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Abstract

We introduce the notion of a distributional k-Hessian (k = 2, . . . , n) associated with fractional Sobolev
functions on Ω, a smooth bounded open subset in Rn. We show that the distributional k-Hessian is weakly
continuous on the fractional Sobolev space W2−2/k,k(Ω) and that the weak continuity result is optimal, that
is, the distributional k-Hessian is well defined in W s,p(Ω) if and only if W s,p(Ω) ⊆ W2−2/k,k(Ω).
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1. Introduction and main results

For k = 1, . . . , n and u ∈ C2(Ω), where Ω is a smooth bounded open subset in Rn, the
k-Hessian operator Hk[u] is defined by

Hk[u] = σk(λ) =
∑

i1<···<ik

λi1 · · · λik ,

where λ = (λ1, . . . , λn) are the eigenvalues of the Hessian matrix D2u. Alternatively,

Hk[u] = [D2u]k,

where [A]k denotes the sum of the k × k principal minors of an n × n matrix A, which
may also be called the k-trace of A. It is well known that the k-Hessian is the Laplace
operator when k = 1 and the Monge–Ampère operator when k = n.

This paper is devoted to the study of the k-Hessian of a nonsmooth map u from
Ω into R with 2 6 k 6 n. From the seminal work of Trudinger and Wang [12, 13],
it has been known that the k-Hessian makes sense as a Radon measure and enjoys
the weak continuity property for k-admissible functions. In [5], Fu introduced the
space of Monge–Ampère functions for which all minors of the Hessian matrices are
well defined as signed Radon measures and weakly continuous in a certain natural
sense. Other generalised notions of the k-Hessian measures are considered in [3, 4].
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Our purpose in this paper is to extend the definition of Hk[u] to certain fractional
Sobolev spaces so that the k-Hessian Hk[u] is a distribution on Ω. Our first result is
the following theorem.

Theorem 1.1. For 2 6 k 6 n, the k-Hessian operator u 7→ Hk[u] : C2(Ω)→D′(Ω) can
be extended uniquely as a continuous mapping u 7→ Hk[u] : W2−2/k,k(Ω)→D′(Ω). In
particular, the distributional k-Hessian Hk[u] with k > 3 can be expressed as

〈Hk[u], ϕ〉 =
∑
|α|=k

∑
i∈α+(n+1)

∑
j∈α+(n+2)

∫
Ω×(0,1)2

adj
(
(D2U)α+(n+1)

α+(n+2)
)i

j∂i jΦ dx̃ (1.1)

for any extensions U ∈ W2,k(Ω × (0, 1)2) and Φ ∈ C2
c (Ω × [0, 1)2) of u ∈ W2−2/k,k(Ω)

and ϕ ∈ C2
c (Ω), respectively. Moreover, for all u1, u2 ∈ W2−2/k,k(Ω),

|〈Hk[u1] − Hk[u2], ϕ〉| 6 C‖u1 − u2‖W2−2/k,k (‖u1‖
k−1
W2−2/k,k + ‖u2‖

k−1
W2−2/k,k )‖D2ϕ‖L∞ . (1.2)

We refer to Section 2 for the notation. In the case when k = 2, Theorem 1.1
follows directly from the result in [7]. In the remaining cases, 2 < k 6 n, our results
are inspired by work of Brezis–Nguyen and Baer–Jerison. Brezis–Nguyen [2] show
that the Jacobian determinant operator u 7→ det(Du) : C1(Ω,Rn)→ D′(Ω) admits a
unique continuous extension from the fractional Sobolev space W1−1/n,n(Ω,Rn) to the
space of distributionsD′(Ω); then Baer–Jerison [1] show that the Hessian determinant
operator u 7→ det(D2u) : C2

c (Rn)→D′(Rn) admits a unique continuous extension from
W2−2/n,n(Rn) toD′(Rn).

While the weak continuity result (1.2) can be proved using Theorem 1.1 in [1]
combined with the ‘Fubini-type’ characterisation of the space W2−2/k,k(Rn) (see the
discussion in Remark 3.2), we choose to prove it by using an extension identity,
Lemma 3.1 in Section 3, which is inspired by the work of Brezis–Nguyen in [2] and
the concept of minors. The advantage of using Lemma 3.1 is that it not only provides
a shorter proof of the statements established in [1] (such as Lemma 2.1), but also gives
a fundamental representation for the distributional k-Hessian.

In analogy with [1, 2], Theorem 1.1 immediately gives several consequences. In
particular, the k-Hessian as a distribution is continuous in spaces W1,p(Ω) ∩W2,q(Ω)
with 1 < p, q < ∞, 2/p + (k − 2)/q = 1 and k > 3. Furthermore, the following
optimality result ensures that the definition and weak continuity results for the k-
Hessian are optimal in the framework of fractional Sobolev spaces W s,p. More
precisely, the distributional k-Hessian is well defined in W s,p(Ω) if and only if
W s,p(Ω) ⊆ W2−2/k,k(Ω).

Theorem 1.2. Suppose that 2 6 k 6 n, 1 < p < ∞ and 0 < s < ∞ are such that
W s,p(Ω) * W2−2/k,k(Ω). Then there exist a sequence {um} ⊂ C2(Ω) and a function
ϕ ∈ C2

c (Ω) such that
lim

m→∞
‖um‖s,p = 0

and
lim

m→∞

∫
Ω

Hk[um]ϕ dx =∞.
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According to the embedding properties of fractional Sobolev spaces, it is enough to
prove Theorem 1.2 in three cases (see Section 4). While the optimality results in Cases
2 and 3 follow essentially immediately from the counterexample sequences identified
in [1], it is hard to prove the results in Case 1 in the same manner since the choice of ρ
in (4.3) depends not only on s, p, n but also on k. It is necessary to establish an explicit
formula (Lemma 4.1) in Section 4 for the purpose of proving Theorem 1.2.

2. Preliminaries

We recall that, for 0 < s <∞ and 1 6 p <∞, the fractional Sobolev space W s,p(Ω)
is defined as follows: for s < 1,

W s,p(Ω) :=
{
u ∈ Lp(Ω)

∣∣∣∣∣ ( ∫
Ω

∫
Ω

|u(x) − u(y)|p

|x − y|n+sp dx dy
)1/p

<∞
}

with the norm

‖u‖W s,p := ‖u‖Lp +

( ∫
Ω

∫
Ω

|u(x) − u(y)|p

|x − y|n+sp dx dy
)1/p

;

for s > 1 and not an integer,

W s,p(Ω) :=
{
u ∈ W [s],p(Ω) | D[s]u ∈ W s−[s],p(Ω)

}
with the norm

‖u‖W s,p := ‖u‖W [s],p +

( ∫
Ω

∫
Ω

|D[s]u(x) − D[s]u(y)|p

|x − y|n+(s−[s])p dx dy
)1/p

.

For integer n > 2, we use the standard conventions for ordered multi-indices

I(k, n) := {α = (α1, . . . , αk) | αi integers, 1 6 α1 < · · · < αk 6 n}.

Set I(0, n) = {0} and |α| = k if α ∈ I(k, n). For α ∈ I(k, n), k = 0, 1, . . . , n, we let α
denote the element of I(n − k, n) which complements α in {1, 2, . . . , n} in the natural
increasing order (so that, for instance, 0 = (1, 2, . . . , n)). For α ∈ I(k, n) and i ∈ α, we
use the notation α − i to refer to the multi-index of length k − 1 obtained by removing
i from α. Similarly, for α ∈ I(k, n) and j < α, we use α + j to denote the multi-index of
length k + 1 obtained by reordering naturally the multi-index (α1, . . . , αk, j).

Let A = (ai j)n×n and B = (bi j)n×n be n × n matrices. Given two ordered multi-indices
with α, β ∈ I(k, n), we use the notation Aβ

α for the associated minor, consisting of the
k × k-submatrix of A with rows (α1, . . . , αk) and columns (β1, . . . , βk). Its determinant
will be denoted by

Mβ
α(A) := det Aβ

α.

The adjoint of Aβ
α is defined by the formula

(adj Aβ
α)i

j := σ(i, β − i)σ( j, α − j) det Aβ−i
α− j for all i ∈ β, j ∈ α,
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where σ(i, γ), for γ ∈ I(k − 1, n) and i < γ, is the sign of the permutation of (i, γ) which
reorders (i, γ1, . . . , γk−1) to γ + i. The Laplace formulas can be written as

Mβ
α(A) =

∑
j∈α

ai j(adj Aβ
α)i

j for all i ∈ β,

and
Mβ
α(A) =

∑
i∈β

ai j(adj Aβ
α)i

j for all j ∈ α.

The Binet formulas (see [6, Lemma on page 313]) can be written as

Mβ
α(A + B) =

∑
α′+α′′=α; β′+β′′=β; |α′ |=|β′ |

σ(α′, α′′)σ(β′, β′′)Mβ′

α′(A)Mβ′′

α′′(B). (2.1)

3. The proof of Theorem 1.1

We begin with the following extension lemma which is inspired by the work of
Brezis–Nguyen [2] and fine properties of minors.

Lemma 3.1. Let 2 6 k 6 n, α ∈ I(k, n) and u ∈ C2(Ω), ϕ ∈ C2
c (Ω). Then∫

Ω

Mα
α(D2u)ϕ dx =

∑
i∈α+(n+1)

∑
j∈α+(n+2)

∫
Ω×(0,1)2

(
adj (D2U)α+(n+1)

α+(n+2)

)i

j
∂i jΦ dx̃, (3.1)

for any extensions U ∈ C2(Ω × [0, 1)2) ∩C3(Ω × (0, 1)2) and Φ ∈ C2
c (Ω × [0, 1)2) of u

and ϕ. Here x̃ = (x, xn+1, xn+2) and ∂i := ∂/∂xi.

Proof. Denote V := U |xn+2=0, Ψ := Φ|xn+2=0. Then∫
Ω

Mα
α(D2u)ϕ dx = −

∫
Ω×(0,1)

∂n+1

(
Mα
α(D2V)Ψ

)
dx dxn+1

= −

∫
Ω×(0,1)

∂n+1

(
Mα
α(D2V)

)
Ψ dx dxn+1 −

∫
Ω×(0,1)

Mα
α(D2V)∂n+1Ψ dx dxn+1.

On the one hand
∂n+1(Mα

α(D2V)) =
∑
i∈α

Mα
α(D2V(i)),

where D2V(i) := (ai
st)16s,t6n+1 is an (n + 1) × (n + 1) matrix with

ai
st =

∂s∂tV if s , i, t = 1, . . . , n + 1,
∂n+1∂s∂tV if s = i, t = 1, . . . , n + 1.

By the Laplace formulas,

Mα
α(D2V(i)) =

∑
j∈α

σ(i, α − i)σ( j, α − j)∂n+1∂i∂ jV Mα−i
α− j(D

2V(i)).
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Then

∂n+1

(
Mα
α(D2V)

)
=

∑
i∈α

∑
j∈α

∂n+1∂i∂ jVσ(i, α − i)σ( j, α − j)Mα−i
α− j(D

2V(i))

=
∑
i∈α

∑
j∈α

σ(i, α − i)σ( j, α − j)∂n+1∂i∂ jV Mα−i
α− j(D

2V). (3.2)

On the other hand,∑
i∈α

∂i

(
σ(α − i, i)Mα+(n+1)−i

α (D2V)
)

=
∑
i∈α

σ(α − i, i)
∑
s∈α−i

∑
j∈α

σ(s, α + (n + 1) − i − s)σ( j, α − j)∂i∂s∂ jV Mα+(n+1)−i−s
α− j (D2V)

+
∑
i∈α

σ(α − i, i)
∑
j∈α

σ((n + 1), α − i)σ( j, α − j)∂i∂n+1∂ jV Mα−i
α− j(D

2V)

=
∑
j∈α

σ( j, α − j)
∑
i∈α

∑
s∈α−i

σ(α − i, i)σ(s, α + (n + 1) − i − s)∂i∂s∂ jV Mα+(n+1)−i−s
α− j (D2V)

+
∑
i∈α

∑
j∈α

σ(i, α − i)σ( j, α − j)∂n+1∂i∂ jV Mα−i
α− j(D

2V). (3.3)

For any i1, i2 ∈ α with i1 , i2,

σ(α − i1, i1)σ(i2, α + (n + 1) − i1 − i2)

= (−1)k−1σ(i1, α − i1)σ(i2, α − i1 − i2)σ(i2, n + 1)

= (−1)k−1σ(i1, α − i1 − i2)σ(i2, α − i1 − i2)σ(i1, i2),

which implies that

σ(α − i1, i1)σ(i2, α + (n + 1) − i1 − i2) = −σ(α − i2, i2)σ(i1, α + (n + 1) − i2 − i1)

since

σ(i1, i2) =

−1 if i1 > i2,
1 if i1 < i2.

Combining these results, we can easily obtain

∂n+1(Mα
α(D2V)) =

∑
i∈α

∂i(σ(α − i, i)Mα+(n+1)−i
α (D2V)). (3.4)

Hence∫
Ω

Mα
α(D2u)ϕ dx = −

∑
i∈α+(n+1)

∫
Ω×(0,1)

σ(α + (n + 1) − i, i)Mα+(n+1)−i
α (D2V)∂iΨ dx dxn+1

=
∑

i∈α+(n+1)

−σ(α + (n + 1) − i, i)
∫

Ω×(0,1)
(Mα+(n+1)−i

α (D2U)∂iΦ)|xn+2=0 dx dxn+1.
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It is a well-known consequence of integration by parts identities that the right-hand
side of the above identity can be written as∑

i∈α+(n+1)

−σ(α + (n + 1) − i, i)A(i), (3.5)

where

A(i) : = −

∫
Ω×(0,1)2

∂n+2(Mβ
α(D2U)∂iΦ) dx̃

= −

∫
Ω×(0,1)2

∂n+2(Mβ
α(D2U))∂iΦ dx̃ −

∫
Ω×(0,1)2

Mβ
α(D2U)∂i,n+2Φ dx̃.

Here β := α + (n + 1) − i. An argument similar to the one used in (3.2)–(3.4) gives

∂n+2(Mβ
α(D2U)) =

∑
t∈β

∑
j∈α

σ(t, β − t)σ( j, α − j)∂n+2∂t∂ jUMβ−t
α− j(D

2U)

=
∑
j∈α

∂ j(σ(α − j, j)Mβ
α− j+(n+2)(D

2U))

= −
∑
j∈α

∂ j(σ(α + (n + 2) − j, j)Mβ
α+(n+2)− j(D

2U)).

Thus

A(i) =
∑

j∈α+(n+2)

−σ(α + (n + 2) − j, j)
∫

Ω×(0,1)2
Mβ
α− j+(n+2)(D

2U)∂i jΦ dx̃.

Combining this with (3.5), we obtain (3.1), which completes the proof. �

From the results of [7] characterising the Hessian determinant on the space
W1,2(R2), the 2-Hessian is well defined and continuous on W1,2(Ω). More precisely,
the 2-Hessian H2[u] is defined for all u ∈ W1,2(Ω) by

〈H2[u], ϕ〉 :=
n∑

i=1

∑
j,i

∫
Ω

(
∂iu∂ ju∂i jϕ −

1
2
∂iu∂iu∂ j jϕ −

1
2
∂ ju∂ ju∂iiϕ

)
dx, (3.6)

for any ϕ ∈ C2
c (Ω). It is simple to show the weak continuity results by the Hölder

inequality. Hence we just need to prove Theorem 1.1 for k > 3.

Proof of Theorem 1.1. It is well known that Theorem 1.1 can be obtained as a simple
corollary by standard approximation if we prove (1.1) and (1.2) for u, u1, u2 ∈ C2(Ω)
and ϕ ∈ C2

c (Ω). Let ũ1 and ũ2 be extensions of u1 and u2 to Rn such that

‖ũ1‖W2−2/k,k(Rn) 6 C‖u1‖W2−2/k,k(Ω), ‖ũ2‖W2−2/k,k(Rn) 6 C‖u2‖W2−2/k,k(Ω)

and
‖ũ1 − ũ2‖W2−2/k,k(Rn) 6 C‖u1 − u2‖W2−2/k,k(Ω),
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where C depends only on k, n and Ω. According to a well-known extension theorem
of Stein in [8, 9], there is a bounded linear extension operator

E : W2−2/k,k(Rn)→ W2,k(Rn × (0,+∞)2).

Let U1,U2 be extensions of ũ1 and ũ2 to Rn × (0,+∞)2, respectively. Hence

‖D2Ui‖Lk(Rn×(0,1)2) 6 C‖ui‖W2−2/k,k(Ω) for i = 1, 2,

and
‖D2U1 − D2U2‖Lk(Rn×(0,1)2) 6 C‖u1 − u2‖W2−2/k,k(Ω).

Let Φ ∈ C2
c (Ω × [0, 1)2) be an extension of ϕ such that

‖D2Φ‖L∞(Ω×(0,1)2) 6 C‖D2ϕ‖L∞(Ω).

Since
|Mβ

α(A) − Mβ
α(B)| 6 C(|A| + |B|)k−1|A − B|

for any α, β ∈ I(k,n + 2) and (n + 2) × (n + 2) matrices A,B, it follows from Lemma 3.1
and Hölder’s inequality that∣∣∣∣∣∫

Ω

(Hk[u1] − Hk[u2])ϕ dx
∣∣∣∣∣ 6 ∑

α∈I(k,n)

∣∣∣∣∣∫
Ω

(Mα
α(D2u1) − Mα

α(D2u2))ϕ dx
∣∣∣∣∣

6
∑

α∈I(k,n)

∑
i∈α+(n+1)

∑
j∈α+(n+2)

∫
Ω×(0,1)2

|Mα−i+(n+1)
α− j+(n+2)(D

2U1) − Mα−i+(n+1)
α− j+(n+2)(D

2U2)||∂i jΦ| dx̃

6 C
∫

Ω×(0,1)2
(|D2U1| + |D2U2|)k−1|D2(U1 − U2)||D2Φ| dx̃

6 C‖u1 − u2‖W2−2/k,k (‖u1‖
k−1
W2−2/k,k + ‖u2‖

k−1
W2−2/k,k )‖D2ϕ‖L∞ .

This completes the proof of Theorem 1.1. �

Remark 3.2. There is another way to prove (1.2) using [1, Theorem 1.1] combined
with the ‘Fubini-type’ characterisation of the space W2−2/k,k(Rn) (see [10, Section 3]
and [11, Section 2.5.13]). Fix α ∈ I(k, n) and let W2−2/k,k(α;Rn) be the subspace of
Lk(Rn) associated to the norm

‖ f ‖Lk +
∥∥∥‖ f ‖W2−2/k,k

xα (Rk)

∥∥∥
Lk

xα
,

where subscripts denote variables of integration for the fractional Sobolev and Lk

norm. Then
‖ f ‖W2−2/k,k(Rn) ∼

∑
α∈I(k,n)

‖ f ‖W2−2/k,k(α;Rn). (3.7)

Let u1, u2, ũ1 and ũ2 be the functions mentioned in the proof of Theorem 1.1. Fix
α ∈ I(k, n) and xα ∈ Rn−k. Then [1, Theorem 1.1] implies that∫

Rk
(Mα

α(D2ũ1(xα, xα) − Mα
α(D2ũ2(xα, xα))ϕ(xα, xα) dxα

6 C‖̃u1 − ũ2‖W2−2/k,k
xα (Rk)(‖̃u2‖

k−1
W2−2/k,k

xα (Rk)
+ ‖̃u1‖

k−1
W2−2/k,k

xα (Rk)
)‖D2ϕ‖L∞xα .
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It follows from (3.7) and Holder’s inequality that∣∣∣∣∣∫
Ω

(Hk[u1] − Hk[u2])ϕ dx
∣∣∣∣∣

=
∑

α∈I(k,n)

∫
Rn−k

( ∫
Rk

(Mα
α(D2ũ1(xα, xα) − Mα

α(D2ũ2(xα, xα))ϕ(xα, xα) dxα
)

dxα

6 C
∑

α∈I(k,n)

∥∥∥‖̃u1 − ũ2‖W2−2/k,k
xα (Rk)

∥∥∥
Lk

xα

(∥∥∥‖̃u1‖W2−2/k,k
xα (Rk)

∥∥∥k−1
Lk

xα
+

∥∥∥‖̃u2‖W2−2/k,k
xα (Rk)

∥∥∥k−1
Lk

xα

)
‖D2ϕ‖L∞

6 C‖u1 − u2‖W2−2/k,k

(
‖u1‖

k−1
W2−2/k,k + ‖u2‖

k−1
W2−2/k,k

)
‖D2ϕ‖L∞ ,

which implies (1.2). We emphasise that it is hard to obtain the fundamental
representation (1.1) of the distributional k-Hessian in this manner.

4. The proof of Theorem 1.2

We only need to prove Theorem 1.2 when k > 2, since (3.6) immediately gives the
result in the case when k = 2. According to the embedding properties of the Sobolev
spaces W s,p(Ω) into the space W2−2/k,k(Ω) (for more detail, see [11, page 196]), when:

(i) s + 2/k > 2 + max{0, n/p − n/k}, the embedding W s,p(Ω) ⊂ W2−2/k,k(Ω) holds;
(ii) s + 2/k < 2 + max{0, n/p − n/k}, the embedding fails; and
(iii) s + 2/k = 2 + max{0, n/p − n/k}, there are two sub-cases:

(a) if p 6 k, then the embedding W s,p(Ω) ⊂ W2−2/k,k(Ω) holds;
(b) if p > k, the embedding fails.

In order to prove Theorem 1.2, we just consider three cases:

1 < p 6 k and s +
2
k
< 2 +

n
p
−

n
k

; k < p and 0 < s < 2 −
2
k

; k < p and s = 2 − 2/k.

Lemma 4.1. Let g ∈ C∞c (B(0, 1)) be given by

g(x) =

∫ |x|

0
h(r) dr for all x ∈ Rn, (4.1)

where h ∈ C∞c ((0, 1)) satisfies∫ 1

0
h(r) dr = 0,

∫ 1

0
hk(r)r−k+n+1 dr , 0.

Then ∑
α∈I(k,n)

∫
B(0,1)

Mα
α(D2g(x))|x|2 dx , 0.

Proof. According to the symmetry of the integral, it is sufficient to show that∫
B(0,1)

Mα
α(D2g(x))|x|2 dx , 0 (4.2)
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for any α ∈ I(k, n). It is simple to show that

D2g =
1
|x|3

(A + B),

where A = (ai j)n×n and B = (bi j)n×n are n × n matrices such that

ai j = h(|x|)|x|2δ j
i , bi j = (h′(|x|)|x| − h(|x|))xix j for i, j = 1, . . . , n.

We make use of Binet’s formula (2.1) and the fact that B has rank one to see that

Mα
α(A + B) = Mα

α(A) +
∑
i∈α

∑
j∈α

σ(i, α − i)σ( j, α − j)bi jM
α− j
α−i (A).

For any i, j ∈ α with i , j,

Mα− j
α−i (A) = hk−1(|x|)|x|2k−2Mα− j

α−i (E)

= hk−1(|x|)|x|2k−2
∑
s∈α−i

δs
iσ(s, α − i − s)σ(i, α − j − i)Mα− j−i

α−i−s(E)

= 0,

where E is the n × n identity matrix, which implies that

Mα
α(A + B) = hk(|x|)|x|2k − hk(|x|)|x|2k−2

∑
i∈α

x2
i + hk−1(|x|)h′(|x|)|x|2k−1

∑
i∈α

x2
i .

Hence ∫
B(0,1)

Mα
α(D2g)|x|2 dx =

∫
B(0,1)

|x|−3k+2Mα
α(A + B) dx = I − II + III.

Using polar coordinates to evaluate the integrals,

I :=
∫

B(0,1)
hk(|x|)|x|−k+2 dx = 2π

n−2∏
i=1

I(i)
∫ 1

0
hk(r)r−k+n+1 dr,

where I(i) =
∫ π

0 sini θ dθ. Without loss of generality, α = (n − k + 1, n − k + 2, . . . , n).
So

II : =

∫
B(0,1)

hk(|x|)|x|−k
∑
i∈α

x2
i dx

=

∫ π

0
· · ·

∫ π

0
sinn−2 θ1 sinn−3 θ2 · · · sin θn−2 sin2 θ1 · · · sin2 θn−k dθ1 · · · dθn−2

·

∫ 2π

0
dθn−1

∫ 1

0
hk(r)r−k+n+1 dr

= 2π
∫ 1

0
hk(r)r−k+n+1 dr

k−2∏
i=1

I(i)
n−2∏

i=k−1

I(i + 2).
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Note that I(s) = ((s − 1)/s)I(s − 2) for s = 2, 3, . . .. Hence

II = 2π
k
n

n−2∏
i=1

I(i)
∫ 1

0
hk(r)r−k+n+1 dr.

Similarly,

III : =

∫
B(0,1)

hk−1(|x|)h′(|x|)|x|−k+1
∑
i∈α

x2
i dx

= 2π
k
n

n−2∏
i=1

I(i)
∫ 1

0
hk−1(r)h′(r)r−k+2+n dr

= 2π
k − n − 2

n

n−2∏
i=1

I(i)
∫ 1

0
hk(r)r−k+n+1 dr,

which implies (4.2). �

Proof of Theorem 1.2. Without loss of generality, (−8, 8) ⊂ Ω. As noted at the
beginning of Section 4, we divide our proof into three cases.

Case 1: 1 < p 6 k and s + 2/k < 2 + n/p − n/k. Consider uε : Ω→ R defined by

uε(x) = ερg
( x
ε

)
,

where 0 < ε < 1, g is given by (4.1) and ρ is a constant such that

s −
n
p
< ρ < 2 −

n
k
−

2
k
. (4.3)

On the one hand,

‖uε‖s,p 6 ‖uε‖
1−s/2
Lp ‖D2uε‖

s/2
Lp 6 ε

ρ−s+n/p‖g‖1−s/2
Lp ‖D2g‖s/2Lp ,

which implies that
‖uε‖s,p → 0 as ε→∞.

On the other hand, let ϕ ∈ C2
c (Ω) be such that ϕ(x) = |x|2 + O(|x|3) as x→ 0. Then∫

Ω

Hk[uε]ϕ dx =
∑

α∈I(k,n)

ε(ρ−2)k
∫

Ω

Mα
α

(
D2g

( x
ε

))
ϕ(x) dx

=
∑

α∈I(k,n)

ε(ρ−2)k+n
∫

B(0,1)
Mα
α(D2g)ϕ(εx) dx

= ερk−2k+n+2
∑

α∈I(k,n)

∫
B(0,1)

Mα
α(D2g)|x|2dx + O(ερk−2k+n+3).

From Lemma 4.1 and (4.3), it follows that∣∣∣∣∣∫
Ω

Hk[uε]ϕ dx
∣∣∣∣∣ = Cερk−2k+n+2 →∞ as ε→ 0.
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Case 2: k < p and 0 < s < 2 − 2/k. For m� 1, we set

um := m−ρxk

k−1∏
i=1

sin2(mxi),

where ρ is a constant with s < ρ < 2 − 2/k. Let ϕ ∈ C2
c (Ω) be such that

ϕ(x) =

n∏
i=1

ϕ′(xi), (4.4)

where ϕ′ ∈ C2
c ((0, π)), ϕ′ > 0 and ϕ′ = 1 in ( 1

4π,
3
4π). Since ‖um‖L∞ 6 Cm−ρ and

‖D2um‖L∞ 6 Cm2−ρ, it follows that

‖um‖s,p 6 C‖um‖
1−s/2
Lp ‖um‖

s/2
2,p 6 Cms−ρ.

In the same way as in the proof of [1, Proposition 4.1],∣∣∣∣∣ ∫
Ω

Hk[um]ϕ dx
∣∣∣∣∣ > ∣∣∣∣∣ ∑

α∈I(k,n)

∫
((1/4)π,(3/4)π)n

Mα
α(D2um) dx

∣∣∣∣∣
> m2k−2−kρ2k

∑
α∈I(k,n)

∫
((1/4)π,(3/4)π)n

xk−2
k

( k−1∏
i=1

sin(mxi)
)2k−2( k−1∑

j=1

cos2(mx j)
)

dx

= Cm2k−2−kρ.

Case 3: k < p and s = 2 − 2/k. For any m ∈ N with m > 2, define um by

um(x) =
1

(log m)1/(2k) xk

m∑
l=1

1

n2−2/k
l l1/k

k−1∏
i=1

sin2(nlxi) for all x ∈ Rn,

where nl = mk3l
. Let ϕ ∈ C2

c (Ω) be defined by (4.4). An argument similar to the one
used in the proof of [1, Proposition 5.1] now shows that

‖um‖W s,p(Ω) 6 C‖um‖W s,p((0,2π)n) 6 C
1

(ln m)1/(2k)

and ∣∣∣∣∣∫
Ω

Hk[um]ϕ dx
∣∣∣∣∣ = C

∣∣∣∣∣ ∑
α∈I(k,n)

∫
(0,2π)k

Mα0
α0

(D2um)
k∏

i=1

ϕ′(xi) dx1 · · · dxk

∣∣∣∣∣
> C(ln m)1/2,

where α0 = (1, . . . , k) ∈ I(k, n). Then Theorem 1.2 is completely proved. �
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