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Abstract The notion of B-convexity for operator spaces, which a priori depends on a set of parameters
indexed by Σ, is defined. Some of the classical characterizations of this geometric notion for Banach
spaces are studied in this new context. For instance, an operator space is BΣ-convex if and only if it
has Σ-subtype. The class of uniformly non-L1(Σ) operator spaces, which is also the class of BΣ-convex
operator spaces, is introduced. Moreover, an operator space having non-trivial Σ-type is BΣ-convex.
However, the converse is false. The row and column operator spaces are nice counterexamples of this fact,
since both are Hilbertian. In particular, this result shows that a version of the Maurey–Pisier Theorem
does not hold in our context. Some other examples of Hilbertian operator spaces will be considered. In
the last part of this paper, the independence of BΣ-convexity with respect to Σ is studied. This provides
some interesting problems, which will be posed.
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1. Introduction

In the last 30 years, the notions of type and cotype of a Banach space with respect to
several orthonormal systems have been deeply investigated. It turns out that, in order
to study some geometric properties of the Banach space considered, these notions are
very useful. In a series of papers with José Garćıa-Cuerva and José Manuel Marco, we
have initiated a theory of type and cotype for operator spaces. As might be expected, the
question is to what extent these notions are related to the geometry of operator spaces.

Our previous results can be summarized as follows. In [3], we study the validity of the
Hausdorff–Young inequality for vector-valued functions defined on a non-commutative
compact group. This inequality does not make sense when our functions take values
in a Banach space, we need an operator space structure on it. This requirement goes
back to Pisier’s work [14], where non-commutative vector-valued Lebesgue spaces are
studied. In particular, this gives rise to the notions of Fourier type and cotype of an
operator space with respect to a non-commutative compact group. We investigate in [3]
the basic properties of this notion. The paper [4] is devoted to the study of the sharp
Fourier type and cotype exponents of Lebesgue spaces and Schatten classes. This is basic

649

https://doi.org/10.1017/S0013091502000834 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000834


650 J. Parcet

in the commutative theory. However, the problem of finding the sharp exponents of a
given operator space is highly non-trivial, even for the simplest case of Lebesgue spaces.
We have solved part of this problem when dealing with compact semisimple Lie groups
in [4] using the well-developed representation theory on this kind of group. Finally, [2]
deals with the general theory of type and cotype for operator spaces. First, we define
the notion of quantized orthonormal system, which plays the role of the orthonormal
system in the classical setting. Then we introduce the notions of type and cotype with
respect to such a system. In particular, this provides non-commutative extensions of the
notions of Rademacher, Steinhaus and Gaussian type and cotype. The main result in [2]
is an operator space version of the classical result of Kwapień [7], which characterizes
Hilbert spaces up to isomorphism by means of vector-valued orthogonal series. We give
several approaches to this result in the operator space setting, characterizing in such a
way OH operator spaces up to complete isomorphism by a type 2/cotype 2 condition.

These previous results show that, also in the non-commutative setting, there exists
some interaction between the theory of type and cotype and the geometry of operator
spaces. Hence, it seems that the next step in the process should be to study the notion
of B-convex operator space. Interest in B-convexity for Banach spaces was generated
by [1], where Beck studied certain strong laws of large numbers for Banach space valued
random variables. However, our motivation to study this notion for operator spaces lies
in some other characterizations of this geometric condition. For instance, the following
are equivalent for any Banach space B:

(a) B is B-convex;

(b) B does not contain l1n uniformly;

(c) B has Rademacher subtype;

(d) B has non-trivial Rademacher type;

(e) B is K-convex.

Giesy proved in [5] the equivalence between (a) and (b), while Pisier proved the others.
The proof of the equivalence between (a), (c) and (d) can be found in [11]. Finally,
the equivalence between B-convexity and K-convexity was given in [12] and is much
more complicated. For some other characterizations of B-convexity, the reader is referred
to [10]. Our aim is to study the validity of these classical characterizations for operator
spaces.

We shall follow a notation similar to that employed in [2]. Namely, let (Ω, M, µ) be
a probability measure space with no atoms and let dΣ = {dσ : σ ∈ Σ} be a family of
positive integers indexed by Σ. The quantized Steinhaus system of parameters (Σ,dΣ) is
a collection SΣ = {ζσ : Ω → U(dσ)}σ∈Σ of independent random unitary matrices, uni-
formly distributed on the unitary group U(dσ) equipped with its normalized Haar mea-
sure λσ. Such a system led us to the notion of Σ-type. There is a similar definition for the
quantized Rademacher system of parameters (Σ,dΣ). However, since we work with oper-
ator spaces (which are defined over the complex field), it will be more convenient to deal
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with the Steinhaus system. This does not make any difference since, as was mentioned
in [2], Rademacher and Steinhaus Σ-type are equivalent notions.

The organization of the paper is as follows. In § 2 we define the main notions we shall
work with, such as BΣ-convexity, Σ-type, Σ-subtype and uniformly non-L1(Σ) operator
spaces. We also prove some basic results which will be applied throughout the paper.
Some of these notions are equivalent. Namely, an operator space has Σ-subtype if and
only if it is uniformly non-L1(Σ) and each of these properties are equivalent to the
condition of being BΣ-convex. The proof of this is the content of § 3. In § 4 we work with
certain tensor submultiplicativity which generalizes the classical submultiplicativity of
the constants involved in the theory (see [11] for the details). This will be useful in order
to see the validity in our context, for the main sets of parameters (Σ,dΣ), of some well-
known classical results. In § 5 we show that the property of having non-trivial Σ-type
is stronger than BΣ-convexity. Moreover, we provide examples of BΣ-convex Hilbertian
operator spaces failing the non-trivial Σ-type condition. Some other interesting examples
will be treated. Finally, § 6 is devoted to the study of the dependence of BΣ-convexity
with respect to (Σ,dΣ). First, we prove that there is no dependence when we work only
with those sets of parameters having dΣ unbounded. Then we introduce the notion of
KΣ-convexity, and we show that the independence with respect to (Σ,dΣ) is equivalent
to seeing that an operator space is BΣ-convex if and only if it is KΣ-convex. Also a
sufficient condition for the independence, in terms of the way in which S1

n embeds in
S2(l1), is given.

Throughout this paper, some basic notions of operator spaces and vector-valued Schat-
ten classes will be assumed. The main results that we will be using can be found in [14].
Also, the main results in the theory of type for operator spaces will be assumed. The
reader is referred to [2] for a brief summary of them. Finally, throughout this work we
make a slight abuse of notation since sometimes, when there is no risk of confusion, we
shall write Σ to denote the set of parameters (Σ,dΣ).

2. The main definitions

Given an operator space E, a set of parameters (Σ,dΣ) and 1 � p < ∞, we define the
spaces Lp

E(Σ) as follows:

Lp
E(Σ) =

{
A ∈

∏
σ∈Σ

Mdσ
⊗ E : ‖A‖Lp

E(Σ) =
(∑

σ∈Σ

dσ‖Aσ‖p
Sp

dσ
(E)

)1/p

< ∞
}

,

L∞
E (Σ) =

{
A ∈

∏
σ∈Σ

Mdσ ⊗ E : ‖A‖L∞
E (Σ) = sup

σ∈Σ
‖Aσ‖S∞

dσ
(E) < ∞

}
,

where we write Mn for the vector space of n × n complex matrices and Sp
n(E) stands for

the Schatten p-class over Mn with values in E. We shall also use the infinite-dimensional
Schatten classes Sp(E) with values in E, the reader is referred to [14] for a precise
definition of these spaces. The case in which E = C will be denoted by Lp(Σ). We
impose on Lp

E(Σ) its natural operator space structure (see [3] or Chapter 2 of [14] for
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the details). Now let 1 � p � ∞ and let Γ be any subset of Σ, if ζσ are the elements of
the quantized Steinhaus system (as defined in § 1), then we define the mapping Tp(Γ, E)
by the relation

A ∈ Lp
E(Γ ) �→

∑
σ∈Γ

dσ tr(Aσζσ) ∈ L2
E(Ω).

We shall denote Tp(Σ, E) by Tp(E). For Γ finite, we also define the number ∆Γ =∑
σ∈Γ d2

σ.

Definition 2.1. Let 1 � p � 2. We say that an operator space E has Σ-type p if the
mapping Tp(E) is completely bounded.

Remark 2.2. This notion of type depends on the choice of the quantized Steinhaus
system SΣ we are working with. If we take Σ0 = N and dσ = 1 for all σ ∈ Σ0, then
we work with the classical Steinhaus system and Definition 2.1 provides a completely
bounded version of the classical definition of type. We shall refer to these parameters
as the classical set of parameters Σ0. One could think that this is the right definition
of type in the operator space setting and that there is no reason to introduce all the
quantized Steinhaus systems in the theory. But in fact, those quantized Steinhaus systems
SΣ with dΣ unbounded are sometimes the right systems to work with. One example
of this assertion is given in [2], where we show that for those systems we can obtain
an operator space version of Kwapień’s Theorem with weaker hypotheses than for the
classical Steinhaus system. Another example will be given in § 6, where we shall prove
that the notion of BΣ-convexity is independent of Σ whenever dΣ is unbounded.

Remark 2.3. Let Sq
Σ(E) be the closure in Lq

E(Ω) of the subspace spanned by the
entries {ζσ

ij : σ ∈ Σ, 1 � i, j � dσ} of the functions of SΣ with E-valued coefficients. A
version of the Khintchine–Kahane inequalities for random matrices given in [8] implies
that the norm of Sq1

Σ (E), regarded as a Banach space, is equivalent to that of Sq2
Σ (E)

whenever 1 � q1, q2 < ∞. In particular, given 1 � p � 2 and 1 � q < ∞, the validity of
the inequality

∥∥∥∥ ∑
σ∈Σ

dσ tr(Aσζσ)
∥∥∥∥

Lq
E(Ω)

� c

(∑
σ∈Σ

dσ‖Aσ‖p
Sp

dσ
(E)

)1/p

(2.1)

does not depend on the value of q. However, for 1 � q1 �= q2 < ∞, Pisier showed in [14]
that in general Sq1

Σ (E) and Sq2
Σ (E) are not completely isomorphic as operator spaces with

their natural operator space structure. Therefore, in contrast with (2.1), each choice of
the exponent 1 � q < ∞ in Definition 2.1 gives different notions of Σ-type.

Remark 2.4. The absence of Khintchine inequalities for operator spaces forces us to
choose an exponent q in the definition of Σ-type. Our choice differs from that of [2].
The reason is that in [2] (where we took q = p′ in the definition of Σ-type p) the
aim was to have a unified theory of type and cotype for uniformly bounded quantized
orthonormal systems, while here the choice q = 2 facilitates our work. However, although
the notion of Σ-type given here is not the same as in [2], we shall mainly be concerned
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with the notion of non-trivial Σ-type for which the choice of q does not matter! Namely,
let 1 � q1 < q2 < ∞ and 1 < p � 2. Let us consider the mapping Tq

p(E) given by

A ∈ Lp
E(Σ) �→

∑
σ∈Σ

dσ tr(Aσζσ) ∈ Lq
E(Ω).

The complete boundedness of Tq2
p (E) obviously implies the complete boundedness of

Tq1
p (E). Conversely, let us assume that Tq1

p (E) is completely bounded. Then, since the
cb-norm of T∞

1 (E) is 1 for any operator space E, by complex interpolation there exists
some 1 < r < p such that Tq2

r (E) is also completely bounded. That is, the notion of
non-trivial Σ-type does not depend on the choice of q in the definition of Σ-type.

We also generalize to our context some other notions of the commutative theory. For
that we shall need the numbers ∆Γ defined above for each finite Γ ⊂ Σ. Let E be an
operator space and let (Σ,dΣ) be any set of parameters. We say that E has Σ-subtype
if there exists a finite subset Γ of Σ such that

‖T2(Γ, E)‖cb < ∆1/2
Γ .

Now we define BΣ-convex and uniformly non-L1(Σ) operator spaces. As in the previous
definitions, when dealing with the classical set of parameters Σ0, we obtain a completely
bounded version of the classical notion.

Definition 2.5. Let E be an operator space and let us fix a set of parameters (Σ,dΣ).

(i) E is said to be BΣ-convex if there exists a finite subset Γ of Σ and 0 < δ � 1 such
that, for any family {Aσ ∈ Mdσ ⊗ S2(E)}σ∈Γ , we have

1
∆Γ

inf
Bσunitary

∥∥∥∥ ∑
σ∈Γ

dσ tr(AσBσ)
∥∥∥∥

S2(E)
� (1 − δ) max

σ∈Γ
‖Aσ‖S∞

dσ
(S2(E)).

(ii) E is said to contain L1(Γ ) λ-uniformly if, for each finite subset Γ of Σ, there exists
a subspace FΓ of S2(E) and a linear isomorphism ΛΓ : L1(Γ ) → FΓ such that

‖ΛΓ ‖cb‖Λ−1
Γ ‖ � λ.

E is uniformly non-L1(Σ) if it does not contain L1(Γ ) λ-uniformly for some λ > 1.

Remark 2.6. The reader could expect that, in the given definition of containing
L1(Γ ) λ-uniformly, we should require that ‖ΛΓ ‖cb‖Λ−1

Γ ‖cb � λ. However, we have given
an intermediate notion between that condition and the classical notion, which uses the
Banach–Mazur distance. The reason for that will become clear in Theorem 3.2.

Remark 2.7. For the classical set of parameters Σ0, the given definition of containing
L1(Γ ) λ-uniformly can be rephrased by saying that S2(E) contains l1n λ-uniformly in the
Banach space sense. Namely, the cb-norm of ΛΓ coincides in this case with its operator
norm since it is defined on a max operator space.
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Remark 2.8. We shall see in § 3 that Definition 2.5 does not change if we use Sp(E)
instead of S2(E) for any 1 < p < ∞.

We need to prove the following result which will be used sometimes in this paper and
for which we have not found any reference.

Lemma 2.9. Let E be an operator space and let n be a positive integer.

(a) If 1 � p < q � ∞, then ‖A‖Sp
n(E) � n1/p−1/q‖A‖Sq

n(E).

(b) If ‖A‖S1
n(E) =

√
n‖A‖S2

n(E), then ‖A‖S1
n(E) = n‖A‖S∞

n (E).

Proof. If p = 1 and q = ∞, then (a) follows easily from Corollary 9.8 of [13]. The
general case follows by complex interpolation. Let us prove (b). By homogeneity, we
assume without loss of generality that ‖A‖S2

n(E) = 1. On the other hand, by Theorem 1.5
of [14], we know that

‖A‖S2
n(E) = inf

A=αBβ
‖α‖S4

n
‖B‖S∞

n (E)‖β‖S4
n

= 1,

where α, β ∈ Mn and B ∈ Mn ⊗ E. Moreover, if F = span{Aij : 1 � i, j � n}, we can
take B ∈ Mn ⊗ F . In particular, for all k � 1 there exist αk, βk ∈ Mn and Bk ∈ Mn ⊗ F

such that A = αkBkβk, 1 � ‖αk‖S4
n

< 1 + 1/k and ‖Bk‖S∞
n (F ) = ‖βk‖S4

n
= 1. By the

finite dimensionality of F , we know that the sequence (αk, Bk, βk) belongs to a compact
subset of S4

n × S∞
n (E) × S4

n. Thus, there exist α0, β0 ∈ Mn and B0 ∈ Mn ⊗ F such that
A = α0B0β0 and ‖α0‖S4

n
= ‖B0‖S∞

n (F ) = ‖β0‖S4
n

= 1. But then, again by Theorem 1.5
of [14],

‖α0‖S2
n
‖β0‖S2

n
� ‖A‖S1

n(E) =
√

n.

Moreover, taking p = 2 and q = 4, (a) gives ‖α0‖S2
n
, ‖β0‖S2

n
� n1/4. In summary, we get

‖α0‖S2
n

= ‖β0‖S2
n

= n1/4 and ‖α0‖S4
n

= ‖β0‖S4
n

= 1.

Then, it is well known that there exists U, V ∈ U(n) such that α0 = n−1/4U and
β0 = n−1/4V . Therefore,

‖A‖S∞
n (E) � ‖α0‖S∞

n
‖B0‖S∞

n (E)‖β0‖S∞
n

= n−1/2.

This gives ‖A‖S1
n(E) � n‖A‖S∞

n (E), and the reverse inequality follows from (a). �

3. The equivalent notions

In this section we show the equivalence between some of the notions previously defined.
For that purpose we begin by fixing a set of parameters (Σ,dΣ). First, we need to prove
a technical lemma.
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Lemma 3.1. Let F be an operator space and let Γ be a finite subset of Σ. Let us
suppose that, for all ε > 0, there exist a family of matrices Xσ

ε ∈ Mdσ
⊗ F with σ ∈ Γ

and such that

(1)
(∫

Ω

∥∥∥∥ ∑
σ∈Γ

dσ tr(Xσ
ε ζσ(ω))

∥∥∥∥
2

F

dµ(ω)
)1/2

� ∆Γ − ε.

(2)
(∑

σ∈Γ

dσ‖Xσ
ε ‖2

S2
dσ

(F )

)1/2

= ∆1/2
Γ .

Then
max
σ∈Γ

‖Xσ
ε ‖S∞

dσ
(F ) � 1 + ξ(ε),

with ξ(ε) → 0+ as ε → 0+.

Proof. Let U be an ultrafilter on R+ containing all the intervals (0, ε) with ε > 0 and
let FU be the corresponding ultraproduct operator space. Then we define Xσ = (Xσ

ε )U
for σ ∈ Γ . That is, Xσ ∈ Mdσ ⊗ FU . We obviously have

(∫
Ω

∥∥∥∥ ∑
σ∈Γ

dσ tr(Xσζσ(ω))
∥∥∥∥

2

FU

dµ(ω)
)1/2

� ∆Γ and
(∑

σ∈Γ

dσ‖Xσ‖2
S2

dσ
(FU )

)1/2

= ∆1/2
Γ .

By the Hölder inequality and Lemma 2.9, we can write

∆2
Γ �

∫
Ω

(∑
σ∈Γ

dσ‖Xσ‖S1
dσ

(FU )‖ζσ(ω)‖S∞
dσ

)2

dµ(ω)

=
(∑

σ∈Γ

dσ‖Xσ‖S1
dσ

(FU )

)2

�
(∑

σ∈Γ

dσ

√
dσ‖Xσ‖S2

dσ
(FU )

)2

� ∆Γ

∑
σ∈Γ

dσ‖Xσ‖2
S2

dσ
(FU ) = ∆2

Γ .

In particular, in this case, Lemma 2.9 and the Hölder inequality are equalities. Therefore,
we obtain

‖Xσ‖S1
dσ

(FU ) =
√

dσ‖Xσ‖S2
dσ

(FU ) and dσ = c0

√
dσ‖Xσ‖S2

dσ
(FU )

for some positive constant c0 and any σ ∈ Γ . Now, Lemma 2.9 gives ‖Xσ‖S∞
dσ

(FU ) = 1/c0.
But c0 = 1 since

1
c2
0
∆Γ =

∑
σ∈Γ

dσ‖Xσ‖2
S2

dσ
(FU ) = ∆Γ .

So, we have maxσ∈Γ ‖Xσ‖S∞
dσ

(FU ) = 1. Finally, by the isometry S∞
dσ

(FU ) = S∞
dσ

(F )U (see
Chapter 5 of [14]) and the definition of ultraproduct operator space, the result follows.

�
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Theorem 3.2. Let E be an operator space and let us fix a set of parameters (Σ,dΣ).
The following are then equivalent.

(a) E has Σ-subtype.

(b) E is BΣ-convex.

(c) E is uniformly non-L1(Σ).

Proof. Let us suppose that E has Σ-subtype, we shall see that E is BΣ-convex. We
know that ‖T2(Γ, E)‖cb = (1−δ)∆1/2

Γ for some Γ ⊂ Σ finite and some 0 < δ � 1. Hence,
we can write

1
∆Γ

inf
Bσunitary

∥∥∥∥ ∑
σ∈Γ

dσ tr(AσBσ)
∥∥∥∥

S2(E)
� 1

∆Γ

∥∥∥∥ ∑
σ∈Γ

dσ tr(Aσζσ)
∥∥∥∥

S2(L2
E(Ω))

� (1 − δ)

∆1/2
Γ

‖A‖S2(L2
E(Γ )).

The result then follows since, by Lemma 2.9, we have

‖A‖L2
S2(E)

(Γ ) � ∆1/2
Γ max

σ∈Γ
‖Aσ‖S∞

dσ
(S2(E)).

Now, to see that BΣ-convex operator spaces are uniformly non-L1(Σ), we assume that
E contains L1(Γ ) λ-uniformly for all λ > 1 and we have to see that E is not BΣ-convex.
We know that, for all λ > 1 and all Γ ⊂ Σ finite, there exists a subspace FΓ of S2(E)
and some isomorphism ΛΓ : L1(Γ ) → FΓ

A ∈ L1(Γ ) �→
∑
σ∈Γ

dσ∑
i,j=1

aσ
ijx

σ
ij ∈ FΓ , where Aσ = (aσ

ij),

such that ‖ΛΓ ‖cb = 1 and ‖Λ−1
Γ ‖ � λ. On the other hand, if σ ∈ Γ and we define the

matrix Xσ = d−1
σ (xσ

ij), we have

‖Xσ‖S∞
dσ

(S2(E)) = ‖tr(Xσ·)‖cb(S1
dσ

,S2(E)) � ‖ΛΓ ‖cb = 1. (3.1)

Hence, by the estimate for the norm of Λ−1
Γ and (3.1), we obtain

1
∆Γ

inf
Bσunitary

∥∥∥∥ ∑
σ∈Γ

dσ tr(XσBσ)
∥∥∥∥

S2(E)
� 1

λ
max
σ∈Γ

‖Xσ‖S∞
dσ

(S2(E))

since ‖B‖L1(Γ ) = ∆Γ whenever Bσ ∈ U(dσ) for all σ ∈ Γ . In particular, taking λ → 1+,
we conclude that the operator space E is not BΣ-convex.

Finally, let us assume that ‖T2(Γ, E)‖cb = ∆1/2
Γ for all Γ ⊂ Σ finite. We have to

see that E contains L1(Γ ) λ-uniformly for all λ > 1. By Lemma 1.7 of [14], we know
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that ‖T2(Γ, E)‖cb = ‖T2(Γ, S2(E))‖. In particular, for all ε > 0 there exists a family of
matrices Xσ

ε ∈ Mdσ
⊗ S2(E) such that∫

Ω

∥∥∥∥ ∑
σ∈Γ

dσ tr(Xσ
ε ζσ(ω))

∥∥∥∥
2

S2(E)
dµ(ω) � ∆2

Γ − ε and
∑
σ∈Γ

dσ‖Xσ
ε ‖2

S2
dσ

(S2(E)) = ∆Γ .

Moreover, by the Hölder inequality we obtain∥∥∥∥ ∑
σ∈Γ

dσ tr(Xσ
ε ζσ(ω))

∥∥∥∥
S2(E)

�
∑
σ∈Γ

dσ‖Xσ
ε ‖S2

dσ
(S2(E))‖ζσ(ω)‖S2

dσ
� ∆Γ .

That is, if we set

fε(ω) =
∥∥∥∥ ∑

σ∈Γ

dσ tr(Xσ
ε ζσ(ω))

∥∥∥∥
2

S2(E)

for ω ∈ Ω, then we have

0 � fε � ∆2
Γ and ∆2

Γ − ε �
∫

Ω

fε(ω) dµ(ω) � ∆2
Γ .

In particular, µ{ω ∈ Ω : fε(ω) < ∆2
Γ − kε} � 1/k for all k � 1. On the other hand, if we

fix Uσ
0 ∈ U(dσ) for any σ ∈ Γ , we define

U0(σ, δ) = {Uσ ∈ U(dσ) : ‖Uσ − Uσ
0 ‖S2

dσ
< δ}.

Then we recall that, by the independence of the random matrices ζσ and their uniform
distribution in U(dσ) with respect to the normalized Haar measure λσ in U(dσ), we have

µ{ω ∈ Ω : ζσ(ω) ∈ U0(σ, δ), σ ∈ Γ} =
∏
σ∈Γ

λσ(U0(σ, δ)) > 0.

Therefore, by choosing k0(δ) such that

k0(δ)−1 < µ{ω ∈ Ω : ζσ(ω) ∈ U0(σ, δ), σ ∈ Γ},

we obtain the following inequality:

µ{ω ∈ Ω : fε(ω) < ∆2
Γ − k0(δ)ε} < µ{ω ∈ Ω : ζσ(ω) ∈ U0(σ, δ), σ ∈ Γ}.

That is, there exists some ω0 ∈ Ω such that ζσ(ω0) ∈ U0(σ, δ) for all σ ∈ Γ and such that
fε(ω0) � ∆2

Γ −k0(δ)ε. These two properties give us the following sequence of inequalities:√
∆2

Γ − k0(δ)ε �
∥∥∥∥ ∑

σ∈Γ

dσ tr(Xσ
ε [ζσ(ω0) − Uσ

0 ])
∥∥∥∥

S2(E)
+

∥∥∥∥ ∑
σ∈Γ

dσ tr(Xσ
ε Uσ

0 )
∥∥∥∥

S2(E)

�
∑
σ∈Γ

dσ‖Xσ
ε ‖S2

dσ
(S2(E))‖ζσ(ω0) − Uσ

0 ‖S2
dσ

+
∥∥∥∥ ∑

σ∈Γ

dσ tr(Xσ
ε Uσ

0 )
∥∥∥∥

S2(E)

< δ∆Γ +
∥∥∥∥ ∑

σ∈Γ

dσ tr(Xσ
ε Uσ

0 )
∥∥∥∥

S2(E)
.
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Taking ε(δ) = δ/k0(δ), it is easy to check that there exists γ1(δ) > 0 such that∥∥∥∥ ∑
σ∈Γ

dσ tr(Xσ
ε(δ)U

σ
0 )

∥∥∥∥
S2(E)

� ∆Γ − γ1(δ) (3.2)

and where ε(δ), γ1(δ) → 0+ as δ → 0+. In particular, since for some other choice of the
unitary matrices Uσ

0 (σ ∈ Γ ) we have the same value for λσ(U0(σ, δ)) (by the translation
invariance of the Haar measure λσ), we obtain that k0(δ) does not depend on the chosen
matrices Uσ

0 (σ ∈ Γ ) and (3.2) holds for any family of unitary matrices Uσ ∈ U(dσ)
with σ ∈ Γ . Now, given A ∈ L1(Σ) of norm 1, we use polar decomposition to write
Aσ = Uσ

A|Aσ| with Uσ
A ∈ U(dσ). We then have

∆Γ − γ1(δ) �
∥∥∥∥ ∑

σ∈Γ

dσ tr(Xσ
ε(δ)U

σ
A[I − |Aσ|])

∥∥∥∥
S2(E)

+
∥∥∥∥ ∑

σ∈Γ

dσ tr(Xσ
ε(δ)A

σ)
∥∥∥∥

S2(E)

�
∑
σ∈Γ

dσ‖Xσ
ε(δ)‖S∞

dσ
(S2(E))‖I − |Aσ|‖S1

dσ
+

∥∥∥∥ ∑
σ∈Γ

dσ tr(Xσ
ε(δ)A

σ)
∥∥∥∥

S2(E)

� (1 + ξ(δ))(∆Γ − 1) +
∥∥∥∥ ∑

σ∈Γ

dσ tr(Xσ
ε(δ)A

σ)
∥∥∥∥

S2(E)
,

where the last inequality follows by Lemma 3.1. Let us consider the subspace FΓ of S2(E)
spanned by the entries of Xσ

ε(δ), where σ runs over Γ . The last inequality then gives that
the linear isomorphism ΛΓ , given by

A ∈ L1(Γ ) �→
∑
σ∈Γ

dσ tr(Xσ
ε(δ)A

σ) ∈ FΓ ,

satisfies ‖Λ−1
Γ ‖ � 1+γ2(δ) for some γ2(δ) > 0 satisfying γ2(δ) → 0+ as δ → 0+. Moreover,

we have that ‖ΛΓ ‖cb � 1 + ξ(δ). Namely, given A ∈ S1(L1(Γ )), we have∥∥∥∥ ∑
σ∈Γ

dσ tr(Xσ
ε(δ)A

σ)
∥∥∥∥

S1(S2(E))
�

∑
σ∈Γ

dσ‖Xσ
ε(δ)‖S∞

dσ
(S2(E))‖Aσ‖S1

dσ
(S1)

� (1 + ξ(δ))‖A‖S1(L1(Γ )).

The first inequality follows by an inequality of Hölder type (see, for example, Lemma 3.3
of [3]). That is, we have seen that ‖ΛΓ ‖cb = ‖ΛΓ ⊗ IS1‖ � 1 + ξ(δ). Therefore,
‖ΛΓ ‖cb‖Λ−1

Γ ‖ � 1 + γ3(δ) with γ3(δ) → 0+ as δ → 0+. Therefore, taking δ → 0+ we
obtain that E contains L1(Γ ) λ-uniformly for all λ > 1, as we wanted. This completes
the proof. �

Remark 3.3. As in Lemma 3.1, we could have used an argument with ultraproducts
to show that uniformly non-L1(Σ) operator spaces have Σ-subtype. This alternative
proof is a bit shorter. However, for the sake of clarity, we have preferred to give the more
explicit argument used in the proof of Theorem 3.2.
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As was pointed out in Remark 2.8, it is very natural to wonder whether Definition 2.5
is affected if we change S2(E) to Sp(E) with 1 < p < ∞. The notion of BΣ-convexity
should not depend on the choice of the exponent p and, fortunately, this is the case.

Corollary 3.4. An operator space E is BΣ-convex if and only if there exists a finite
subset Γ of Σ such that

1
∆Γ

inf
Bσunitary

∥∥∥∥ ∑
σ∈Γ

dσ tr(AσBσ)
∥∥∥∥

Sp(E)
� (1 − δ) max

σ∈Γ
‖Aσ‖S∞

dσ
(Sp(E))

for some 1 < p < ∞ and any family {Aσ ∈ Mdσ ⊗ Sp(E)}σ∈Γ .

Proof. By Lemma 1.7 of [14] and Theorem 3.2, we know that E is BΣ-convex if and
only if there exists a finite subset Γ of Σ such that ‖T2(Γ, S2(E))‖ < ∆1/2

Γ . On the other
hand, given 1 < p, q < ∞, we claim that

‖T2(Γ, Sp(E))‖ < ∆1/2
Γ ⇐⇒ ‖T2(Γ, Sq(E))‖ < ∆1/2

Γ . (3.3)

By the Hölder inequality we have ‖T2(Γ, F )‖ � ∆1/2
Γ for any operator space F . Then

(3.3) follows by complex interpolation with S1(E) and S∞(E). In particular, given 1 <

p < ∞, we have that E is BΣ-convex if and only if there exists Γ ⊂ Σ finite such that
‖T2(Γ, Sp(E))‖ < ∆1/2

Γ . But, proceeding as in the proof of Theorem 3.2, we can see that
the desired inequality is equivalent to this last condition. This completes the proof. �

Remark 3.5. By similar arguments, if 1 < p < ∞, we can also replace S2(E) by
Sp(E) in the definition of uniformly non-L1(Σ) operator spaces.

4. Tensor submultiplicativity

As we pointed out in Remark 2.2, it seems that the classical set of parameters and those
Σ having dΣ unbounded are the most relevant ones. In this section we shall see that,
for these sets of parameters Σ, the notion of BΣ-convexity is stable under complete
isomorphy and the notion of containing L1(Γ ) λ-uniformly does not depend on λ > 1.
The commutative analogues of these results are very well known (see, for example, [5]
or [11]). In order to prove these results, we need to fix some notation. Let (Σ,dΣ) be a
set of parameters. Given two subsets Γ 1 and Γ 2 of Σ, we define their tensor product as

Γ 1 ⊗ Γ 2 = {σ1 ⊗ σ2 : σj ∈ Γ j , j = 1, 2}, where dσ1⊗σ2 = dσ1dσ2 .

We say that (Σ,dΣ) is ⊗-closed if, for any pair of subsets Γ 1 and Γ 2 of Σ, there exists an
injective mapping j : Γ 1⊗Γ 2 → Σ such that dj(σ1⊗σ2) = dσ1⊗σ2 for all σ1⊗σ2 ∈ Γ 1⊗Γ 2.
Also, given Γ ⊂ Σ finite, we define

NΓ (E) =
1√
∆Γ

‖T2(Γ, E)‖cb.

Lemma 4.1. If (Σ,dΣ) is ⊗-closed, then NΓ 1⊗Γ 2(E) � NΓ 1(E)NΓ 2(E) for any pair
of finite subsets Γ 1 and Γ 2 of Σ.
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Proof. Let us consider a family

A = {Aσ1⊗σ2 ∈ Mdσ1dσ2
⊗ S2(E) : σ1 ∈ Γ 1, σ2 ∈ Γ 2}.

Let
Aσ1⊗σ2(ω) = ζj(σ1⊗σ2)(ω)Aσ1⊗σ2

for ω ∈ Ω. Since ζj(σ1⊗σ2) is uniformly distributed on the unitary group U(dσ1dσ2) and
ζσ1(ω1) ⊗ ζσ2(ω2) is unitary, we have

∫
Ω

∥∥∥∥ ∑
σj∈Γ j

dσ1dσ2 tr(Aσ1⊗σ2(ω))
∥∥∥∥

2

S2(E)
dµ(ω)

=
∫

Ω

∥∥∥∥ ∑
σj∈Γ j

dσ1dσ2 tr(Aσ1⊗σ2(ω)(ζσ1(ω1) ⊗ ζσ2(ω2)))
∥∥∥∥

2

S2(E)
dµ(ω)

for all ω1, ω2 ∈ Ω. Therefore, if we write

Xσ1(ω, ω2) =
∑

σ2∈Γ 2

dσ2 tr(Aσ1⊗σ2(ω)ζσ2(ω2)) ∈ Mdσ1
⊗ S2(E),

we obtain the following estimate:

∫
Ω

∥∥∥∥ ∑
σj∈Γ j

dσ1dσ2 tr(Aσ1⊗σ2(ω))
∥∥∥∥

2

S2(E)
dµ(ω)

=
∫

Ω×Ω×Ω

∥∥∥∥ ∑
σj∈Γ j

dσ1dσ2 tr(Aσ1⊗σ2(ω)(ζσ1(ω1) ⊗ ζσ2(ω2)))
∥∥∥∥

2

S2(E)
dµ(ω1) dµ(ω2) dµ(ω)

=
∫

Ω×Ω×Ω

∥∥∥∥ ∑
σ1∈Γ 1

dσ1 tr(Xσ1(ω, ω2)ζσ1(ω1))
∥∥∥∥

2

S2(E)
dµ(ω1) dµ(ω2) dµ(ω)

� NΓ 1(E)2∆Γ 1

∑
σ1∈Γ 1

dσ1

∫
Ω×Ω

‖Xσ1(ω, ω2)‖2
S2

dσ1
(S2(E)) dµ(ω2) dµ(ω)

� NΓ 1(E)2NΓ 2(E)2∆Γ 1∆Γ 2

∑
σj∈Γ j

dσ1dσ2

∫
Ω

‖Aσ1⊗σ2(ω)‖2
S2

dσ1dσ2
(S2(E)) dµ(ω)

= NΓ 1(E)2NΓ 2(E)2∆Γ 1∆Γ 2

∑
σj∈Γ j

dσ1dσ2‖Aσ1⊗σ2‖2
S2

dσ1dσ2
(S2(E)).

The last equality follows by the unitarity of ζj(σ1⊗σ2)(ω). Now, since ∆Γ 1⊗Γ 2 = ∆Γ 1∆Γ 2

we obtain the desired inequality. This completes the proof. �

Proposition 4.2. If (Σ,dΣ) is ⊗-closed, then BΣ-convexity is stable under complete
isomorphism.
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Proof. Let us assume that E is BΣ-convex and let F be an operator space completely
isomorphic to E. By Theorem 3.2, we know that there exists some Γ0 ⊂ Σ finite such
that NΓ0(E) < 1 and it suffices to see that there exists some Γ ⊂ Σ finite such that
NΓ (F ) < 1. However, if dcb(E, F ) stands for the cb-distance between E and F , we have

NΓ ⊗n
0

(F ) � dcb(E, F )NΓ ⊗n
0

(E),

where n is any positive integer and Γ⊗n
0 = Γ0 ⊗ Γ0 ⊗ · · · ⊗ Γ0 with n factors. Now, by

Lemma 4.1, we know that NΓ ⊗n
0

(E) � NΓ0(E)n. Finally, we are done by taking Γ = Γ⊗n
0

with n large enough. This completes the proof. �

Remark 4.3. Proposition 4.2 obviously holds for the classical set of parameters. On
the other hand, if we consider the set of parameters given by Σ = N × N and dσjk

= 2k,
then σ11 generates the whole set of parameters by taking tensor powers of it. This set
satisfies that dΣ is unbounded and is again ⊗-closed. Therefore, Proposition 4.2 also holds
for it. Moreover, in § 6 we shall prove that the notion of BΣ-convexity does not depend
on Σ whenever we work with sets of parameters with dΣ unbounded. In particular, we
have seen that Proposition 4.2 holds for any set of parameters with dΣ unbounded.

Proposition 4.4. Let us suppose that (Σ,dΣ) is ⊗-closed and let E be an operator
space containing L1(Γ ) λ-uniformly for some λ > 1. Then, for all τ > 1, E contains
L1(Γ ) τ -uniformly.

Proof. We have already seen in the proof of Theorem 3.2 that, if E contains L1(Γ )
λ-uniformly, we obtain

1
∆Γ

inf
Bσunitary

∥∥∥∥ ∑
σ∈Γ

dσ tr(XσBσ)
∥∥∥∥

S2(E)
� 1

λ
max
σ∈Γ

‖Xσ‖S∞
dσ

(S2(E))

for all Γ ⊂ Σ finite and a certain family of matrices Xσ ∈ Mdσ
⊗ S2(E), with σ ∈ Γ .

On the other hand, from this inequality it is not difficult to see using Lemma 2.9 that
NΓ (E) � 1/λ for all Γ ⊂ Σ finite. Now, if E is BΣ-convex, we know that there exists
some finite subset Γ0 of Σ such that NΓ0(E) < 1. Therefore, by Lemma 4.1, we would
have

1
λ

� NΓ ⊗n
0

(E) � NΓ0(E)n → 0+ as n → ∞.

This gives that E is not BΣ-convex. But, by Theorem 3.2, this is equivalent to saying
that E contains L1(Γ ) τ -uniformly for all τ > 1. This completes the proof. �

Remark 4.5. Proposition 4.4 obviously holds for the classical set of parameters.
Moreover, by arguments similar to the ones given in Remark 4.3, Proposition 4.4 also
holds for any set of parameters (Σ,dΣ) with dΣ unbounded.
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5. Non-trivial Σ-type and BΣ-convexity

In this section, Σ0 will stand for the classical set of parameters. We begin by showing
that any operator space having non-trivial Σ-type is automatically BΣ-convex. However,
the most interesting point is that, in contrast with the classical theory, the converse is
false. We shall provide examples of BΣ0-convex operator spaces failing to have Σ0-type
p for any 1 < p � 2. This is a very important difference between the commutative and
non-commutative contexts. Namely, it turns out that we cannot expect to obtain an
operator space version of the Maurey–Pisier Theorem. We recall that this result asserts
that, for any infinite-dimensional Banach space B, the supremum of those p ∈ [1, 2] for
which B has type p coincides with the minimum of those 1 � q � 2 for which B contains
lqn uniformly (see [9] for more details on this topic).

The examples we are giving are the well-known row and column operator spaces R

and C (see, for example, [13] for the definition of these spaces). This is even more
surprising since R and C are Hilbertian. Moreover, we shall provide some other examples
of Hilbertian operator spaces having sharp Σ0-type p for any 1 < p � 2, which are
obviously BΣ0-convex. Finally, we shall use a result of Pisier to show that min l2 and
max l2 are Hilbertian operator spaces failing the BΣ0-convexity.

Proposition 5.1. If E has non-trivial Σ-type, then E is BΣ-convex.

Proof. Let Γ be any finite subset of Σ and let us suppose that E has Σ-type p for
some 1 < p � 2. By the operator space version of the classical Minkowski inequality (see,
for example, [3]), we have that the natural mapping

Lp
S2(E)(Γ ) → S2(Lp

E(Γ ))

is completely contractive. In particular, if Kp(E, Σ) stands for the cb-norm of Tp(E), we
have ‖Tp(Γ, S2(E))‖ � Kp(E, Σ). Hence,

‖T2(Γ, E)‖cb = ‖T2(Γ, S2(E))‖ � ‖Tp(Γ, S2(E))‖∆1/p−1/2
Γ � Kp(E, Σ)∆1/p−1/2

Γ ,

where the first inequality follows easily from Lemma 2.9. Therefore, taking Γ large enough
that Kp(E, Σ) < ∆1−1/p

Γ , we conclude that E has Σ-subtype. Thus, E is BΣ-convex by
Theorem 3.2. This completes the proof. �

The following result has its origins in an unpublished result of Magdalena Musat which
asserts that S2(R) and S2(C) are super-reflexive Banach spaces. After some conversa-
tions, initiated by Marius Junge and Gilles Pisier, Timur Oikhberg found a surpris-
ingly simple proof of this fact. The next theorem is based on the techniques employed
there. First, we fix some notation. As usual, given 0 < θ < 1, we shall denote by
R(θ) the complex interpolation operator space (R, C)θ. Analogously, C(θ) stands for
(C, R)θ = R(1 − θ). By convention, we also set R(0) = C(1) = R and C(0) = R(1) = C.

Theorem 5.2. Let 1 � p � 2, then R(1/p) and C(1/p) are BΣ0-convex Hilbertian
operator spaces having Σ0-type p. Moreover, if 1 � p < 2, then R(1/p) and C(1/p) do
not have Σ0-type q for any p < q � 2.

https://doi.org/10.1017/S0013091502000834 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000834


B-convex operator spaces 663

Proof. Let us suppose that R(1/p) and C(1/p) are not BΣ0-convex. Then, by The-
orem 3.2 and Remark 2.7, the spaces S2(R(1/p)) and S2(C(1/p)) should not have type
greater than 1 in the Banach space sense. However, we claim that both spaces have
type 4

3 . Therefore, R(1/p) and C(1/p) are BΣ0-convex. To prove our claim we recall
that, by Theorem 1.1 of [14], we have

S2(R) = R( 1
2 ) ⊗h R ⊗h R( 1

2 ) and S2(C) = C( 1
2 ) ⊗h C ⊗h C( 1

2 )

completely isometrically. Now, since the Haagerup tensor product commutes with the
complex interpolation functor, we can write

S2(R) = (R ⊗h R ⊗h R, C ⊗h R ⊗h C)1/2,

S2(C) = (C ⊗h C ⊗h C, R ⊗h C ⊗h R)1/2

}
(5.1)

completely isometrically. But, as Banach spaces, R ⊗h R ⊗h R and C ⊗h C ⊗h C are
isometrically isomorphic to a Hilbert space. In particular, (5.1) gives that S2(R) and
S2(C) have type 4

3 in the Banach space sense. Hence, by complex interpolation, the
same happens with S2(R(1/p)) and S2(C(1/p)).

On the other hand, by the reiteration theorem for the complex interpolation method,
we have

R(1/p) = (R( 1
2 ), C)(2/p)−1 and C(1/p) = (C( 1

2 ), R)(2/p)−1.

But R( 1
2 ) = C( 1

2 ) is an OH operator space (see [13]). Therefore, it is easy to check
that R( 1

2 ) has Σ0-type 2 (see [2] for more on this topic). In particular, by complex
interpolation, we get that R(1/p) and C(1/p) have at least Σ0-type q, where

1
q

=
1 − (2/p − 1)

2
+

2/p − 1
1

=
1
p
.

That is, R(1/p) and C(1/p) have Σ0-type p. Now let p < q � 2, we want to see
that R(1/p) and C(1/p) do not have Σ0-type q. Following the notation introduced in
Remark 2.4, we obviously have that

‖Tq(Σ0, E)‖cb � ‖Tq
q(Σ0, E)‖cb = ‖Tq

q(Σ0, S
q(E))‖

for any operator space E. Hence, we just need to check that Tq
q(Σ0, S

q(E)) is not bounded
if E = R(1/p) or E = C(1/p). But, by the Khintchine–Kahane inequalities, this is
equivalent to saying that Sq(R(1/p)) and Sq(C(1/p)) do not have type q in the Banach
space sense for any p < q � 2. Let us recall that

Sq(R(1/p)) = (S∞(R(1/p)), S1(R(1/p)))1/q

= (C ⊗h R(1/p) ⊗h R, R ⊗h R(1/p) ⊗h C)1/q

= C(1/q) ⊗h R(1/p) ⊗h R(1/q).

Analogously, we obtain Sq(C(1/p)) = C(1/q) ⊗h C(1/p) ⊗h R(1/q). Let us consider the
subspace of Sq(R(1/p)) corresponding to C(1/q) ⊗h R(1/p). We can then write

C(1/q) ⊗h R(1/p) = (C ⊗h R(1/p), R ⊗h R(1/p))1/q

= ((C ⊗h R, C ⊗h C)1/p, (R ⊗h R, R ⊗h C)1/p)1/q
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completely isometrically. But, as Banach spaces, R ⊗h R and C ⊗h C are isometrically
isomorphic to S2. Therefore, we have

C(1/q) ⊗h R(1/p) = ((S∞, S2)1/p, (S2, S1)1/p)1/q = (S2p, S2p/p+1)1/q = S2pq/p+q

isometrically. Finally, since 2pq < q(p+q) whenever p < q, we have that C(1/q)⊗hR(1/p)
cannot have type q in the Banach space sense. Consequently, the same happens for
Sq(R(1/p)). A similar argument gives that Sq(C(1/p)) cannot have type q in the Banach
space sense. This completes the proof. �

Remark 5.3. In particular, by Theorem 5.2, the row and column operator spaces are
examples of BΣ0-convex Hilbertian operator spaces failing to have non-trivial Σ0-type.

Remark 5.4. Although we give more details in § 6, it is a simple consequence of
Theorem 3.2 that BΣ0-convexity is the strongest condition among the possible sets of
parameters we are working with. That is, a BΣ0-convex operator space is automatically
BΣ-convex for any other set of parameters Σ. In particular, the examples treated in
Theorem 5.2 are BΣ-convex. Moreover, the given argument to see that R(1/p) and C(1/p)
have Σ0-type p for any 1 � p � 2 remains valid for any other set of parameters Σ.

Once we have found examples of BΣ0-convex Hilbertian operator spaces having sharp
Σ0-type p for any 1 � p � 2, we now show that min l2 and max l2 are Hilbertian operator
spaces failing to be BΣ0-convex. This is based on Example 4.2 of [14], where Pisier
makes the following construction. Let M2 be the algebra of 2 × 2 complex-valued matrices
equipped with its normalized trace t and let us set (Ak, tk) = (M2, t) for any k � 1. We
then consider the so-called hyperfinite II1 factor

(M, τ) =
∞⊗

k=1

(Ak, tk).

Let Mn stand for the subalgebra of M corresponding to A1 ⊗ · · · ⊗ An. Let us consider
the element of M ⊗ min l2 given by dn = Vn ⊗ en, where we write (ei) for the canonical
basis of l2 and (Vn) is a sequence in M satisfying Vn ∈ Mn for all n � 1, EMn(Vn+1) = 0
and the canonical anti-commutation relations

ViV


j + V 


j Vi = δijI and ViVj + VjVi = 0.

Then, from these properties, Pisier shows that for all finite sequence of scalars (αk) with
1 � k � n and for all 1 � p � ∞ we have

1
2 sup

1�k�n
|αk| �

∥∥∥∥
n∑

k=1

αkdk

∥∥∥∥
Lp(M;min l2)

� sup
1�k�n

|αk|, (5.2)

where Lp(M; min l2) denotes the non-commutative Lp space defined in (M, τ) and with
values in min l2. In particular, inequalities (5.2) tell us that the Banach–Mazur distance
between some subspace of Lp(Mn; min l2) and l∞n is bounded above by 2 for all n � 1
and all 1 � p � ∞. Then, recalling the natural embedding of l1n into l∞2n and taking p = 2
in (5.2), it is easy to see that S2(min l2) contains l1n uniformly in the Banach space sense.
Therefore, by Remark 2.7 and Theorem 3.2, we have that min l2 is not BΣ0-convex. By
a duality argument, the same happens for max l2.
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6. On the independence with respect to Σ

In this last section we study the dependence of the notion of BΣ-convexity with respect
to the set of parameters Σ. We begin by showing the independence with respect to Σ

when we work with sets of parameters satisfying that dΣ is an unbounded family. After
that, we shall give two interesting equivalent formulations of the possible independence
of BΣ-convexity with respect to any set of parameters Σ.

Proposition 6.1. Let us consider two sets of parameters (Σ1,dΣ1) and (Σ2,dΣ2)
with dΣ1 and dΣ2 unbounded. Let E be an operator space, then E is BΣ1-convex if and
only if E is BΣ2-convex.

Proof. By Theorem 3.2, we just need to check that E contains L1(Γ ) λ-uniformly
(Γ ⊂ Σ1) for all λ > 1 if and only if E contains L1(Γ ) λ-uniformly (Γ ⊂ Σ2) for all
λ > 1. In particular, it suffices to see that L1(Σ1) contains L1(Γ ) λ-uniformly (Γ ⊂ Σ2)
for all λ > 1 and that L1(Σ2) contains L1(Γ ) λ-uniformly (Γ ⊂ Σ1) for all λ > 1. But
this follows from the unboundedness of dΣ1 and dΣ2 . Namely, given Γ ⊂ Σ2 finite, we
know that there exists Λ ⊂ Σ1 and a bijection τ : Γ → Λ such that dσ � dτ(σ) for all
σ ∈ Γ . In particular we can consider the linear mapping SΓ : L1(Γ ) → L1(Λ) given by

SΓ (A)τ(σ)
ij =

dσ

dτ(σ)

{
Aσ

ij if 1 � i, j � dσ,

0 otherwise.

Given the fact that SΓ is a complete isometry, L1(Σ1) contains L1(Γ ) 1-uniformly (where
Γ ⊂ Σ2). Similarly, using the unboundedness of dΣ2 , we can see that L1(Σ2) contains
L1(Γ ) 1-uniformly (Γ ⊂ Σ1). This completes the proof. �

Remark 6.2. Given two sets of parameters (Σ1,dΣ1) and (Σ2,dΣ2), we shall say that
Σ1 � Σ2 if there exists an injective mapping j : Σ1 → Σ2 such that dσ � dj(σ) for all
σ ∈ Σ1. Then, by similar arguments to those used in Proposition 6.1, it is easy to see that
BΣ1-convexity is stronger than BΣ2-convexity whenever Σ1 � Σ2. In particular, if Σ0

stands for the classical set of parameters, a BΣ0-convex operator space is automatically
BΣ-convex for any other set of parameters Σ.

Proposition 6.1 is only a small step in order to see the independence of the notion of
BΣ-convexity with respect to Σ. However, the general case seems to be more complicated.
Now, we give two different conditions which could be useful to decide whether or not the
independence with respect to Σ holds.

(A) On the notion of KΣ-convexity. In order to introduce the notion of KΣ-
convexity, we need to define the quantized version of the Gauss system. It was already
defined by Marcus and Pisier in [8]. More pertinently to the present paper, this system
was also treated in the operator space version of Kwapień’s Theorem (see [2]). Given
a set of parameters (Σ,dΣ), we consider a family of independent standard complex-
valued Gaussian random variables {γσ

ij : Ω → C : σ ∈ Σ, 1 � i, j � dσ} indexed by Σ
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and dΣ . Then, if we construct the random matrices

γσ =
1√
dσ

(γσ
ij),

we obtain the quantized Gaussian system of parameters (Σ,dΣ). On the other hand,
given an operator space E and f ∈ L2

E(Ω), we can consider the Fourier coefficients of
f with respect to this system:

f̂(σ) =
∫

Ω

f(ω)γσ(ω)
 dµ(ω) ∈ Mdσ ⊗ E.

We shall say that an operator space E is KΣ-convex if the Gaussian projection defined
as follows

f ∈ L2
E(Ω) �→

∑
σ∈Σ

dσ tr(f̂(σ)γσ) ∈ L2
E(Ω)

is a completely bounded mapping. However, it is obvious that

∑
σ∈Σ

dσ tr(f̂(σ)γσ) =
∑
σ∈Σ

dσ∑
i,j=1

∫
Ω

f(ω)γσ
ij(ω) dµ(ω)γσ

ij ,

where γσ
ij are independent standard complex-valued Gaussian random variables. Hence,

it turns out that the notion of KΣ-convexity does not depend on the set of parame-
ters Σ. Moreover, if Σ0 stands for the classical set of parameters, then any operator
space E satisfies

E KΣ-convex ⇐⇒ E KΣ0-convex

⇐⇒ S2(E) K-convex as a Banach space

⇐⇒ S2(E) B-convex as a Banach space

⇐⇒ E BΣ0-convex.

Therefore, it follows that the notion of BΣ-convexity does not depend on the set of
parameters Σ if and only if BΣ-convexity and KΣ-convexity are equivalent notions.
In particular, it provides a possible approach to check this independence. That is, the
problem is to generalize to the operator space setting Pisier’s Theorem which shows
that K-convex and B-convex Banach spaces are the same (see [12] for more details on
this topic).

(B) On how S1
n embeds in S2(l1). Let us suppose that we are given a subspace Fn

of S2(l1n2) and a linear isomorphism Φn : S1
n → Fn for each n � 1. Let us denote

by Fmin
n the subspace Fn equipped with the operator space structure inherited as a

subspace of S2(min l1n2). Then, if we write Ψn : Fmin
n → S1

n for the inverse of Φn with
the modified operator space structure on Fn, we claim that the condition

‖Φn‖cb‖Ψn‖ � k for all n � 1 and some constant k > 1 (6.1)
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implies the Σ-independence of BΣ-convexity. Namely, let E be an operator space
which contains l1n uniformly in the sense of Definition 2.5. That is, for all n � 1 there
exists a subspace Kn of S2(E) and a linear isomorphism Λn : l1n → Kn such that
‖Λn‖cb‖Λ−1

n ‖ � λ. Now, if we consider the linear isomorphism

Tn = (IS2 ⊗ Λn2) ◦ Φn : S1
n → Hn ⊂ S2(E),

the inverse operator factors as follows:

Hn → Fmin
n → S1

n

via decomposition T−1
n = Ψn ◦ (IS2 ⊗ Λ−1

n2 ). In summary, using the well-known prop-
erties of the minimal operator space structure, the following estimate follows from
condition (6.1):

‖Tn‖cb‖T−1
n ‖ � ‖Λn2‖cb‖Φn‖cb‖Ψn‖ ‖Λ−1

n2 ‖ � kλ.

This gives that E contains L1(Γ ) uniformly for any set of parameters (Σ,dΣ). There-
fore, we have proved that any BΣ-convex operator space is BΣ0-convex. In particular,
the Σ-independence of BΣ-convexity follows from Remark 6.2.

Remark 6.3. As in the Banach space case, the given definition of KΣ-convexity
should not change if we consider the Gaussian projection on Lp

E(Ω) instead of L2
E(Ω)

for any 1 < p < ∞. Fortunately, this is the case. However, this time the proof cannot
be supported by the Khintchine–Kahane inequalities as was explained in Remark 2.3.
Nevertheless, the argument is simple. Namely, if we refer to this a priori new notion as
Kp

Σ-convexity, then an operator space E is Kp
Σ-convex if and only if it is Kp

Σ0
-convex.

But this last condition means that Sp(E) is K-convex as a Banach space. Now, since
K-convex and B-convex Banach spaces are the same, we conclude that E is Kp

Σ-convex
if and only if Sp(E) is B-convex as a Banach space. But, by Corollary 3.4, we know
that this is equivalent to saying that E is BΣ0-convex. Finally, since KΣ-convexity is
equivalent to BΣ0-convexity, we are done.

Remark 6.4. Condition (6.1) holds and so Pisier’s Theorem on the equivalence
between B-convex and K-convex spaces remains valid in the non-commutative setting.
The proof of this fact, which will appear as part of a joint work with Junge [6], became
clear after this paper was submitted for publication.
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