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Abstract

In this paper, we characterize Borel σ-fields of the set of all fuzzy numbers endowed
with different metrics. The main result is that the Borel σ-fields with respect to all
known separable metrics are identical. This Borel field is the Borel σ-field making
all level cut functions of fuzzy mappings from any measurable space to the fuzzy
number space measurable with respect to the Hausdorff metric on the cut sets. The
relation between the Borel σ-field with respect to the supremum metric d∞ is also
demonstrated. We prove that the Borel field is induced by a separable and complete
metric. A global characterization of measurability of fuzzy-valued functions is given via
the main result. Applications to fuzzy-valued integrals are given, and an approximation
method is presented for integrals of fuzzy-valued functions. Finally, an example is given
to illustrate the applications of these results in economics. This example shows that the
results in this paper are basic to the theory of fuzzy-valued functions, such as the fuzzy
version of Lebesgue-like integrals of fuzzy-valued functions, and are useful in applied
fields.

2010 Mathematics subject classification: primary 26E50; secondary 28E10, 90C70.
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1. Introduction and preliminaries

The measurability of fuzzy-valued functions is a basic concept for fuzzy set theory
and applications. As in the classical case, measurability of these functions is also
basic in fuzzy analysis. It is closely related to the establishment of fuzzy Lebesgue-
like integrals, which is a key step for applications of fuzzy analysis.

Throughout this paper, (X,Ω) denotes a measurable space. A multifunction F :
X → R is a function from X to the set P(R) of all nonempty subsets of the real
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266 T.-H. Fan and M.-K. Bian [2]

line R. The function F is called measurable if, for every closed subset C of R,
F−1(C) = {x ∈ X | F(x) ∩C , ∅} ∈ Ω. Recall also that a mapping F from X to a metric
space Y is called measurable if for each open set U ⊂ Y , F−1(U) ∈ Ω. It is well-known
that if F is compact valued, the measurability of a multifunction F is equivalent to
the measurability of a function F : X → K(R), where K(R) is the metric space of all
compact subsets of R endowed with the Hausdorff metric H [2, Theorem 3.2]. Fuzzy
mappings are natural generalizations of multifunctions. First, we recall the definition
of measurability of a fuzzy mapping.

Definition 1.1. A fuzzy mapping F̃ : X→ R is a function from X to the set P̃(R) of all
normal fuzzy subsets of R. If F̃ : X→ R is a fuzzy mapping and C is a subset of R, then
F̃−1(C) denotes the function from X to [0, 1] defined by F̃−1(C)(x) = supr∈C F̃(x)(r) for
each x ∈ X. The fuzzy mapping F̃ is called measurable if, for every closed subset C of
R, F̃−1(C) is measurable as a function from X to [0, 1].

Definition 1.2. A fuzzy set u on R is called a fuzzy number if it satisfies the following
conditions:

(1) u is normal, that is, there exists x ∈ R such that u(x) = 1;
(2) u is upper semicontinuous;
(3) u is fuzzy convex, that is, u(rx + (1 − r)y) ≥ min{u(x), u(y)} for all x, y ∈ R and

r ∈ I;
(4) supp u = {x ∈ R | u(x) > 0} is compact, where “−” denotes the closure of the set

under consideration.

Let E1 denote the set of all fuzzy numbers. Following Kim’s [8] notation, the
set of all fuzzy sets on Rn which satisfies only (1), (2) and (4) is denoted by F (Rn).
Zhang [10] discussed the measurability of fuzzy-valued functions by using supporting
functions of fuzzy numbers, and gave characterizations for measurability of these
functions in terms of graphs and supporting functions. Kim [8] showed that the
measurability of a fuzzy mapping from X with values in F (Rn) is equivalent to the
measurability of the function regarded as a unary function from X to F (Rn) endowed
with the Skorokhod metric.

In this paper, we consider the case of all metrics defined on the set of fuzzy numbers,
and discuss the measurability of a fuzzy function from X to E1 endowed with all
known metrics defined on the set of all fuzzy numbers. Let K(R) and I(R) denote
the families of nonempty compact subsets and nonempty closed intervals of the real
line R, respectively. Note that K(R) is metrized by the Hausdorff metric

H(A, B) = max
{
sup
a∈A

inf
b∈B
|a − b|, sup

b∈B
inf
a∈A
|a − b|

}
and it is both complete and separable with respect to the Hausdorff metric H, and I(R)
is closed in K(R).

For a fuzzy set u in R, we denote the cut sets of u by

Lαu =

{x | u(x) ≥ α} if 0 < α ≤ 1,
supp u if x = 0,
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[3] Characterizations of the Borel σ-fields of the fuzzy number space 267

where supp u = {x | u(x) > 0} is the support of u. It is easy to see that u ∈ E1 if and only
if Lαu ∈ I(R) for each α ∈ [0, 1]. For u ∈ E1, let Lαu = [L−αu, L+

αu].
Let u, v ∈ E1; for each α ∈ [0, 1], define

H(Lαu, Lαv) = max{|L−αu − L−αv|, |L+
αu − L+

αv|}.

For u ∈ E1, the endograph of u is defined by

end(u) = {(x, α) ∈ R × [0, 1] | u(x) ≥ α},

while the endograph metric between u and v is defined as follows:

D′(u, v) = H(end(u), end(v)).

It is well-known that (E1,D′) is a separable but not a complete metric space.

Theorem 1.3 [1]. A fuzzy mapping F is measurable if and only if the composition
Lα ◦ F is measurable for all α ∈ [0, 1].

Lemma 1.4 [2]. Let I(R) be a metric space endowed with the Hausdorff metric H. For
u ∈ E1, we define Fu : [0, 1]→ I(R) by Fu(α) = Lαu. Then Fu has right-limit on [0, 1)
and is right-continuous at 0.

Let
⋃
β>α Lβu = Lα+u. The right-limit of Fu in K(R) at α ∈ [0, 1) is just Lα+u =

[L−α+ , L+
α+]. Let ju(α) = H(Lαu, Lα+u); then Fu is continuous at α if and only if

ju(α) = 0, that is, Lαu = Lα+u. Let J(u) = {α | ju(α) > 0}; then J(u) is at most countable.

Remark 1.5. Since Fu is continuous at 0, it follows that J(u) ⊂ (0, 1).

2. Main results

In this section, we prove that if a fuzzy mapping F̃ is E1-valued, then the
measurability of F̃ is equivalent to the measurability of it regarded as a function
F̃ : X → E1, where E1 is considered as the metric space endowed with any known
separable metrics defined on it existing in the literature. We first consider the
endograph metric D′. To this end, we need to characterize the Borel σ-field of E1.
Unless otherwise stated, we assume that the spaces I(R) and E1 are considered as
metric spaces endowed with the Hausdorff metric H and the endograph metric D′,
respectively.

Lemma 2.1. For α ∈ I, the cut set application Lα can be considered as a function from
E1 to K(R), defined by u 7→ Lαu. Then, for α ∈ (0, 1), Lα is continuous at u ∈ E1 if and
only if α < J(u).

Proof. We prove by contradiction that the condition is necessary, that is, for u ∈ E1, if
α0 ∈ J(u), we prove that Lα is not continuous at u. By definition, Lα0 u , Lα0

+u, which
yields

L−α0
u < L−α0

+u or L+
α0

u > L+
α0

+u.
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268 T.-H. Fan and M.-K. Bian [4]

Without loss of generality, let us suppose that L−α0
u < L−α0

+u. For n ∈ N such that
α0 > 1/n, define

un(x) =


α0 −

1
n

+
1
n
×

x − L−α0−1/nu

L−
α+

0
u − L−

α0−1/nu
, x ∈ [L−α0−1/nu, L−α+

0
u],

u(x), otherwise.

Then un ∈ E1 and un → u(D′), but L−α0
un = L−

α+
0
u , L−α0

u. So, Lα0 un 9 Lα0 u, that is, Lα0

is not continuous at u.
To prove the sufficiency of the condition, let α0 < J(u). If Lα0 is not continuous

at u, then there exists a sequence {un} in E1 such that un → u(D′), but there is an
ε0 > 0 such that H(Lα0 un, Lα0 u) ≥ 2ε0. Without loss of generality, let us assume that
|L−α0

un − L−α0
u| ≥ 2ε0, n = 1, 2, . . . . Since α0 < J(u), for the above ε0, there exists δ > 0

such that
H(Lαu, Lα0 u) ≤ ε0 for |α − α0| ≤ δ. (2.1)

We now have two cases.

Case (i). There exists a subsequence {unk } of {un} such that

L−α0
unk − L−α0

u ≥ 2ε0.

To simplify the notation, the subsequence {unk } is denoted by {un}.
Let P = (L−α0+δu, α0 + δ), so P ∈ end(u). The two lines y = α0 and x = L−α0

u + 2ε0
separate the plane into four parts: the left-upper part, the right-upper part, the left-
lower part and the right-lower part of the plane. Hence, end(un) disjoints from the
interior of the left-upper part of the plane. However, the distances from P to the two
lines y = α0 and x = L−α0

u + 2ε0 are δ and L−α0
u + 2ε0 − L−α0+δu, respectively.

By inequality (2.1), L−α0+δu − L−α0
u ≤ ε0, so L−α0

u + 2ε0 − L−α0+δu ≥ ε0; thus,
d(P, end(un)) ≥ min{δ, ε0} and, therefore,

D′(un, u) = H(end(un), end(u)) ≥ d(P, end(un)) ≥ min{δ, ε0}.

This contradicts un → u(D′).

Case (ii). There exists a subsequence {unl} of {un} such that

L−α0
u − L−α0

unl ≥ 2ε0.

As in case (i), we also use {un} to denote its subsequence {unl}.
Let Q = (L−α0

un, α0), so Q ∈ end(un). As in case (i), the two lines y = α0 − δ and
x = L−α0

u − ε0 separate the plane into four parts. Then end(u) disjoints from the
interior of the left-upper part of the plane. However, the distances from Q to the
two lines y = α0 − δ and x = L−α0

u − ε0 are δ and L−α0
u − ε0 − L−α0

un, respectively. So,
L−α0

u − ε0 − L−α0
un ≥ ε0 and d(Q, end(u)) ≥ min{ε0, δ}; therefore,

D′(un, u) = H(end(un), end(u)) ≥ d(Q, end(u)) ≥ min{δ, ε0}.

This also contradicts that un → u(D′), which completes the proof. �
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Lemma 2.2. Let BD′ denote the Borel σ-field of E1 with respect to the endograph
metric D′, that is, BD′ is the Borel σ-field generated by the set of all open sets with
respect to the endograph metric. Then the classBD′ coincides with the smallest σ-field
of subsets of E1 for which the maps Lα : u→ Lαu are measurable for all α ∈ [0, 1].

Proof. Let B be the smallest σ-field of subsets of E1 for which the maps Lα : u→ Lαu
are measurable for all α ∈ [0, 1]. Now we prove that for each α0 ∈ (0, 1), Lα0 is
measurable with respect to BD′ . It is well-known in analysis that the Borel σ-field
of K(R) is generated by all mappings f , continuous and bounded on K(R), so it is
enough to prove that f (Lα0 ) is a pointwise limit of a sequence of continuous maps on
E1 with respect to the endograph metric.

First, we show that for each ε > 0, gε(u) =
∫ α0

α0−ε
f (Lαu) dα is continuous on E1.

If un → u(D′), then, from Lemma 2.1, Lαun → Lαu for α < J(u). Since J(u) is at
most countable, we obtain from the Lebesgue bounded convergence theorem that
gε(un)→ gε(u). Thus, gε is continuous on E1. It follows from left-continuity of Lαu as
a function of α that gε(un)/ε → f (Lα0 u) for each α0 ∈ (0, 1), as ε → 0. Hence, f (Lα0 )
is a pointwise limit of a sequence of continuous maps on E1. In other words, Lα0 is
measurable with respect to BD′ ; therefore, B ⊂ BD′ .

Now we prove the reverse inclusion BD′ ⊂ B. Since the endograph metric is weaker
than the Skorokhod metric, it follows that BD′ ⊂ Bs, where Bs is the Borel σ-field of
E1 with respect to the Skorokhod metric. By a result of Kim [8], we know that Bs ⊂ B.
Therefore, BD′ ⊂ B, which completes the proof. �

Lemma 2.3. Let a fuzzy mapping F̃ : X→ R be E1-valued; then F̃ is measurable if and
only if it is measurable when considered as a function from X to the metric space E1

endowed with the endograph metric D′.

Proof. By Theorem 1.3, a fuzzy mapping F̃ is measurable if and only if for each
α ∈ [0, 1], LαF̃ is a measurable multifunction or, equivalently, measurable when
considered as a function from X to the metric space K(R) endowed with the Hausdorff
metric H. Thus, the result follows immediately from Lemma 2.2. �

Now we consider the relation between the Borel σ-field B and the supremum
metric d∞. Note that the topology on E1 generated by the metric d∞ is not separable.
The following example shows that the Borel σ-field with respect to the metric d∞ is
different from that generated by the set of all open (closed) sets with respect to the
metric d∞.

Example 2.4. Define F̃ : I → E1 as follows:

F̃(t)(x) =


1, x = 0,
t, x ∈ (0, 1],
0, otherwise,

where I = [0, 1]. For each t0 ∈ I, clearly, d∞(F̃(t), F̃(t0)) = 1 for t , t0. Thus, F̃ is
not measurable with respect to the supremum metric d∞. The reason is as follows.
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Since the subspace topology on F̃(I) with respect to the supremum metric is the
discrete topology, the generated Borel field is the power set of F̃(I). Also, since F̃
is injective, each subset of I is the reverse image of a Borel set of F̃(I) under F̃. Since
there exists no Borel set (in fact, there exists no Lebesgue measurable set) in I, F̃ is
not measurable.

On the contrary, note that for each fixed α ∈ I,

Lα ◦ F̃(t) =

[0, 1], α ∈ [0, t],
{1}, otherwise.

Thus, Lα ◦ F̃ : I → I(R) is measurable, since

(Lα ◦ F̃)−1({[0, 1]}) = [0, α], (Lα ◦ F̃)−1({1}) = (α, 1]

are measurable sets. Thus, each Lα ◦ F̃ is measurable and hence F̃ is measurable.

In contrast with Example 2.4, we have the following result.

Theorem 2.5. Let B∗ be the Borel σ-field on E1 generated by the set of all open balls
with respect to the metric d∞. Then we have B = B∗.

Proof. First, for u ∈ E1 and ε > 0, we consider

Bd∞(u, ε) = {v ∈ E1 | d∞(u, v) ≤ ε}.

Let Γ = [0, 1] ∩ Q, the set of all rational numbers in the unit interval. For each α ∈ Γ,
let

Bα = {v ∈ E1 | H(Lα(u), Lα(v)) ≤ ε};

then Bα ∈ B, since Bα = L−1
α (BH(Lα(u), ε)). Thus,

Bd∞(u, ε) =
⋂
α∈Γ

Bα) ∈ B.

Hence, B∗ ⊆ B.
Conversely, consider

Fα : E1 → I(R).

Note that B is the smallest Borel σ-field on E1 making all Fα measurable. For α ∈ Γ

and ε > 0,
F−1(B(Lα(u), ε) = {v ∈ E1 | H(Lαu, Lαv) ≤ ε};

thus, ⋂
α∈Γ

F−1(B(Lα(u), ε)) = Bd∞(u, ε) ∈ B∗.

This shows that B = B∗ and the proof is complete. �

Example 2.4 and Theorem 2.5 show that B∗ , Bd∞ . This phenomenon of course
results from the fact that the metric d∞ is not separable.

From Lemma 2.3 and the corresponding result in Kim [8], we have the following
corollary.
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Corollary 2.6. If ρ is a metric on E1 such that ρ is topologically finer than D′ but
coarser than ds, then Bρ = B, where ds is the Skorokhod metric defined by Kim [8].

Remark 2.7. By a result of Fan [4], we have the following topological inclusions on
the topologies on E1 generated by various known metrics:

TD′ ⊂ Tdp ⊂ TD ⊂ Tds ,

where D is the sendograph metric and dp is the dp metric for p ≥ 1. For the definition
of the sendograph metric and the Lp metric, the reader is suggested to refer to the work
of Diamond and Kloeden [3]. For the definition of the Skorokhod metric and related
properties, please refer to the work of Joo and Kim [6, 8]. Here Tρ is the topology
generated by the metric ρ for any metric ρ.

Hence, we have the following equalities on Borel σ-fields on E1, since all
topologies considered are separable:

BD′ = Bdp = BD = Bds .

Combining the above results, we have the following theorem, which is the main
result of this paper.

Theorem 2.8. On the fuzzy number space E1, we have the following equalities on the
Borel σ-fields generated by all known metrics defined on it and the measurability of
E1-valued functions:

B = BD′ = Bdp = BD = Bds = B∗ ⊂ Bd∞ .

Joo and Kim [6] proved that the Skorokhod metric ds is topologically equivalent to
the modified Skorokhod metric d∗s ; the latter is a complete metric, so it is both complete
and separable. Thus, we have the following corollary.

Corollary 2.9. A fuzzy mapping F defined on a measurable space (X, Ω) is
measurable if and only if F is a single-valued measurable function with respect to
the separable and complete metric d∗s , so the Borel σ-field B is actually the Borel
σ-field on E1 generated by the complete and separable metric d∗s .

3. Applications

Let F : X→ R be a fuzzy mapping, that is, F is a mapping from a measurable space
(X,Ω) to E1. From the definition of measurability, to check the measurability of F,
one needs to check the measurability of all real functions L−α ◦ F and L+

α ◦ F for all
α ∈ [0, 1]; this is actually infeasible in practice.

By Theorem 2.8, to check the measurability of F, it suffices to check the
measurability of a single-valued function F : X → E1 with respect to any separable
metric mentioned in Theorem 2.8 or to check the measurability of the inverse images
of balls with respect to the complete but nonseparable metric d∞; this may simplify
the checking of measurability considerably. Since the fuzzy number set E1 with
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respect to different metrics can be embedded into a Banach space or topological vector
space [3], Theorem 2.8 may enable us to incorporate the study of measurability or even
integrals of fuzzy-valued functions into the more general setting of abstract vector-
valued functions. The following theorem is a result along this line of thought.

Theorem 3.1. Let F : X → R be a fuzzy mapping, where (X,Ω) is a measurable space.
Then F is measurable if and only if for each u ∈ E1, the function gu : X → [0,∞)
defined by gu(x) = d(u,F(x)) is measurable with respect to any of the separable metrics
mentioned in Theorem 2.8 (or with respect to B∗ in the case of the metric d∞).

Proof. For each u ∈ E1, consider h : E1 → [0,∞) defined by h(v) = d(u, v); it is well-
known from topology that h is a continuous function; thus, it is also measurable.
Clearly, gu = h ◦ F is the composition of two measurable functions, so gu is
measurable.

Conversely, if all gu are measurable, for each open set V ⊂ E1, by separability of
(E1, d), we can assume that V =

⋃∞
n=1 Bd(un, ri) is a countable union of open balls in

E1 with respect to the metric d (note that this step of the proof can also be replaced by
an open set which is a union of countable open balls with respect to the metric d∞);
thus,

f −1(V) =

∞⋃
n=1

g−1
un

([0, rn)) ∈ Ω,

which completes the proof. �

Let f : (X,Ω, µ)→ E1 be a function. Consider the integral of f . By Theorem 2.8,
if f is measurable, then, for each α, Lα ◦ f is measurable; this is equivalent to the fact
that Lα ◦ f is measurable for α ∈ C, for some countable dense subset of [0,1]. The
integrability of Lα ◦ f for α ∈ C ensures the integrability of f .

Let

Aα =

∫
Ω

Lα ◦ f dµ. (3.1)

Note that Iα is a closed interval on the real line and it is anti-monotone with respect to
α, so the integral of f is

A =
∨
α∈C

αχAα . (3.2)

Since C is infinite, to compute the integral of f by (3.2), one needs to compute Aα

by using (3.1) for infinitely many α, which is impossible in practice. To compute the
integral effectively, for example, we can use the endograph metric D′ and Theorem 2.8,
since D′ has the following finite approximation property.

Theorem 3.2 [5]. For u, v ∈ E1, suppose that for a fixed ε > 0, C = {α1, α2, . . . , αn} is
a finite subset of I such that H(C, I) ≤ ε and, for α ∈ C, H(uα, vα) ≤ ε. Then

D′(u, v) ≤
√

2ε. (3.3)
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By using Theorem 3.2, we present the following simple procedure to numerically
calculate the integral of a fuzzy-valued function f to any designated accuracy.

Algorithm 1 Algorithm of the integral for a fuzzy-valued function
For a measurable fuzzy-valued function f (X,Ω, µ)→ E1 and ε > 0.
step 1. Take finite levels C ⊂ I such that H(C, I) ≤ ε.
step 2. For each α ∈ C, calculate the numerical value A′α of the integral Lα ◦ f
such that H(Aα, A′α) ≤ ε; this step can be done by using methods in numerical
analysis.
step 3. Let A′ =

∨
α∈C a · A′α.

Then A′ is an approximation of the integral A of f . By (3.3), the accuracy is
shown as

D′(A, A′) ≤
√

2ε.

The above illustration shows that fuzzy-valued integrals can be quite easily
computed by using Theorem 2.8 and Algorithm 1. Like integrals in analysis, fuzzy-
valued integrals are widely used in various applications related to fuzzy sets. The
following is a simple example of an economic application given by Luo and Han [9].
Note that in the reference, no computation method is given as to the final result of the
integral, which makes the model difficult to use. By using Algorithm 1, the outcome
integral can be calculated efficiently, thus making the economic model practical.

Example 3.3. Suppose that n firms have demands for some resource S . Let λ ∈ I be the
degree of constraint for the firms, which may be taken as a function of the resource.
Note that λ = 0 means free constraint, λ = 1 means the most strict constraint, that is,
the values of the resource amounts are all 0 and λ ∈ (0,1) means something in between.

If λ is fixed, then the λ constraint is a hard constraint; for moving λ ∈ [0, 1], it
means a soft constraint. If λ ∈ [0, 1], uλ ⊂ R+ means demand for resource S . Based
on practical meaning, it is reasonable to assume that u ∈ E1, where u is called the
membership function of the firm for the resource.

If an economic system is composed of n firms, the demand of the ith firm is
ui, i = 1, 2, . . . , n. The total soft demand of the economic system is

∑n
i=1 ui (where

the sum is the addition of the fuzzy numbers).
For a big economic system, there might be many firms. Thus, we cannot compute

the total demand by considering only the individual firms. Also, a big economic
system has the characteristic that the survival of some firms may be of negligible effect,
whereas the survival of some other firms may be fatal for the system. Also, some firms
may not be significant individually, but they may be very important as an entity; hence,
it is ideal to describe the economic system by a measure space (X,Ω, µ), where X is
the set of all firms, Ω is a σ-algebra on X, representing the possible combinations of
the individual firms to be considered and µ is a finite measure on (X,Ω). In general,
µ(X) = 1, that is, µ is a probability measure on (X,Ω).
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To study the asymptotic behaviour of the economic system when the number of
firms is very big, we may consider the case when X is an infinite set. For x ∈ X, let
F(x) be a soft demand for S ; then F(x) is a fuzzy-valued mapping. The total soft
demand of the economic system for S is

A =

∫
X

F(x) dµ,

which can be calculated by using Algorithm 1.

4. Concluding remarks
Butnariu [1] studied the measurability of a function f : (S ,Ω)→ Rn, which is an

upper semicontinuous and compact support-valued fuzzy function. Let F (Rn) denote
the set of all fuzzy sets on Rn which are normal, upper semicontinuous and compact
supported. Butnariu raised the following questions.

(i) Kaleva [7] has proved that B∗F (Rn) ⊂ BF (Rn) in the setting of all fuzzy sets. Is
the converse inclusion true?

(ii) Under what conditions is the measurability of a function F : (S ,Ω)→ Rn, which
is F (Rn) valued, equivalent to the measurability of F with respect to the metric
dp?

Our results in this paper can be regarded as answers to the above two questions in
the case of fuzzy-valued mappings. Theorem 2.8 and Corollary 2.9 show that the
measurabilities of fuzzy number valued functions are the same with respect to all
known separable metrics on the fuzzy number sets E1. Thus, we can freely use any
separable metric to establish a fuzzy version of Lebesgue-like integrals for fuzzy-
valued functions, since their measurabilities are all equivalent.

As illustrated by Algorithm 1 and Example 3.3, and considering the importance
of the measurability concept in real analysis, we believe that the results in this paper
can be applied to the study of fuzzy functions not only confined to integrals but also to
other problems like differentiation. For related work in these directions, we refer to the
classical works of Diamond and Kloeden [3] and Kaleva [7]. As shown in Section 3,
the results of this paper can make fuzzy-valued functions much more useful in applied
sciences.
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