general construction linearizing function. This con-
struction is taken from [4] and we briefly sketch it for completeness and to fix notation.
Section 3 deals with the general results. We consider F(U), an algebra of analytic func-
tions on U where polynomials are weak-∗ dense (U is an F-regular open subset of a
Banach space with the bounded approximation property). We show that a multiplicative
operator A : F(U) → F(V ) is a composition operator if and only if A = T ′, where T is
a continuous linear operator between the preduals of F(V ) and F(U). In § 4 we restrict
ourselves to the algebras of bounded holomorphic functions and holomorphic functions
of bounded type. We show that in these cases being a composition operator is equivalent
to being pointwise-to-pointwise continuous and also being τ0-to-τ0 continuous. Finally,
we find, under certain conditions, that if the algebras (H∞(U), τ0) and (H∞(V ), τ0) are
isomorphic, the Banach spaces containing U and V must be linearly isomorphic. An
analogous result holds for the algebra Hb(U).

2. Preliminaries

In [4], a general construction linearizing functions with values in locally convex spaces is
given. We briefly describe this construction.

First, we take a space F(U) of functions f : U → C which are continuous. A space
F∗(U) and a map e : U → F∗(U) are constructed such that, for any f ∈ F(U), there
exists an Lf ∈ F∗(U)′ such that Lf ◦ e = f . A sketch of this construction follows.

Consider the vector space C(U) of finitely supported families of U -indexed complex
numbers. A typical element will be denoted by s =

∑
x∈U axex, with ex(y) = δxy. Note

that the sum is finite. For any given f ∈ F(U), we define the seminorm

pf (s) =
∣∣∣∣
∑
x∈U

axf(x)
∣∣∣∣.

Now

N =
{

s ∈ C(U) :
∑
x∈U

axf(x) = 0 for all f ∈ F(U)
}

is a subspace of C(U), and we define X as the quotient

X = C(U)/N .

We will continue to denote the class of ex by ex, and the class of s by s =
∑

x∈U axex.
We endow X (just for a moment) with the topology τ generated by the seminorms pf .
It is clear that a function f ∈ F(U) factors through e in the following way:

U
f ��

e

��

C

X

Lf

���������
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where Lf (s) =
∑

x axf(x) if s =
∑

x axex. The map F(U) → X ′ defined by f �→ Lf is
then an algebraic isomorphism.

Next, we consider on X the strongest locally convex topology compatible with τ for
which the map e : U → X is continuous, and denote X with this topology by (X, α). We
take F∗(U) to be the completion of (X, α):

F∗(U) = (̂X, α).

We still denote by e the continuous map U → X → F∗(U). In fact, the topology α on
F(U)′

α is the topology of uniform convergence on the equicontinuous τp-compact discs
of F(U) (τp denotes the topology of pointwise convergence). Here, equicontinuous means
equicontinuous as functions on U .

We can identify F(U) with F∗(U)′. Moreover, in many situations F(U) is the strong
dual of F∗(U). This happens, for example, with Hb(U) or H∞(U). Although there may
be more than one topology of interest on F(U), we will consider on F(U) the topology
which makes it the strong dual of F∗(U).

Given a class F(U) of continuous scalar-valued functions and a locally convex space
F , we will say that g : U → F is weakly in F if g is continuous and, for every γ ∈ F ′,
γ ◦ g ∈ F(U). We denote by ωF(U, F ) the space of all such functions. For bounded
holomorphic functions or holomorphic functions of bounded type, this coincides with the
vector-valued notion of these classes of functions (see § 4 for the definitions). F∗(U) also
factors functions on ωF(U, F ), as follows.

Theorem 2.1 (Carando and Zalduendo [4, Theorem 3]). Each function in
ωF(U, F ) factors linearly through e:

U ��

e

��

f

F∗(U)
L

�����������

identifying L(F∗(U), F ) with ωF(U, F ) algebraically.

3. General results

Let U be an open subset of the a locally convex space E. If the class F(U) contains E′,
the mapping e defined in the previous section is one-to-one [4, Proposition 1]. Moreover,
if E is a Banach space, e is in fact bicontinuous.

Lemma 3.1. If E is a Banach space and F(U) contains E′, then U is homeomorphic
to e(U).

Proof. Since e is always continuous, we need only show that the topology α on e(U)
is stronger than that induced by the norm. This is a consequence of the fact that the
unit ball of E′ is one of the equicontinuous τp-compact discs in F(U) which define the
topology α. �
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If E′ ⊂ F(U), we can consider the projection π : F(U)′ → E′′ given by π(φ) = φ|E′ .
When dealing with some algebras of analytic functions, evaluation on elements of the
bidual E′′ is defined, so the range of π contains elements in E′′. However, the elements
of F∗(U) are always mapped into E, i.e. π(F∗(U)) is contained in E.

Proposition 3.2. Let E be a Banach space and suppose that E′ ⊂ F(U). If φ ∈
F∗(U), then π(φ) belongs to E.

Proof. Let z = π(φ) and take (st)t ⊂ X such that st → φ in the topology α. Each st

can be written as
st =

∑
at

iext
i
.

Let xt =
∑

at
ix

t
i. For γ ∈ BE′ we have that

γ(xt) =
∑

at
iγ(xt

i) = Lγ(st),

which converges to Lγ(φ) = z(γ) uniformly for γ ∈ BE′ . This means that xt converges
to z in the norm and then z ∈ E. �

We now assume that F(E) is an algebra of analytic functions and denote by FM
∗ (E)

the set of elements in F∗(E) that are multiplicative. Clearly, e(E) is contained in F∗(E).
We see that these two sets often coincide.

Proposition 3.3. Let E be a Banach space with the bounded approximation property
and let F(E) be an algebra of analytic functions where polynomials are σ(F(E),F∗(E))-
dense. Then FM

∗ (E) = e(E).

Proof. Let Φ ∈ FM
∗ (E) and let z = Φ|E′ . Proposition 3.2 implies that z ∈ E. Let us

see that Φ(P ) = P (z) for every P ∈ P (kE), for any k ∈ N.
We fix P . By the bounded approximation property, for every compact subset K ⊂ E

and every ε > 0 there exists a finite-type polynomial PK,ε such that ‖P − PK,ε‖K < ε

and the collection (PK,ε)K,ε is bounded. Note that, since PK,ε is a finite-type polynomial
and Φ is linear and multiplicative,

Φ(PK,ε) = PK,ε(z). (3.1)

Let (st)t ⊂ X such that st
α−→ Φ. If we define B = Γ{PK,ε} ∪ {P} ⊂ P (kE), then st →

Φ uniformly on B (B is bounded and therefore equicontinuous and τp-compact). Given
ε > 0, there exists t0 such that

|LQ(st0) − Φ(Q)| < ε ∀Q ∈ B. (3.2)

Since st0 can be written as st0 =
∑

aixi (finite sum), there exists a finite-type polynomial
P0 ∈ B such that

|LP0(st0) − LP (st0)| < ε, (3.3)

|LP0(z) − LP (z)| < ε (equivalently, |P0(z) − P (z)| < ε). (3.4)
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So we have

|Φ(P ) − P (z)| � |Φ(P ) − LP (si0)| + |LP (si0) − LP0(si0)|
+ |LP0(si0) − Φ(P0)| + |Φ(P0) − P0(z)| + |P0(z) − P (z)|

< ε + ε + ε + 0 + ε

by (3.1)–(3.4).
Consequently, Φ(P ) = P (z) for every P ∈ P (kE), for any k ∈ N, and, by density,

Φ = ez. �

Let U be an open subset of the Banach space E and F(U) be an algebra of analytic
functions in which polynomials are σ(F(U),F∗(U))-dense. We define

UF := π(FM
∗ (U)).

Given Φ in FM
∗ (U) we set z = π(Φ). As in the previous proposition, we can see that

Φ(P ) = P (z) for each polynomial P on E. As a consequence, if π(Φ1) = π(Φ2), we
obtain Φ1(P ) = Φ2(P ) for all P and, by density, Φ1 = Φ2. Therefore, we have that π is
a bijection between UF and FM

∗ (U).
If f ∈ F(U), we can define fF : UF → C by fF (z) = Φ(f), where π(Φ) = z. The

remarks in the previous paragraph show that fF is well defined. Note that the mapping
f �→ fF is linear and multiplicative. Moreover, if we take z ∈ UF and define eF (z) by
eF (z)(f) = fF (z), we have a mapping eF : UF → FM

∗ (U), which is the inverse of π. Also,
eF is an extension of the mapping e defined in the previous section. With this notation
we have the following lemma.

Lemma 3.4. Let E be a Banach space with the bounded approximation property. Let
F(U) be an algebra of analytic functions where polynomials are σ(F(U),F∗(U))-dense.
Then FM

∗ (U) = eF (UF ).

We will say that an open subset U of E is F-regular if UF = U . Clearly, if U is F-
regular, e coincides with eF . In what follows, V will be an open subset of a Banach
space G. When necessary, we will use the notation eU for the mapping e associated with
an open set U .

In this setting, a mapping A : F(U) → F(V ) will be called a composition operator if
there exists a g ∈ wF(V, U) such that Af = f ◦ g for all f ∈ F(U). We have the following
characterization of composition operators.

Theorem 3.5. Let E be a Banach space with the bounded approximation prop-
erty and let F(U) be an algebra of analytic functions on U where polynomials are
σ(F(U),F∗(U))-dense. Suppose that U is F-regular and let A : F(U) → F(V ) be
a homomorphism. Then A is a composition operator if and only if A = T ′, where
T : F∗(V ) → F∗(U) is a continuous operator.

Proof. If A : F(U) → F(V ) is a composition operator, say A(f) = f ◦ g, we can
consider the mapping eU ◦ g : V → F∗(U). For each L = Lf ∈ (F∗(U))′, we have

Lf ◦ eU ◦ g = f ◦ g = A(f) ∈ F(V ).
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Therefore, eU ◦ g belongs to wF(V, F∗(U)) and there exists a continuous operator

T = TeE ◦ g : F∗(V ) → F∗(U)

such that eU ◦ g = T ◦ eV . It is easy to check that A = T ′.
Conversely, suppose A = T ′. Since A is a multiplicative operator, T (e(V )) is contained

in FM
∗ (U) = e(U) (the latter equality follows from the previous lemma and the fact that

U is F-regular). Therefore, we can define g : V → U by g(y) = x if T (ey) = ex. Now
Af(y) = T ′(Lf )(ey) = Lf (T (ey)) = Lf (eg(y)) = f(g(y)) and it follows that Af = f ◦ g.

Let us see that g belongs to wF(V, U). By Lemma 3.1, U and V are homeomorphic
to e(U) and e(V ) and, since T is continuous, g is continuous. Moreover, if γ ∈ E′,
γ ◦ g = Aγ ∈ F(V ). Thus, g ∈ wF(V, U). �

Suppose that U is not F-regular but that there exists a g ∈ wF(V, E) whose image
is contained in UF such that Af(x) = fτ ◦ g(x) for all x ∈ V . We can then find
T : F∗(V ) → F∗(V ) such that A = T ′ just as before. Conversely, if A = T ′, the previ-
ous construction leads us to a mapping g : V → UF such that Af(x) = fτ ◦ g(x).
In fact, g belongs to wF(V, E). To see this, we must show that g is continuous. But
g = πU ◦ T ◦ eV . Since BE′ is an equicontinuous τp-compact subset of F(U), πU is con-
tinuous from (FM

∗ (U), α) to (UF , ‖ · ‖) and therefore so is g. Also, γ ◦ g = A(γ) ∈ F(U)
for all γ ∈ E′. We have shown the following result.

Corollary 3.6. Let E be a Banach space with the bounded approximation prop-
erty and let F(U) be an algebra of analytic functions on U where polynomials are
σ(F(U),F∗(U))-dense. Let A : F(U) → F(V ) be a homomorphism. The following are
equivalent:

(a) there exists a function g ∈ wF(V, E) whose image is contained in UF such that
Af(x) = fF ◦ g(x) for all x ∈ V ;

(b) A = T ′, for some continuous operator T : F∗(V ) → F∗(U).

In the previous results, the hypotheses were used only in one direction. With the same
proof, we see that a composition operator is the transpose of an operator between the
preduals in a much more general situation, as follows.

Proposition 3.7. Let E and G be locally convex spaces and let U ⊂ E and V ⊂ G

be open subsets. If A : F(U) → F(V ) is a composition operator, then there exists a
continuous operator T : F∗(V ) → F∗(U) such that A = T ′.

4. Operators on H∞(U) and Hb(U)

We denote by H∞(U) the space of bounded holomorphic functions on U . This is a Banach
space when equipped with the supremum norm. Mujica [10] has constructed a Banach
predual G∞(U) of H∞(U). A characterization of this predual is

G∞(U) = {φ ∈ H∞(U)′ : φ is τ0-continuous on the unit ball of H∞(U)}.
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The construction given in § 2 coincides with G∞(U) [4]. We obtain the following char-
acterization of composition operators on H∞(U).

Theorem 4.1. Let A : H∞(U) → H∞(V ) be a multiplicative operator. If E has
the bounded approximation property and U is bounded and absolutely convex, then the
following conditions are equivalent:

(a) A is a composition operator;

(b) A = T ′ for some continuous operator T : G∞(V ) → G∞(U);

(c) A is τp-to-τp continuous;

(d) A is τ0-to-τ0 continuous.

Proof. (a) =⇒ (c) and (a) =⇒ (d) are straightforward. We suppose that (c) holds
and let φ ∈ G∞(V ). By (c) and the characterization of G∞(V ), φ ◦ A is τp-continuous
on the unit ball of H∞(U). The topologies τp and τ0 coincide on this unit ball [6,
Lemma 3.25]. We then have that φ ◦ A is τ0-continuous on the unit ball of H∞(U) and
consequently φ ◦ A belongs to G∞(U). This shows that A′ : H∞(V )′ → H∞(U)′ maps
G∞(V ) in G∞(U). Therefore, A is the transpose of the restriction of A′ to G∞(V ) and
we have (b). In an analogous way we have (d) =⇒ (b).

Finally, to see that (b) =⇒ (a) let us check that we may apply Theorem 3.5. Since U is
absolutely convex, it is H∞-regular. Indeed, if z ∈ UH∞ \ U , we choose γ ∈ E′ such that
γ(z) = 1 and supx∈U |γ(x)| < 1. The sequence (γn)n is in the unit ball of H∞(U) and
τ0-converges to zero. If Φ is such that π(Φ) = z, we have on the one hand that Φ(γn) → 0.
On the other hand, Φ(γn) = Φ(γ)n = γ(z)n = 1, which is a contradiction. Moreover,
polynomials are (H∞(U), G∞(U))-dense: the Taylor series expansion of a function f ∈
H∞(U) τ0-converges to f and is bounded. Since elements in G∞(U) are τ0-continuous on
bounded subsets of H∞(U), density follows. Now (a) is a consequence of Theorem 3.5. �

Now we turn our attention to holomorphic functions of bounded type. We say that
B ⊂ U is a U -bounded set if it is bounded and dist(B, E \ U) > 0. We will denote by
Hb(U) the space of holomorphic functions f : U → C that are bounded on U -bounded
sets, i.e. ‖f‖B := sup{|f(x)| : x ∈ B} < ∞ for all U -bounded sets B. Hb(U) is a Fréchet
algebra when endowed with the topology of the uniform convergence on U -bounded
subsets of U . A fundamental sequence of U -bounded sets is given by

Un =
{

x ∈ U : ‖x‖ < n and d(x, U c) >
1
n

}
.

The topology on Hb(U) is given by uniform convergence on each Un.
When the construction described in § 2 is applied to Hb(U), we obtain the space Pb(U),

constructed in [7]. A characterization of this space was given in [11]: for each sequence
of positive numbers (αn)n, we define

Bα =
{

f ∈ Hb(U) : sup
Un

|f | � αn

}
.
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Now, Pb(U) is the set of all φ ∈ Hb(U)′ that are τ0-continuous on Bα for all α. In [7,
Proposition 3], the authors give a description of the multiplicative elements of Pb(E)
when E has the approximation property.

If U ⊂ E is open and absolutely convex, using the proof that showed the H∞-regularity
of U , we can see that it is Hb-regular. Also, polynomials are (Hb(U),Pb(U))-dense. In
fact, they are dense with the strong dual topology on Hb(U). Indeed, the Taylor series
expansion of a function f ∈ Hb(U) converges uniformly on U -bounded sets. But uniform
convergence on U -bounded sets is precisely the strong dual topology on Hb(U). We have
the following result.

Theorem 4.2. Let E be a Banach space with the bounded approximation property
and let U ⊂ E and V ⊂ G be open subsets, with U absolutely convex. If A : Hb(U) →
Hb(V ) is a homomorphism, the following are equivalent:

(a) A is a composition operator;

(b) A = T ′, where T : Pb(V ) → Pb(U) is a continuous operator;

(c) A is τp-to-τp continuous;

(d) A is τ0-to-τ0 continuous.

Proof. Again, (a) =⇒ (c) and (a) =⇒ (d) are straightforward. We suppose
that (c) holds and let φ ∈ Pb(V ). By (c) and the characterization of Pb(V ), φ ◦ A is
τp-continuous on each Bα. Since the subsets Bα are locally bounded, the topologies τp

and τ0 coincide on each Bα [6, Lemma 3.25]. We have that φ ◦ A is τ0-continuous on
each Bα and consequently φ ◦ A belongs to Pb(U). This shows that A′ : H(V )′ → H(U)′

maps Pb(V ) in Pb(U). Therefore, A is the transpose of the restriction of A′ to Pb(V )
and we have (b). In an analogous way we have (d) =⇒ (b). (b) =⇒ (a) follows from
Theorem 3.5. �

If both U and V satisfy the conditions of Theorem 4.1 and the operator A is an
isomorphism, the function g is invertible, with g−1 in H∞(U, V ). Therefore, an isomor-
phism between the algebras (H∞(U), τ0) and (H∞(U), τ0) is equivalent to the analytic
equivalence of U and V . The existence of such biholomorphic functions implies that the
spaces E and G are isomorphic as Banach spaces, since the differential at any point is
an isomorphism. Moreover, if U and V are the unit balls of E and G, the isomorphism is
isometric [9]. The situation for Hb(U) is analogous. Thus, we have the following results
(see also [5,13], where similar results have been obtained for different algebras).

Corollary 4.3. Let U ⊂ E and V ⊂ G be bounded, open and absolutely convex and
suppose that E and G have the bounded approximation property. Then (H∞(U), τ0)
and (H∞(V ), τ0) are topological and algebraically isomorphic if and only if U and V are
holomorphically equivalent. In this case, E and G are isomorphic Banach spaces. If U

and V are the unit balls of E and G, the spaces are isometric.
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Corollary 4.4. Let U ⊂ E and V ⊂ G open and absolutely convex and suppose that
E and G have the bounded approximation property. Then (Hb(U), τ0) and (Hb(V ), τ0)
are topological and algebraically isomorphic if and only if U and V are holomorphically
equivalent. In this case, E and G are isomorphic Banach spaces. If U and V are the unit
balls of E and G, the spaces are isometric.
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