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Abstract

The process of sleep stage identification is a labour-intensive task that involves the
specialized interpretation of the polysomnographic signals captured from a patient’s
overnight sleep session. Automating this task has proven to be challenging for data
mining algorithms because of noise, complexity and the extreme size of data. In this
paper we apply nonsmooth optimization to extract key features that lead to better
accuracy. We develop a specific procedure for identifying K-complexes, a special
type of brain wave crucial for distinguishing sleep stages. The procedure contains
two steps. We first extract “easily classified” K-complexes, and then apply nonsmooth
optimization methods to extract features from the remaining data and refine the results
from the first step. Numerical experiments show that this procedure is efficient for
detecting K-complexes. It is also found that most classification methods perform
significantly better on the extracted features.
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1. Introduction

This paper focuses on the detection of K-complexes, a special type of brain wave
characterized by a sharp sudden increase in the wave amplitude [6]. Brain activity
monitoring is part of polysomnography (PSG), a standard method used as a diagnostic
tool in sleep medicine. Among the first to study the dynamics of the brain during sleep
was Mircea Steriade (1924–2006) [17], who remained an active researcher in the area
as late as 2005 [8].
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K-complexes are defined by standardized scoring rules [15], based on the visual
appearance of the signal. Manual scoring of K-complexes is time consuming, due
to noise and the extreme size of data, and subjective, due to variations in human
perception. An accurate method for automatic detection of K-complexes would
therefore be very beneficial. However, automated detection of K-complexes is a
challenging problem. Although various algorithms have been proposed, based on
techniques including artificial neural networks [3], continuous density hidden Markov
models [10], wavelet transforms [18] and a matching pursuit approach [11], medical
doctors still report that identification accuracy is not satisfactory [9, 14].

In this paper we propose a new algorithm for detecting K-complexes. Our
procedure is based on an optimization model. We approximate the brain signal
by a wave with piecewise linear amplitude, which allows us to create an accurate
model for the wave shapes (modelling patterns) and extract relevant characteristics
(feature extraction). We minimize the deviation between the data and the modelling
patterns. In this application the sum of absolute deviations is preferable to least
squares approximation since the data are very noisy [16]. However, this approach
necessitates solving nonconvex and nonsmooth optimization problems. This is the
main difference between our approach and the existing studies: the existing approaches
are based on smooth functions, which are easier to work with but not as appropriate
for K-complex detection (see Section 4 for details). After feature extraction, we apply
classification algorithms over the obtained set of features, reducing the dimension of
the corresponding classification problems and enhancing their classification accuracy.

The paper is organized as follows. More information about the application of this
work is given in Section 2. A description of the data we use is given in Section 3.
Our proposed procedure for K-complex detection is described in detail in Section 4.
Results of numerical experiments are reported in Section 5, and conclusions and future
research directions are given in Section 6.

2. Motivation

PSG generally consists of monitoring the patient’s airflow (through both the nose
and mouth), blood pressure, electrocardiographic activity, blood oxygen level, brain
wave pattern, eye movement, and the movement of respiratory muscle and limbs. PSG
methods are used to help diagnose and evaluate a number of sleep disorders. One such
disorder is sleep apnoea disorder, in which the patient stops breathing during sleep.
This causes so-called micro-arousals where the patient wakes up unconsciously for a
brief period. These frequent awakenings are so short that the patient does not even
remember them, but they completely destroy normal sleep patterns, leaving the patient
sleepy throughout the day. This increases the chances of traffic and work accidents
and may lead to other complications, including diabetes and cardiovascular problems.

PSG for sleep apnoea disorder diagnostics requires an overnight stay in a sleep
clinic where the patient is monitored in a number of ways. The usual time taken
is about 10 hours. Several electrodes are placed on the patient’s body, including
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on the chin, scalp, and outer edges of the eyelids. The electrodes must remain in
place while the patient is sleeping, because signals are recorded while the patient
is awake, with their eyes closed and during sleep. The PSG monitors many body
functions including brain activity (EEG), eye movements (EOG), muscle activity or
skeletal muscle activation (EMG), and heart rhythm (ECG). In total there are around
16–20 channels to monitor. The frequency of recording varies among channels,
from 10 to 200 recordings per second; the EEG signal is recorded at a frequency
of 100 readings per second. Therefore, the amount of data collected from one patient
is very large and takes a long time to process manually. Thus an accurate automatic
procedure for PSG analysis would be very beneficial.

The conventional approach for PSG analysis starts with sleep stage identification.
There are five sleep states: awake, sleep stages one, two and three, and rapid eye
movement (REM). Currently doctors use a set of predefined rules to allocate each
30-second frame, or epoch, to one of the five sleep states. The application of these
rules is done either manually, by visual inspection of the PSG signal, or, more recently,
by a software implementation. The allocation of each epoch to a sleep stage is
performed using a set of standardized scoring rules, the Rechtschaffen and Kales
(R&K) rules [15]. One of the major shortcomings of these rules is the use of arbitrarily
defined thresholds to separate the sleep stages. This subjective assessment can lead to
unreliable results and poor agreement between scorers. Another drawback arises from
the fact that the rules were developed at a time when sleep staging was performed
manually. This restricts the scoring to a small number of sleep stages and the use
of fairly large epoch lengths, meaning that scoring is prohibitively time consuming.
Nevertheless, R&K remains a useful and popular clinical tool for some applications.

Another important study conducted in this area was the AASM Manual for the
Scoring of Sleep and Associated Events [9]. The goal of this study was to create a
manual that reflected the current knowledge and would provide a more comprehensive
standardized specification and set of scoring rules for characterizing natural sleep
as commonly performed in PSG. This set of rules and specification for the visual
scoring of sleep retain much of the framework of R&K, with some new definitions
and rule modifications. The new rules provide a better method of analysing data and
are crafted as a platform to support the evolution of both manual (visual) and automatic
(nonvisual) methods for the future.

3. Data

One of the problems faced in the development of efficient methods for K-complex
identification is data availability. There is no freely available test data set for this type
of research. This is partly because the scoring of K-complexes is normally not kept
in PSG analysis records (it is only necessary to score the corresponding sleep stage).
Therefore, it is either expensive (a qualified doctor has to be involved to do extra time-
consuming work) or inaccurate (a fellow researcher performs the manual scoring after
a short PSG analysis course) to create such data sets. Another problem is that the same
segment of data might be scored differently by two qualified scorers [9].
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F 1. A K-complex in practice.

In our experiments we use data scored at Tenon Hospital in Paris, France. On
these data, it is more efficient to divide the 30-second epochs into three parts (10-
seconds each) and check for the presence of K-complexes in each subepoch separately.
Each observation is a 10-second segment of EEG recordings at a frequency of
100 recordings per second (1000 recordings which form 1000 features). As a training
set we use a data set with 28 non-K-complexes and 31 K-complexes (59 observations),
and as a test set we use a data set with 38 non-K-complexes and 35 K-complexes (73
observations). Each signal consists of a sequence (ti, yi), i = 1, . . . , 1000, where the yi

are the EEG readings recorded at time ti and are the features of our observations.
In order to reduce the dimensionality of the data, we apply a special nonsmooth
optimization based preprocessing which allows us to reduce the number of features
from 1000 to 13. The details are given in the next section.

4. Approach

A K-complex is a brief negative high-voltage peak, followed by a slower positive
one. An example of an idealized K-complex can be found in Wikipedia [21]. One of
the main characteristics of K-complexes is an abrupt increase in amplitude. In real-life
PSG, the shape of K-complexes is not so clear. An example of a K-complex from our
data set is presented in Figure 1. The K-complex is located at the beginning of the data
segment; its amplitude is considerably larger than in the rest of the segment.

4.1. Nonsmooth optimization and data extraction The application of nonsmooth
optimization to K-complex detection is based on minimizing the deviation error
(sum of absolute deviations) between the actual EEG curve and the modelled wave
patterns. This is a proven approach to extracting wave characteristics in order to
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obtain the targeted wave shape description. These characteristics can be used for
the explicit description of wave shape patterns, allowing us to obtain considerably
lower dimensionality for the corresponding classification problems. The EEG curve
is modelled as the sum of two sinusoidal curves, and the amplitude of each curve is
modelled as a piecewise linear function (linear spline). This allows us to obtain more
precise curve patterns than in the case of classical sine curves, where the amplitude is
constant. Before we proceed, it is necessary to introduce the following definitions.

Polynomial splines are piecewise polynomial functions [13]. In most applications
polynomial splines are continuous. The points where the corresponding polynomials
are joined together are called spline knots, and these may be either fixed or free. The
highest degree of the corresponding polynomials is called the spline degree.

In this study we model the amplitude of the signal as a continuous spline function
rather than a constant value. This approach is more flexible since it allows the
amplitude to vary through the 10-second interval. Consider an example of polynomial
spline construction [13]:

S m(A, θ, t) := a0 +

m∑
j=1

a1 jt
j +

n∑
i=2

m∑
j=1

ai j((t − θi−1)+) j, (4.1)

where m is the spline degree, θ = (θ1, . . . , θn) are the spline knots (in this paper we use
either 1, 2 or 3 knots),

(ξ(x))+ :=

ξ(x) if ξ(x) > 0

0 if ξ(x) ≤ 0,

and A = (a0, a11, . . . , anm) ∈ Rmn+1 is called the vector of spline parameters. The knots
may be either fixed or free.

In order to use a polynomial spline for the amplitude, we need to know the spline
parameters and knots. These can be obtained as a solution to the optimization problem

min
X,ω,τ

N∑
i=1

|yi − Amp(X, ti) sin(2πωti + τ)|, (4.2)

where the yi, i = 1, . . . , N, are the EEG readings recorded at time ti, Amp(X, t) is the
amplitude function, modelled as a polynomial spline (see the specifications below for
the knots and spline parameters), ω is the frequency, τ is the curve shift, which does not
change the wave pattern, and X is a vector which characterizes the amplitude function.

Nonsmooth optimization problems like (4.2) are generally difficult and time-
consuming to solve. One way to avoid the nonsmoothness is to use the least squares
method rather than the sum of the absolute deviations used in (4.2). However, the
least squares method is not very robust when the corresponding data contain many
outliers [16]. Since this is the case for EEG data, the least squares method may not
be a suitable approach to extract key characteristics of brain waves, and so nonsmooth
optimization models are more suitable for this problem.

We propose the following models for the amplitude function Amp in (4.2).
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• Linear spline with fixed knots, two intervals:

Amp = Amp1(X, t) = a0 + a1t + a2(t − θ1)+.

The knot θ1 corresponds to the centre of a 10-second interval (5 seconds from
the start of each subepoch), and X = (a0, a1, a2). This model for the amplitude
function is suitable for subepochs where the behaviour of the actual amplitude
changes approximately in the middle of the subepoch; for example, if it is
growing in the first half of the subepoch and then stays relatively constant,
one can expect a1 > 0 and a2 = −a1. The model is also suitable for subepochs
where the behaviour of the actual amplitude is not changing; for example, if it
is decreasing throughout the whole subepoch, one can expect a1 < 0 and a2 = 0.
The dimension of the corresponding optimization problem is 5.
• Linear spline with free knots, two intervals:

Amp = Amp2(X, t) = a0 + a1t + a2(t − θ1)+.

This model is similar to Amp1, but θ1 is considered as an additional variable in
the optimization problem (4.2) and thus X = (a0, a1, a2, θ1). It is more flexible
than Amp1, but the associated optimization problem is more complicated. The
model Amp2 is suitable for all of the cases described above, but the change in
the amplitude function may occur at any point inside a subepoch, not necessarily
in the middle. The dimension of the corresponding optimization problem is 6.
• Sharp peak amplitude:

Amp = Amp3(X, t) = max{a0, −a1|ti − a2| + a3}, a0, a1, a2, a3 ≥ 0, a2 ≤ 10.

Here X = (a0, a1, a2, a3). This model is suitable for subepochs where the
amplitude is relatively constant (a1 = 0), or there is a sudden sharp increase in the
amplitude inside the subepoch while on the rest of the subepoch the amplitude
stays the same. The dimension of the corresponding optimization problem is 6.
This amplitude function is a special case of a linear spline with some restrictions
on the spline parameters, and can be written in the form (4.1).

In our experiments, we solve the optimization problem (4.2) using the GANSO
programming library [5, 19], which implements several methods of global, nonsmooth,
nonconvex and nonlinear optimization. In practice, there is no optimization method
which is able to find a global minimum to any given function, particularly if the
function is nonconvex and nonsmooth. The objective function in (4.2) is nonconvex
and nonsmooth and therefore we can only claim that the obtained solutions are locally
optimal (optimal in a certain neighbourhood). Thus, in practice, a solution to a simpler
problem may be more precise than a solution to a more complicated problem which, in
theory, describes the behaviour of the amplitude much better. This is especially critical
when the dimension of the corresponding optimization problem is large.

Our numerical experiments with Amp1, Amp2 and Amp3 showed that Amp1 is
preferable. Amp1 is faster than Amp2, and for Amp2 the knot θ1 was for almost all
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subepochs placed at the beginning or the end of the epoch and was therefore not useful.
Amp3 failed to find any sudden increase in the amplitude. Therefore, in this paper we
only present the results for Amp1. For other data sets the preference may be different.

R 1. We also modelled the signal frequency as a polynomial function, since it
decreases significantly on K-complexes (see Figure 1). However, this significantly
increased the dimension of the corresponding optimization problem without any
improvement.

We model the waveform as a sum of two waves:

W = W1 + W2 = Amp(X1, ti) sin(2πω1ti + τ1) + Amp(X2, ti) sin(2πω2ti + τ2).

Therefore, the corresponding optimization problem is

min
X,ω,τ

N∑
i=1

| f (ti) − Amp(X1, ti) sin(2πω1ti + τ1) − Amp(X2, ti) sin(2πω2ti + τ2)|. (4.3)

The dimension of this problem is 10. In our experiments, we used the following two-
stage procedure to reduce the dimension.

In the first step we minimize the error exactly as in the optimization problem (4.2).
If (X∗1, ω

∗
1, τ
∗
1) is the solution obtained at the first step then the resulting wave is

W1 = Amp(X∗1, ti) sin(2πω∗1ti + τ∗1).

In the second step we minimize the error over a new data set, where the original data
are replaced by the difference between the original data and the wave obtained from
the first step:

min
X,ω,τ

N∑
i=1

|yi −W1 − Amp(X, ti) sin(2πωti + τ)|. (4.4)

If (X2, ω2, τ2) is the solution obtained at the second step (optimization problem (4.4))
then the resulting wave is

W2 = Amp(X2, ti) sin(2πω2ti + τ2).

Therefore, we are extracting two trends, and the sum W = W1 + W2 is the waveform
we are looking for.

We see that (4.4) is equivalent to the problem

min
X,ω,τ

N∑
i=1

|yi − Amp(X∗1, ti) sin(2πω∗1ti + τ∗1) − Amp(X, ti) sin(2πωti + τ)|. (4.5)

Comparing (4.3) and (4.5), we see that these problems are not equivalent. However,
the two-step approach requires solving two smaller optimization problems (the
corresponding dimension of each problem is 5) and we therefore use this approach
in our numerical experiments.
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EEG curve

Approximation curve

F 2. Approximation example. The amplitude of the approximation curve is considerably larger at
the beginning of the data segment (where the K-complex is located).

The parameters of the extracted trend form the nonsmooth optimization output. In
the case of Amp1 the size of the output is 10 (twice the dimension of the corresponding
optimization problem). Also, we take into account three more parameters which
characterize the improvement of the objective function after nonsmooth optimization.
Therefore, 1000 features of the original data are replaced by 13 essential features.

Figure 2 shows an example of an approximation curve and an original PSG pattern
(EEG). The data segment is the same as in Figure 1. One can see that the amplitude of
the approximation curve is considerably larger at the beginning of the segment (where
the K-complex is located). Although the approximation does not follow the original
trend precisely, it is close enough to detect the K-complex and therefore to produce
the correct classification result.

4.2. Weka and data classification methods Weka is a collection of machine
learning algorithms for data mining tasks [7]. It supports several standard data mining
tasks including data preprocessing, clustering, classification, regression, visualization
and feature selection. We use the following classification methods from Weka,
applying them before and after data preprocessing through nonsmooth optimization:
• LibSVM – integrated software for support vector machine (SVM) classification;
• Logistic – a generalized linear model used for binomial regression;
• MLP – a classifier that uses back-propagation to classify instances, also known

as the multilayer perceptron (a special type of neural network);
• RBF – a classifier that implements a normalized Gaussian radial basis function

network, using the K-means clustering algorithm to provide the basis functions;
• SMO – a sequential minimal optimization algorithm for training a support vector

classifier (a special case of LibSVM);
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T 1. Test set accuracy (%) for original data sets, 1000 features.

Method Test set accuracy Method Test set accuracy

LibSVM 47.95 Lazy IB10 47.95
Logistic 39.73 J48 56.16
MLP Out of memory J48graft 53.42
RBF 73.97 LMT 45.21
SMO 43.84 Random Forest 63.01
Lazy IB1 56.16 Random Tree 53.42
Lazy IB5 49.32

• Lazy IBK – a K-nearest-neighbours classifier (uses normalized Euclidean
distance to find the training instance closest to the given test instance, and
predicts the same class as this training instance);
• J48 and J48graft – classifiers based on a C4.5 decision tree;
• LMT – a logistic model tree based approach, with logistic regression functions

at the leaves;
• Random Tree – a classifier for constructing a tree that considers K random

features at each node (no pruning);
• Random Forest – a classifier which consists of a collection of tree structured

classifiers (see Random Tree for constructing trees).
All of these methods were used with default parameters, except Lazy IBK, which

was used with K = 1, 5, 10. Weka is open source software; its website [20] provides all
of the necessary documentation. Therefore, we only provide a very short description
of the classification methods used in this research.

5. Numerical experiments

First we try classification methods from Weka without applying nonsmooth
optimization. The results are presented in Table 1, from which we see two important
outcomes. First, RBF produces very good results. Second, MLP produced no result
(software crash after running out of memory), probably due to the large size of the
corresponding data (1000 features).

The next step is to apply all of the above classification methods after nonsmooth
optimization based preprocessing. We use optimization methods from the GANSO
library [19]. Descriptions of the methods mentioned below (ECAM, DFBM,
DFBMECAM, DSO) can be found at the GANSO library website [19]. Here we
present a brief introduction to them.
• Extended cutting angle method (ECAM) [2, 4]. This method is based on the

fact that under Lipschitz continuity, which our objective functions satisfy, one is
able to estimate the smallest possible minimum of the objective function from its
recorded values at various points. By using a large number of points, it is possible
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to approximate the original function closely enough by its underestimate, and
then use the global minimum of the underestimate to approximate that of the
original function. Lipschitz continuous functions are restricted in how fast they
can change, namely

| f (x) − f (y)| ≤ Ld(x − y),

where x and y are two points in the feasible region of f , L is the Lipschitz
constant, and d is the (Euclidean, for example) distance between x and y.
• Derivative-free bundle method (DFBM) [1]. An essential step of this method

is to estimate the direction of descent using some information about the
subdifferential, a generalization of the gradient to the case of nonsmooth
functions. After obtaining a descent direction, the algorithm performs a line
search along this direction. While the DFBM is a local method (it converges
to a locally optimal solution from any starting point), the fact that it uses an
approximation to the subdifferential allows it to converge to a sufficiently “deep”
local minimum in multiextremal problems. This is an advantage of this method
over other competing approaches that converge to the nearest local minimum.
• DFBMECAM. This is a combination of DFBM with a version of ECAM,

designed to improve line search used in DFBM as well as to facilitate leaving
shallow local minima.
• Dynamical systems based optimization (DSO) [12]. This method is based on the

construction of a dynamical system using a number of values of the objective
function and associating certain “forces” with these data. The evolution of such
a system yields a globalized descent trajectory, leading to a lower value of the
objective function.

We also mention ECAM0.1 and ECAM0.001, which are modifications of ECAM
with the Lipschitz constant taken as 0.1 and 0.001, with ECAM itself taking the
Lipschitz constant as 1. ECAM modifications with a smaller Lipschitz constant are
faster but less precise than higher value modifications. The classification methods from
Weka have been trained on the preprocessed training set and the classification accuracy
is the test accuracy obtained on the preprocessed test set. These results are given in
Table 2. The classification of one subepoch by any method from Weka takes less than
30 seconds, while nonsmooth optimization preprocessing may take around 1 minute
(DFBM, DFBMECAM, DSO) or even 10 minutes (ECAM, ECAM0.1, ECAM0.001).

From Table 2 one can see that even though the best results are not as good as the
results obtained on the original data set using RBF, they are still interesting because:
• none of the classification methods failed when performed on the preprocessed

data set;
• the accuracy of all of the classification methods from Weka (except RBF and

Random Forest) has been considerably improved after nonsmooth optimization
based preprocessing.

The second observation is especially important, because if the parameters for RBF
are not known (in our case the default parameters were suitable), the accuracy after
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T 2. Classification results (%) after nonsmooth optimization preprocessing.

Method ECAM0.001 ECAM0.1 ECAM DFBM DFBMECAM DSO

LibSVM 52.54 62.71 59.32 54.24 54.24 54.24
Logistic 54.23 54.23 55.93 59.32 66.01 55.93
MLP 57.62 45.76 55.93 59.32 57.63 61.02
RBF 62.71 44.02 61.02 61.02 57.63 55.93
SMO 45.76 50.85 64.41 62.71 55.93 47.46
Lazy IB1 62.72 50.85 54.24 40.68 61.02 64.41
Lazy IB5 64.41 62.72 62.72 50.85 64.41 62.72
Lazy IB10 54.24 54.24 61.02 59.32 49.15 59.32
J48 49.15 54.24 50.85 55.93 55.93 55.93
J48graft 49.16 54.24 50.85 55.93 55.93 55.93
LMT 47.46 55.93 62.71 61.02 62.72 45.77
Random Tree 62.71 54.24 54.24 44.07 59.32 66.10
Random Forest 62.72 55.93 57.62 55.93 55.93 55.93

preprocessing may be better than without preprocessing even for RBF. Also, in
most cases, this observation is independent of the optimization method applied, and
therefore even a fast and not very precise method (DSO, DFBM, DFBMECAM) can
be used in preprocessing. Overall, one can see that, in general, faster optimization
methods (DSO, DFBM, DFBMECAM) work quite well and very often outperform
slow and precise methods (ECAM, ECAM0.1, ECAM0.001). The best classification
results were obtained using the combination of DSO and Random Tree (66.10%), and
the combination of DFBMECAM and Logistic (66.01%). Also, notice that some of
the Weka methods perform better after certain optimization methods (Random Tree
performs well after DSO or ECAM0.001), while others (Logistic, Lazy IB5, J48 and
J48graft) are mostly independent of the chosen optimization method.

Consider the results obtained by RBF without preprocessing (the best accuracy in
Table 1) in detail. The test accuracy is 74%: 34 out of 38 non-K-complexes have been
classified correctly, but only 20 out of 35 K-complexes have been classified correctly.
The corresponding confusion matrix is(

34 4
15 20

)
.

In our confusion matrices, entry {11} is the number of correctly classified non-K-
complexes, entry {22} the number of correctly classified K-complexes, entry {12} the
number of false positives and entry {21} the number of false negatives. Our ultimate
goal is to create an automatic technique for fast and accurate detection of K-complexes.
Therefore, such a high number of false negatives has to be improved, since it is much
better to highlight “suspicious” segments of data for the doctor to accept or reject rather
than omit them completely from further consideration. We propose the following
algorithm to decrease the rate of false negatives.
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T 3. Reducing the number of false negatives: confusion matrices.

ECAM0.001 ECAM0.1 ECAM DFBM DSO DFBMECAM

LibSVM 3 31 20 14 12 22 6 28 33 1 33 1
1 14 8 7 4 11 4 11 15 0 15 0

RBF 22 12 23 11 23 11 20 14 30 4 23 11
8 7 13 2 9 6 8 7 15 0 13 2

Lazy IB1 19 15 24 10 18 16 16 18 23 11 19 15
9 6 11 4 10 5 10 5 11 4 7 8

Lazy IB5 16 18 26 8 22 12 12 22 21 13 18 16
10 5 12 3 8 7 4 11 8 7 9 6

Logistic 21 13 27 7 29 5 10 24 28 6 21 13
12 3 11 4 13 2 6 9 12 3 12 3

MLP 18 16 29 5 26 8 13 21 28 6 26 8
7 8 10 5 13 2 6 9 13 2 11 4

First, we apply RBF to the original data set and remove the segments which have
been classified as K-complexes. Then the rest of the data set is to be reclassified after
nonsmooth optimization preprocessing. The advantages of this procedure are that:
• the first step of the procedure does not have too many false positives (4 out of 38);
• the second step, which is time consuming due to nonsmooth optimization,

involves only part of the original data set (49 out of 73).
The results are shown in Table 3. One can see that this procedure does not

improve the classification accuracy, but does reduce the number of false negatives (see
ECAM0.1 combined with MLP). Therefore, even though it has been already observed
that the faster group of nonsmooth optimization methods performs well, the highest
accuracy has been achieved on ECAM0.1, a method from the slow group.

6. Main conclusions and further research

6.1. Conclusions In this study we propose a new procedure to detect K-complexes,
short-lasting waves which serve as key points for detecting sleep stage two. This
procedure is based on nonsmooth optimization and classification methods from Weka.
A combination of RBF and ECAM0.1 with MLP produced the best classification
results. The proposed combination works well on the available data, but the lack of
freely available test data sets prevents us from testing our procedure on larger sets of
data and comparing with other researchers’ approaches.

The proposed approach has two main advantages. Firstly, the proposed nonsmooth
optimization based preprocessing allows one to reduce the size of the classification
problem. Secondly, the accuracy of all of the classification methods from Weka (except
RBF and Random Forest) has been considerably improved after the preprocessing.
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6.2. Further research directions Although our nonsmooth optimization based
preprocessing approach performs very well on our data sets, we identify some future
research directions for further improvement of the procedure. One of the main
problems of the proposed algorithm is that the nonsmooth optimization component
is time consuming. This issue has to be addressed before implementing our approach
in an automatic procedure for K-complex detection which can be used by medical
doctors. One way to achieve this is to develop a specific optimization method for
this particular problem, which would work faster and more efficiently than the general
purpose optimization algorithms used in this study. Our future studies will address this
important issue.
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