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Abstract

We study negative definite functions on a Hilbert space )i and use their properties to give a
proof of the Levy-Khinchin formula for an infinitely divisible probability distribution on X.
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1. Introduction

An important branch of probability theory where Fourier analysis plays a major
role is the theory of convergence of suitably normalized sums of independent
random variables. The study of the asymptotic behaviour of such sums leads
to infinitely divisible distributions and to their Le'vy-Khinchin representations.
These have originally been studied on Euclidean spaces (see Courrege [4]); fur-
ther research was then directed towards other structures, in particular there
exists now a well-established theory on locally compact groups and algebraic
semigroups (see Berg and Forst [3], Berg, Christensen and Ressel [2], and Heyer
[10] for an account in these frameworks).
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[2] The Le"vy-Khinchin representation 105

In the last decades, through the influence of quan tum physics, in particular

quantum field theory, and stochastic processes the infinite dimensional case has

become more and more important , as the characteristics of large scale systems

are most clearly understood in the framework of an infinite dimensional model.

Hilbert space has traditionally been considered as an infinite dimensional ex-

tension of Euclidean space appropriate for the solution to many problems (not

the only one of course). It was therefore natura l to extend the Le"vy-Khinchin

formula to this situation. To my knowledge, the first proof of the Le"vy-Khinchin

formula on Hilbert space is due to S. R. S. Varadhan [15] (see Par thasara thy

[12]). His proof is based on shift compactness and the concentration function.

There is another more proabilistic proof by Gihman and Skorohod [6]. The

purpose of the present note is to clarify the role of negative definiteness of the

generating function of an infinitely divisible distribution in the Hilbert space

context and to give a proof of the formula tha t uses its properties. We shall

not deal with more general situations here, in part icular we shall not consider

infinitely divisible distributions on Banach spaces (see however Araujo [1] and

Linde [19] for an account).

I thank Dr. Gottl ieb Leha for a number of discussions on the subject ma t t e r

of paragraph 2.

2. S-topology, positive definite, and negative definite functions

2.1. In what follows, the symbols N, R, C denote the set of natural numbers, of
real numbers and of complex numbers, respectively; )i denotes a real, separable
Hilbert space with inner product (x,y) and norm ||a;|| = \/(x,x). The space
M will be considered as a topological vector space in three different ways: with
the norm topology, the weak topology, and the S-topology (also called Hilbert-
Schmidt topology). A typical neighbourhood of 0 € H for the third-mentioned
topology is the set

VS ~ {y e X/\\\fSy\\ <i} = {ye K/(y, Sy) < l},

where S is a positive selfadjoint, nuclear operator on #; that is, a positive self-
adjoint, compact, linear operator with a finite trace. (For details about compact
operators see Edwards [5], Chapter 9.) Such an operator is also called an S-
operator. S is an 5-operator if and only if \/S is a positive selfadjoint Hilbert-
Schmidt operator. We will freely use terms like 5-continuous, S-convergent,
S-neighbourhood etc.

2 .2 PROPOSITION. On an infinite dimensional Hilbert space the S-topology

lies strictly between the strong and the weak topologies.
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106 Gunter Ritter [3]

PROOF. The relationship between the strong and the S-topology is clear.
Now let U be a weak neighbourhood of 0 6 H of the form

V = {y e tf/|(y,*i)| < l ,• • • , \{y ,zn) \ < 1} (zu...,*„€*),

let E be the subspace of M spanned by z\,..., zn, and let P g be the projection
U —> E. Since E is finite dimensional, there exists 6 > 0 such that

{j/ € £/ |M| <6}CU.

Then for all j / € # such that (J/,PEJ/) < 52 we have ||PEJ/|| < 6 and hence
€ £/. Therefore

for all k, that is, y e U. S := P E / < 5 2 is an 5-operator such that V5 C U. On
the other hand, if 5 is an 5-operator such that (y, Sy) > 0 for all y £ M \ {0}
then k e r S = {0} and the set {y € H/(y,Sy) < 1} does not contain a weak
neighbourhood.

2 .3 REMARK. The S-topology and the weak topology coincide on bounded
sets. Indeed, if S is an 5-operator then on any bounded set B C M the function

is weakly continuous (this is even true for compact operators S). It follows that
5-continuous functions are weakly sequentially continuous.

2.4. The symbol B will stand for the cr-algebra of Borel subsets of M and
M+(B) is the convex cone of bounded, positive measures on B. By M+(B) we
mean the convex subset of probability measures (distributions) on B. The Dirac
probability at the point x E M will be denoted by 8X. The space M+(B) (and
M\{B)) will be endowed with the topology of weak convergence, that is, the
coarsest topology such that all functions

M+(B)->C

H —> / f dfj,
J v

are continuous, where / runs through the space Cj(#) of complex-valued, bound-
ed, norm-continuous functions on M. With this topology, M+(B) becomes a
separable, completely metrizable topological space (cf. Parthasarathy II.6 [12]).

The convolution of two measures \i,v E M+{B) is the Borel measure /z * v
defined in the usual way:

v{B) := / n{B - x)v(dx).
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Convolution makes M+(B) a metric, commutative semigroup; in particular con-
volution is a jointly weakly continuous mapping M+(B) x M+(B) -+ M+(B)
(see Linde [11]). The set M\.(B) is a weakly closed subsemigroup of M+(B) and
compactness in the space M+(B) is well understood by Prokhorov's now classical
theorem [13].

The Fourier transform of the measure n €E M\(M) is the function fi: M —> C
defined by

Jx
As in the locally compact case, this Fourier transform is a useful tool for the
characterization of measures (uniqueness theorem), for establishing criteria of
weak compactness in M+(B), and for the construction of measures (Minlos-
Sazonov theorem).

2.5. We will need the following criterion for relative compactness in M+{B)
(see Gihman-Skorohod [6]). A subset M C M+{B) is weakly relatively compact,
if and only if the set of its Fourier transforms satisfies the two conditions

(i) sup^gj^ p,(0) < oo;
(ii) there exists a family (S£tll) (e > 0, n G M) of 5-operators such that

(a) for some orthonormal basis (efc) of U.

lim sup V* (efc, Se,Mefc) = 0

for all e > 0, and
(13) /}(0) - Re/x(j/) < e, whenever (y, S£tlty) < 1.

2.6. A function <p: M —• C is called positive definite, if for all choices yi,...,yn

€ # the matrix

(<p{yk-yi))k,i

is positive Hermitean. The important theorem of Minlos-Sazonov reads: A func-
tion p : ) / - t C ts the Fourier transform jl of some measure fj. € M+(B) if and

only if

(i) <p is positive definite and

(ii) <p is S-continuous (or Reip is S-continuous atO€ X).

A function xj): U —> C is called negative definite if for all choices of y i , . . . , yn & M

the matr ix

is positive Hermitean. The real part Re V> of a negative definite function is also
negative definite and hence Re V> > 0. For further properties of negative definite
functions see Berg and Forst [3]. The two most important facts about negative
definite functions are their algebraic relationship with positive definite functions
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(Schoenberg's theorem, see Berg and Forst [3]) and subadditivity of \Z\ip\, which
implies the quadratic growth property, crucial in the construction of a LeVy
measure:

2.7 PROPOSITION. Lettp: M —* C be a negative definite function, S-continu-
ous at the origin and vanishing there. Then, given e > 0, there exists an S-
operator S£ such that

Mv)\<e + (y,Sty) (y € N).

PROOF. By subadditivity of v ^ I one obtains

|V(2j/)| < 4|V(y)| (y e X).

Choose an 5-operator such that \ip(y)\ < £ whenever {y,Sy) < 1. It is now
possible to apply Parthasarathy [12], p. 172 to obtain the desired estimate, but
for the reader's convenience we include here the (short) argument. Let y € X be
fixed. If (y,Sy) < 1, any Se will do. Otherwise, choose n = n(y) € M in such a
way that \ < {2-ny,S{2-ny)) < 1. We estimate

|V(2/)| = W(2n2-ny)\ < 4"|V(2-nj/)| < 4"e < 4e(y,Sy),

and we may put S£ := 4eS.

3. Generating functions of infinitely divisible distributions
and their characterization and representation

3.1. A convolution semigroup of probability measures is a family (ftt)t>o of
probability distributions such that

for all s, t > 0. (irt) is called weakly continuous if (7rt) —> So weakly. The
t—>oo

mapping t —• irt is then continuous. A measure n € .M+(B) is called infinitely
divisible if for any n G N there exists a measure an € M+(B) such that <rJJ = TT
(nth root). Each member 7rt of a semigroup of probability measures is clearly
infinitely divisible. The Fourier transform of an infinitely divisible measure TT
vanishes nowhere on U; see Guichardet [7], p. 57. By a standard argument of
function theory there exists a unique function ip: U —* C such that

(i) V(0) = 0,
(ii) i> is continuous,
(hi) f = e-*,

(see Linde [11]). The function ip is often called the generating function of the
infinitely divisible probability measure TT. (This terminology seems to appear
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for the first t ime in Hazod [8] and Heyer [9] in connection with locally compact
groups.) The n t h root an is infinitely divisible and, by uniqueness of ip, its
generating function is —ip/n; in par t icular an is unique. There is the following
characterization of generating functions.

3.2 THEOREM, (a) A function ip: M —> C generates an infinitely divisible
probability distribution if and only if it has the following three properties:

(i) v(o) = o,
(ii) t/> is S-continuous (or ReV> is S-continuous at 0 € U),
(iii) ip i3 negative definite.
(b) In this case there exists a unique weakly continuous semigroup of proba-

bility measures irt such that
*« = e-**.

PROOF. If the function i}> generates an infinitely divisible probability distri-
bution 7T, then (i) is part of the definition of ip; moreover, this function is S-
continuous since 7r is. As all the functions e~^ln are transforms of measures and
therefore positive definite assertion (iii) is satisfied by Schoenberg's theorem. On
the other hand, if the function ij) satisfies (i)-(iii), then the functions <pt : = ^^
are positive definite (again by Schoenberg's theorem) and 5-continuous, so that
there exists a family of measures irt € M+(B) such that ipt — #t (2.6). The
semigroup property now follows from the equality (ps<Pt = Ps+t and 2.5 in com-
bination with uniqueness of the Fourier transform may be applied to show weak
continuity.

3.3 REMARK. A. V. Skorohod [14], p. 11 claims that characteristic functions
are weakly continuous. This claim is true in the sequential sense only. If S is a
nondegenerate S-operator (that is, all eigenvalues are strictly positive) then 5 is
not weakly continuous (see the proof of 2.2). Hence the characteristic function
of the centered Gauss measure with covariance S is not weakly continuous.

3.4. A finite dimensional subspace V C U of dimension n will be identified
with Rn via the isomorphism

where ( c i , . . . , e n ) is an or thonormal basis of V wi th respect to the inner product
of M. It is then clear what Lebesgue measure on V means and integrals fv dz
make sense since these notions are independent of the choice of the or thonormal
basis. Note t h a t

/ - N I 2 dz = TT" / 2 .
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Define the auxiliary function g: H —> R. by

g(x) := e-l^ll2/4.

The function (1 — g) will serve as a density function. Any function that is
bounded, positive outside the origin, and behaves like c||i | |2 near the origin
would be possible here, but the chosen function is the handiest for the present
purposes. A classical function is | |x | | 2 /(l + ||a;||2). We will need the following

3.5 LEMMA. Let S be an S-operator. Then for all finite dimensional sub-
spaces ofVQM of dimension n we have

f e-\\*\\\ZiSz)dz< i
Jv

PROOF. Let Sy := PySPy. Then Sy is a positive selfadjoint operator
on V such that traceSy < traceS. Let (ei, . . . ,en) be an eigenbasis of Sy with
eigenvalues Aj , . . . , An and let Zk be the fcth component of a vector z with respect
to this basis. We may compute

T-n/a f e-\\*\\\z,Sz)d2 = «-»'* f e~^2 (z,PvSPyz)dz
Jv Jv

The integral has the value JTT"/2, whence the desired estimate.

3.6 REMARK. TO my knowledge, the first proof of the Le'vy-Khinchin rep-
resentation in the case of a Hilbert space was given by Varadhan [15] (see
Parthasarathy [12]). His proof is analytic; it is based on shift compactness and
the concentration function. Other more probabilistic constructions of the Levy
measure are now also available (see Gihman and Skorohod [6]). I shall give a
proof here that exploits the properties of the generating function stated in Theo-
rem 3.2. The core of any proof of the Le'vy-Khinchin formula is the construction
of the Le"vy measure. This can be done by letting t -* 0 in the net (1 - g)nt/t. In
the infinite dimensional case also the approximation by finite dimensional sub-
spaces plays a role. Contrary to other proofs of the Le'vy-Khinchin formula, we
shall first let the parameter t go to zero and then go to the dimensional limit;
this approach seems to give better insight into the difference between the finite
and the infinite dimensional cases.

3.7 THEOREM (LeVy-Khinchin-Varadhan). (a) A function ^ : ) / - » C gen-
erates an infinitely divisible probability distribution if and only if it can be written
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as

- f
H\{O} ! - 9W

(»€*).

Here a € )i, S is an S-operator and fi € M+(M).
(b) The representation (a,S,fi) ofip is unique.

PROOF. Concerning uniqueness of the representation we refer the reader to
Gihman and Skorohod [6], p. 395. In order to prove part (a) let us first suppose
that i>: M —» C generates the convolution semigroup (wt) of probability measures.
Fix an ascending system V of finite dimensional subspaces of M such that (J V
is dense in U. For any subspace V € V we write

Tty :=Pv{irt)

for the projection of wt onto V. The family (7rtiv)t>o is a convolution semigroup
of probabilities on U for each V. Since the Fourier transform of the measure

is the function

y _» T-n/3 / e-||z||2 f f dz {y e V)>

Jv *
Levy's continuity theorem applies to show that there exists a measure nv €
M+{V) such that

(1 - 9)~j- t^0 Vv weakly

and
/iv(y) = 7r-"/2 f e-^2(tP(y-z)-(rP(y))dz (yeV).

Jv
We consider fj,y als° ^ a measure on B and apply 2.5 to show that the net
(nv)ve'v is relatively compact in M+(B). First let Si be as in Proposition 2.7
for e = 1. We have

/
Jv

< 1 + \ trace 5i
< oo

for all V by Lemma 3.5; this is 2.5(i). Now note that Re ip too is negative definite.
Applying again Proposition 2.7, but this time to the function Reip, we obtain
an 5-operator Se such that

(1)
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for all y € )i. Since the function V
/Re^' is subadditive and since Re^ is sym-

metric (see Berg and Forst [3]) we have

and likewise

that is,

y/Reip(z) -

|>/Re#8)-

V^(z)<y

y/Rei)(y) < \

\/Reip(y)\ < 1

/ReiP(y-z)

/Rexl>{y-z).

i/Reip(y — z)

whence

(2) Retj){y) + Reip(z) -Reip(y-z)< 2\/Reip{y)\/Rei>(z)

for all y, z € M. We may now use (2), (1), and 3.5 to compute for y e

-Reip(Pvy - z)]dz= 7r-n/2 f e-^
Jv

< 2N/ReV(/V2/) ( l + * ~ n / 2 f e-"2"2 Re' V(*)dz\

< 2y/iy/l + (/Vj/, SEPvy) (l + n~n/2 j e-ll^ll2(1 + (z, SlZ)) dz\

< 2sfe\/l + {Pyy, S£Pvy)(2 + \ trace Si).

The conditions a and /? of 2.5 can now be verified with S£y := PvS£Pv- This
finishes the proof of relative compactness of the net {nv)- As in the proof of the
classical LeVy-Khinchin formula we now write for y € V

t Jx
- i{aty,y) - {y, Styy)

] {x){x)ft,v(dx)
1 - g(x)

with a vector aty € V and a positive selfadjoint operator Sty on V. As t —> 0,
the left-hand side converges to —ip(y) and by weak convergence the integral
converges to
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Hence iaty —* toy and Sty —* Sy, the former being purely imaginary and
the latter real. Extending to y € )i we have obtained the (essentially classical)
formula

-H*«) _ ! + g{x){i(x,y) + 4 ( l , y ) > ^

By relative compactness we may assume that the net (fxy)v converges weakly
to a Borel measure fj. E M+{B). Then the net tp(Pvy) converges to tp(y) and
the integral converges, the integrand being continuous and bounded. It follows
that the nets i(ay, y) and (y, PySyPyy) both converge along V. By the uniform
boundedness principle there exists a vector a e M such that

i{av,y)->i{a,y) (yG)/).

A similar argument can be applied to the quadratic terms (y, PySyPvy)- By po-
larization we first obtain pointwise convergence of the symmetric bilinear forms
(?/> A ~* (y> PvSvPvz)- Applying the uniform boundedness principle to the net

we see that for any z G )i there exists a vector S'z G U such that

Moreover, S': U —• M is a symmetric linear map. We obtain the representation

_ f [e-i<».v)_i + ff(x)(|-(I|tf)+1(^)3)].^

Since

is a continuous quadratic form, the above representation can also be written as

[ ^
x\{0} 1 - 9(x)

with a new symmetric linear map 5 : M —• M. The relation

(y,Sy)= lim r ^
fc—>oo K*

shows that S is positive. In order to finish this part of the proof it remains to
show that 5 is nuclear. Indeed, from the representation we see 0 < (y, Sy) <
Rei>{y), hence, by 5-continuity of tj) and by the equality ^(0) = 0, the mapping
y —> (y,Sy) is 5-continuous at 0 € X. Consequently there exists an 5-operator
Si such that

(y, Sy) < 1 whenever (y, Siy) < 1.
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Then by bilinearity and positivity it is clear that (y, Sy) < (y, Siy) for all y G M;
hence 5 is nuclear. Finally note that the functions

and

[
M\{0}

satisfy the conditions (i)-(iii) of Theorem 3.2. This is shown as in the classical
case (see Courrege [4]).

4. Examples

We study here some semigroups of probabilities on RN that are supported by

4.1 The translation semigroup. Let a = (ak)keN be a sequence of real numbers.
Of course, the product measures wt — ®fceN "W > (* > 0) a r e concentrated on I2

if and only it a El2. (nt) is then a convolution semigroup on I2 and its generating
function is

4.2 The Gaussian semigroup. Let

be the centered normal distribution on R with variance u > 0 and let v = (vk) be
a sequence of real numbers > 0. We consider the product probability measure
7Tt = ®f c €N Vtvk, (t > 0) on RN. It is well known that the measures nt are
concentrated on I2 if and only if S f c € N Vk < oo, that is, if and only if the matrix

S:=

induces a nuclear operator on I2, that is, (vk) € I1. Indeed, denoting for 0 > 0
by hp: RN —> R the function denned by
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we have hp | 1(2 as ft I 0. We compute

h0 dm = [I ~ J = I e-^-xl/2^ dxk

This quantity tends to 1 as /3 J. 0 if and only if £3 vk < oo. Since

the generating function is given by tpv(y) = |( j / , 5j/).
4.3 The Cauchy semigroup. Let

be the centered Cauchy distribution on R with parameter a > 0. Let p = (pk) be
a sequence of real numbers > 0 and consider the product measure irt := ®fc ^tPk

on RN. Using here the function kp: RN —» R defined by

we obtain / kp dni = Y\k l/(l + ̂ /3pk)- Letting /? | 0 we see that 7rx is supported
by I2 if and only if ^2pk < oo. Since 7Q(u) = e~Q'u',(u € R) the generating
function xj)p is given by ipp(y) — {p, \y\), {y G I2), where we have put \y\ —
(|j/o|>|j/i!)•••)• Although the function Vp is well defined for p € I2, it is 5-
continuous if and only if p € Z1. Indeed, if p e Z1 then

where

Conversely, if ip is 5-continuous then it generates an infinitely divisible proba-
bility distribution TT on Z2. The induced measure in RN by the injection Z2 —> RN

must be a product of Cauchy distributions and therefore, by what was shown
above, ^2 pk < oo.
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