Bull. Aust. Math. Soc. 101 (2020), 496-507
doi:10.1017/S0004972719001138

THE DISTRIBUTIONAL k-HESSIAN IN FRACTIONAL
SOBOLEYV SPACES

QIANG TU“=, WENYI CHEN" and XUETING QIU
(Received 22 September 2018; accepted 6 September 2019; first published online 23 October 2019)

Abstract

We introduce the notion of a distributional k-Hessian (k = 2,...,n) associated with fractional Sobolev
functions on €2, a smooth bounded open subset in R”. We show that the distributional k-Hessian is weakly
continuous on the fractional Sobolev space W22/5%(Q) and that the weak continuity result is optimal, that
is, the distributional k-Hessian is well defined in WP(Q) if and only if W*(Q) € W2-2/kk(Q),
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1. Introduction and main results

Fork=1,...,n and u € C*(Q), where Q is a smooth bounded open subset in R”, the
k-Hessian operator Hy[u] is defined by

Hlul = oe() = D A-o 4y,

i) <<y
where 1 = (1,,. .., A,) are the eigenvalues of the Hessian matrix D*u. Alternatively,
Hylu] = [D*uly,

where [A]; denotes the sum of the k X k principal minors of an n X n matrix A, which
may also be called the k-trace of A. It is well known that the k-Hessian is the Laplace
operator when k = 1 and the Monge—Ampere operator when k = n.

This paper is devoted to the study of the k-Hessian of a nonsmooth map u from
Q into R with 2 < kK < n. From the seminal work of Trudinger and Wang [12, 13],
it has been known that the k-Hessian makes sense as a Radon measure and enjoys
the weak continuity property for k-admissible functions. In [5], Fu introduced the
space of Monge—Ampere functions for which all minors of the Hessian matrices are
well defined as signed Radon measures and weakly continuous in a certain natural
sense. Other generalised notions of the k-Hessian measures are considered in [3, 4].
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Our purpose in this paper is to extend the definition of Hy[u] to certain fractional
Sobolev spaces so that the k-Hessian Hi[u] is a distribution on Q. Our first result is
the following theorem.

THeEOREM 1.1. For 2 < k < n, the k-Hessian operator u +— Hi[u] : Cz(ﬁ) — D'(Q) can
be extended uniquely as a continuous mapping u — H[u] : W>2/%5(Q) - O/'(Q). In
particular, the distributional k-Hessian H[u] with k > 3 can be expressed as

Hldgy=Y f adj (D*U) [0y ®@dx (L)
lal=k ica+(n+1) jea-+(n+2) ¥ XOD?

for any extensions U € W>*K(Q x (0, 1)%) and ® € C*(Q x [0, 1)?) of u € W*2/kk(Q)

and ¢ € CE(Q), respectively. Moreover, for all uy,u, € W2-2/kk(QY),

KHilu ] = Hilua], )1 < Clluy = uallwe-zma (s 5 s + ol oD@l (1.2)

We refer to Section 2 for the notation. In the case when k = 2, Theorem 1.1
follows directly from the result in [7]. In the remaining cases, 2 < k < n, our results
are inspired by work of Brezis—Nguyen and Baer—Jerison. Brezis—Nguyen [2] show
that the Jacobian determinant operator u +— det(Du) : C 1(5, R™) — D’(Q) admits a
unique continuous extension from the fractional Sobolev space W'=1/%"(Q, R") to the
space of distributions 9 (€2); then Baer—Jerison [1] show that the Hessian determinant
operator u — det(D?u) : CE(R") — D'(R") admits a unique continuous extension from
W2=2/mm(R™) to D' (RM).

While the weak continuity result (1.2) can be proved using Theorem 1.1 in [1]
combined with the ‘Fubini-type’ characterisation of the space W>~*/kk(R") (see the
discussion in Remark 3.2), we choose to prove it by using an extension identity,
Lemma 3.1 in Section 3, which is inspired by the work of Brezis—Nguyen in [2] and
the concept of minors. The advantage of using Lemma 3.1 is that it not only provides
a shorter proof of the statements established in [1] (such as Lemma 2.1), but also gives
a fundamental representation for the distributional k-Hessian.

In analogy with [1, 2], Theorem 1.1 immediately gives several consequences. In
particular, the k-Hessian as a distribution is continuous in spaces W!?(Q) N W24(Q)
with 1 < p,g<oo, 2/p+(k—2)/q=1 and k > 3. Furthermore, the following
optimality result ensures that the definition and weak continuity results for the k-
Hessian are optimal in the framework of fractional Sobolev spaces W*?. More
precisely, the distributional k-Hessian is well defined in W®P(Q) if and only if
WsP(Q) ¢ W2-2kk(Q).

THEOREM 1.2. Suppose that 2 <k<n, 1 <p<oo and 0 < s < oo are such that
WSP(Q) ¢ W>2RK(Q).  Then there exist a sequence {u,,} C Cz(ﬁ) and a function
pe CE(Q) such that

"111_1;20 ”um“s,p =0

and

lim Hilu,,)o dx = oo.
Q

m—o00
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According to the embedding properties of fractional Sobolev spaces, it is enough to
prove Theorem 1.2 in three cases (see Section 4). While the optimality results in Cases
2 and 3 follow essentially immediately from the counterexample sequences identified
in [1], it is hard to prove the results in Case 1 in the same manner since the choice of p
in (4.3) depends not only on s, p, n but also on k. It is necessary to establish an explicit
formula (Lemma 4.1) in Section 4 for the purpose of proving Theorem 1.2.

2. Preliminaries

We recall that, for 0 < s < oo and 1 < p < oo, the fractional Sobolev space W*? (L)
is defined as follows: for s < 1,

WP (Q) = {u € 17(Q) ‘ (fg ) ) = dxdy)l/p < oo}

=

with the norm

— I4 1/p
lleellwsr 2= lleallzr +(ffdedy) ;
aJa |x—yI"*ep

for s > 1 and not an integer,
WHP(Q) 1= {u e WHP(Q) | DVu e wlhr ()

with the norm

Dl — plsl P 1/p
|mmmp:ummmp+(f“j" u(x) ”@”cudg .
QJQ

|x — y|”+(5*[s])P

For integer n > 2, we use the standard conventions for ordered multi-indices
I(k,n) :={a = (ay,...,q;) | a; integers, | < a; <:-- < a <n}.

Set 1(0,n) = {0} and |a| = k if @ € I(k,n). For a € I(k,n), k=0,1,...,n, we let @
denote the element of I(n — k, n) which complements « in {1, 2,...,n} in the natural
increasing order (so that, for instance, 0=(1,2,...,n). Fora € I(k,n) and i € @, we
use the notation @ — i to refer to the multi-index of length k£ — 1 obtained by removing
i from «. Similarly, for @ € I(k,n) and j ¢ @, we use @ + j to denote the multi-index of
length k + 1 obtained by reordering naturally the multi-index (a1, ..., @, j).

Let A = (a;j)uxn and B = (b;;)ux, be n X n matrices. Given two ordered multi-indices
with a, 8 € I(k, n), we use the notation A§ for the associated minor, consisting of the
k X k-submatrix of A with rows (a1, ..., ;) and columns (81, ..., B). Its determinant
will be denoted by

MP(A) = det AP,

The adjoint of AP is defined by the formula

(adj AY); := 0, — Dor(jor = j)det A, foralliep,jea,
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where o (i,y), fory € I(k — 1,n) and i ¢ vy, is the sign of the permutation of (i, y) which
reorders (i,7y1, ..., Yx-1) to vy + i. The Laplace formulas can be written as

M) = Z aij(adj A, foralli € p,
jea
and
MP(A) = Z aij(adj AY: forall j € a.
ief
The Binet formulas (see [6, Lemma on page 313]) can be written as
MEA +B) = > o, "B, B M, (AM:,(B). (2.1)
a’+a" =a; B+ =P; |’ |=|5'|
3. The proof of Theorem 1.1

We begin with the following extension lemma which is inspired by the work of
Brezis—Nguyen [2] and fine properties of minors.

LemMaA 3.1. Let2< k<n, a € I(k,n) and u € C*(Q), ¢ € CE(Q). Then

M(D*u)p dx =
[wmopic= ¥

ica+(n+1) jea+(n+2)

. a+(n+)\
fg o (adj (DU 10013) 0@ T, (BD)

for any extensions U € C*(Q x [0, )}) N C3(Q x (0, 1)%) and ® € C2(Q x [0, 1)*) of u
and ¢. Here X = (X, X411, Xn42) and 9; := 8/0x;.

Proor. Denote V := U]y, ,,=0, ¥ := ®|y,,,=0. Then
f M®(D*u)pdx = - f Ol (Mg(DQV)‘I’) dx dxps
Q Qx(0,1)
- f Ot (MUD?V)) ¥ dx dxyy - f ME(D?*V)8,ei W dx dxp, .
Qx(0,1)

Qx(0,1)

On the one hand
O (M3(D?V)) = 3" MY(D*V(0)),

ica
where D?*V (i) := (@',)1<5.1<n+1 18 an (n + 1) X (n + 1) matrix with

st T

; 0,0,V ifs#i,r=1,...,n+1,
ad =
an+]6_‘~atv lfS:i,t: 1,...,I’l+1.

By the Laplace formulas,

MEDV(@) = Y oli,a = Dol @ = )1 8:0;V M (D V(D).

jea
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Then
Onst (MED*V)) = 3" " 8480 Verli,a = do(joa = PMEHD?V (D)
ica jea
= Z Z o(i,a = )o(j.a = )0pn8:0,VMIZUD*V).  (3.2)
ica jea
On the other hand,
D0 (ota = i, hMET DTV
ica
=Y ole—ii) Y. Y olsa+ @+ 1) -i-so(,a- )odd;VM (DY)
ica s€a—i jea
+ Y o@—id) Y o+ D, = oG,a = 00,0V MIZ(D?V)
ica Jjea
= Z ol,a—j) Z Z ol =i, )o(s,a+ (n+ 1) — i - $)9;0,0;V MDY
Jjea ica sea—i
+ 20> ol = Do, a = )Onadid;VME(DV). (3.3)
ica jea

For any iy, € @ with i} # i,
o(a =iy, ino(,a+nm+1)—i — i)
= D)o, a - ino(i, @ =iy = )o(i,n + 1)
= ()o@ — iy = i)o(iy, @ — iy — ip)o(iy, i),
which implies that
ola—ipinoli,a+(m+1) =iy —ix) =—o(a—i,)o(i,a+(n+1)—ir —iy)
since

i 1 ifi; > iy,
o(iy, i) = )
PRIV i <o

Combining these results, we can easily obtain
O (MED?V)) = > Ol — i, DM D7DV, (3.4)
i€

Hence

f M*(D*u)pdx = — f ol@+ (n+1) =i, )M D2V dx dx,.
Q Qx(0,1)

ica+(n+l)

- Z —o(a+m+1)—ii) (ME DD NG, D),, =0 dx dXy 1.

ica+(n+1) Qx(0,1)
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It is a well-known consequence of integration by parts identities that the right-hand
side of the above identity can be written as

Z —o(a+m+1)-1,)A0), (3.5)

ica+(n+l)

where
AG):=- f Oni2(ME(D*U)O; @) dX
Qx(0,1)?

=- f D2 (MG(D*U))0, dx - f MR(D*U)d; 2@ d.
Qx(0,1)

Qx(0,1)?

Here 8 := a + (n + 1) — i. An argument similar to the one used in (3.2)—(3.4) gives

Ona(MED?UY) = 3" (t, B = D@ = )20, 0;,UME(DU)

tef jea
= Y dj(ata = j DME_, . (D))
Jjea
== > 0jo(a+(n+2) = j pML, , (DU)).
Jjea
Thus
AQ@) = Z —o(a+m+2)—1j,)) Mg_j+(n+2)(D2U)8ij®di
jea+(n+2) Qx(0,1)2
Combining this with (3.5), we obtain (3.1), which completes the proof. O

From the results of [7] characterising the Hessian determinant on the space
W12(R?), the 2-Hessian is well defined and continuous on W'2(Q). More precisely,
the 2-Hessian H[u] is defined for all u € W'2(Q) by

N 1 1
(Halul.g):= ) > fg (0100 110 = 000,50 = SO0 g ) dx. (3.6)
i=1 j#i

for any ¢ € C>(Q). It is simple to show the weak continuity results by the Holder
inequality. Hence we just need to prove Theorem 1.1 for k > 3.

Proor or Theorem 1.1. It is well known that Theorem 1.1 can be obtained as a simple
corollary by standard approximation if we prove (1.1) and (1.2) for u, u;, u, € C*(Q)
and ¢ € Cf(Q). Let u; and u, be extensions of u; and u, to R”" such that

et w22k gy < Cllullwz-2mx (s Nl2llwa-2miny < Clluallw-21xq)

and
llur — wallw-2me ey < Clluy = w2k,
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where C depends only on k, n and Q. According to a well-known extension theorem
of Stein in [8, 9], there is a bounded linear extension operator

E: WPHEER™) - WHHR" X (0, +00)%).
Let U, U, be extensions of #; and i, to R x (0, +00)2, respectively. Hence
ID*Ull o012 < Cllgllwz-2maiy fori = 1,2,

and
2 2
”D Ul -D UZ”L"'(R”X(O,I)Z) < C“I/t] — M2||W2—2/k.k(g).

Let® € CZ(Q x [0, 1)%) be an extension of ¢ such that
ID*®|.=ax.17) < CID*@llr(@)-

Since
IME(A) — ME(B)| < C(IA] + |B)* 1A - B|

forany @, € I(k,n + 2) and (n + 2) X (n + 2) matrices A, B, it follows from Lemma 3.1
and Holder’s inequality that

f(Hk[ul] - Hi[us])p dx| <
o

f (M2(D*uy) — M2(D*up))p dx

ael(k,n)

a—i+(n+1) 2 a—i+(n+1) 2 B
S fQ o M DU = ML (D2 U)o, 01 4

a€l(k,n) ica+(n+1) jea+(n+2)

<C f (ID*U,| + ID*Us ) |ID* (U, - U,)|ID*®| dx
Qx(0,1)2

C”M] - u2||W2 2/"‘(”’/‘1”‘1‘12 ek T ”uZ”Wz 2/kk)||D290“L°°-
This completes the proof of Theorem 1.1. O

Remark 3.2. There is another way to prove (1.2) using [1, Theorem 1.1] combined
with the ‘Fubini-type’ characterisation of the space W>2/k%(R") (see [10, Section 3]
and [11, Section 2.5.13]). Fix a € I(k,n) and let W2~>/k%(a; R") be the subspace of
LK(R™) associated to the norm

AN+ 2200

where subscripts denote variables of integration for the fractional Sobolev and L*
norm. Then

L Nwa-2me ey ~ Z 1 w22k sy 3.7

acl(k,n)

Let u;, up, u; and u, be the functions mentioned in the proof of Theorem 1.1. Fix
« € I(k,n) and x5 € R"*. Then [1, Theorem 1.1] implies that

f (M2 (DT, (X Xa) — ME(D*Tip (s 300 (s o) e

k— k— 2
C“~1 - M2||W2 Z/kk(Rk)(lrzn 2 Z/Ak + |r1” 2 Z/kA )”D §0||L§jy~

RY) (RF)
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It follows from (3.7) and Holder’s inequality that

f(Hk[ul] - Hi[uoDe dx
o

= Z f . ( (Ma(Dzul(xam xa) MQ(DZMZ(-X(“ xa))‘p(xa; xa) dxa) dx[x
aeln) VR

<C Z H'm - ”2”W2 2’“(Rk)”y (“'rl”W2 ”“(Rk)”y + ||WZ||W3;2/"*k(Rk>||Z,])”DZ‘P”L”

ael(k,n)
2
< Clluy =l (s 1 + il ) 1Dl

which implies (1.2). We emphasise that it is hard to obtain the fundamental
representation (1.1) of the distributional k-Hessian in this manner.

4. The proof of Theorem 1.2

We only need to prove Theorem 1.2 when k > 2, since (3.6) immediately gives the
result in the case when k = 2. According to the embedding properties of the Sobolev
spaces W*P(Q) into the space W>~>/*k(Q) (for more detail, see [11, page 196]), when:

(i)  s+2/k>2+max{0,n/p — n/k}, the embedding W*P(Q) c W?=2/k*(Q) holds;
(i) s+2/k <2+ max{0,n/p — n/k}, the embedding fails; and
@iii) s+ 2/k =2+ max{0,n/p — n/k}, there are two sub-cases:

(a) if p <k, then the embedding W*?(Q) ¢ W2~2/%k(Q) holds;
(b) if p > k, the embedding fails.

In order to prove Theorem 1.2, we just consider three cases:

2 2
1<p<kands+z<2+ﬁ—— k<pand0<s<2-7i k<pands=2-2k
p

n .
k 9
Lemma 4.1. Let g € C°(B(0, 1)) be given by
||
g(x) = f h(rydr forall x € R", 4.1
0

where h € CZ((0, 1)) satisfies

1 1
f h(r)dr =0, f K () dr # 0.
0 0

M (D*g(x))|x* dx # 0.

Then

acl(kn) ¥ BO.D

Proor. According to the symmetry of the integral, it is sufficient to show that

M2(D*g(x)|x* dx # 0 (4.2)
B(0,1)
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for any « € I(k, n). It is simple to show that

L(A + B),

D?g =
e

where A = (a;)ux, and B = (b;;)ux, are n X n matrices such that
aij = h(XDxPs!, by = (' (lxl = h(ad)xix; fori, j=1,....n
We make use of Binet’s formula (2.1) and the fact that B has rank one to see that

M®(A + B) = M®(A) + Z Z oli,a — oy — jbiM°_I(A).

e
For any i, j € @ with i # J,
Ml (A) = W (™2 My (B
= D2 Y Slo(s.a—i - oti.a - j- IMITIE)

a—i—s
sea—i
=0,
where E is the n X n identity matrix, which implies that

MS(A + B) = R (D™ = HEQaD™ 2 D a7 + B (i (™™ ) 2.

ica ica

Hence
f M3(D*g)|x* dx = f |2 MY(A + Bydx =1—II + I11.
BO,1) BO,1)

Using polar coordinates to evaluate the integrals,

n-2 1
I:= f DI ™2 dx = 2n [ | 1) f iy dr,
B(0,1) = 0

where 1(i) = fon sin’ @ d#. Without loss of generality, a=(n—k+1,n—-k+2,...,
So
I:= f RO ™ ) X7 dx
B(0,1) ;

T T
= f e f sin" 2 0, sin" >, - - - sin 6,_, sin® Oy - - - sin’ Gy dO; - - - dOp_»

27
f b, f W ryr e gy
=2n f Bk (k! drl_[I(z) I_I 1(i + 2).

=1 i=k—1
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Note that I(s) = ((s — 1)/s)I(s — 2) for s = 2,3, .... Hence

n-2 1
k
II:27r—| |I(i) f RE Ry g,
n -1 0

14

Similarly,
11 = f DR (el ™1 > 2 d
BO.1) ica
k n-2 1
=27 [ [ 1) f W R () 2 dr
i 0
k—n-2713 :
=2———=[ |16 f Wyt gy,
n i=1 0
which implies (4.2). O

Proor oF THEOREM 1.2. Without loss of generality, (-8,8) Cc Q. As noted at the
beginning of Section 4, we divide our proof into three cases.

Casel: 1 <p<kands+2/k<2+n/p—n/k Consider u, : Q — R defined by
ns() = (<),
£

where 0 < £ < 1, g is given by (4.1) and p is a constant such that

2
s—§<p<2—%—%. 4.3)

On the one hand,
1-s5/2 2 2 — 1-s5/2 2 2
ltelly,p < Nl P ID* |} < &7 1P|l Dl

which implies that
llglls,, — O as & — oo,

On the other hand, let ¢ € C2(Q) be such that ¢(x) = |x|> + O(|x*) as x — 0. Then

LHk[ug]godx= Z s(pz)kLMg(ng(g))go(x)dx

ael(k,n)
= Z gl Dk+n ij(D2 2)p(ex)dx
ael(k,n) BO,1)
— 8pk—2k+n+2 Mg(ng)|x|2dx + 0(8pk_2k+n+3).

ael(kn) ¥ BO.D

From Lemma 4.1 and (4.3), it follows that

f Hk[us]QO dx
Q

— Cg;)k—zk+n+2 — 00 as e — 0
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Case2: k<pand(0<s<2-2/k Form> 1, we set

k-1
=mPx; sin?(mx;),
i=1

where p is a constant with s < p < 2 — 2/k. Let ¢ € C*(Q) be such that
n
o) = [ | ¢/, (4.4)
i=1
where ¢’ € Cf((O, n),¢ >0 and ¢’ =1 in (%n, %71). Since ||upll~> < Cm™ and
I1D*u,|| < Cm?7*, it follows that
lttmllsp < Cllttlly,*liemlly> < C* .

In the same way as in the proof of [1, Proposition 4.1],

'fHk[um]()D dx| > f Mg (D) dx
Q ael(k,n) (/8 3/ 4y
k=1 2%-2, k-1
> mk-2-kook Z f x;;z( 1_[ sin(mxi)) (Z COSz(mxj)) dx
aelkny” (/4B /4m) i=1 J=1

— k2o

Case 3: k< pand s =2 —2/k. For any m € N with m > 2, define u,, by

k=1
sin(nyx;) forall x € R,
i=1

um(x) = Xy
(logm)1/<2k> ;n 2-2/k 1 /k

where n; = m*". Let ¢ € CX(Q) be defined by (4.4). An argument similar to the one
used in the proof of [1, Proposition 5.1] now shows that

1
”um”W“’(Q) < CH”m”W‘\F((OQn)") < CW
and
k
' f Hilunlpdx = C| ) f M (D) [ | (i dxy -+ dx
Q acl(k,n) (0.2m)F i=1
> C(Inm)'/?,
where ay = (1, ...,k) € I(k,n). Then Theorem 1.2 is completely proved. O
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