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1. Introduction. Let A be a ring and G a finite group of ring automor-
phisms of 4. The totality of elements of 4 which are left invariant by G is a
subring of 4. We call it the G-fixed subring of 4. Let 4= 4(4,G) =3 ® Au,
be the crossed product of 4 and G with trivial factor set, i.e. {#.} isGEGA-free
basis of 4 and #%.%: = %s:, u,A=0(1)%, for A€ A, and let I" be a subring of the
G-fixed subring of 4 which has the same identity as 4. Then we have a ring
homomorphism

d: 4(4,G) » HomT (4, 1)

defined by 6(i%,) (%) = Ad(x), where Homf (4, 4) is the Iendomorphism ring of
A regarded as I-right module.

In [4], we generalized the notion of Galois extension, which was first de-
fined by Auslander and Goldman [1] for commutative rings, to non commutative
case, and discussed the Galois theory for non commutative rings. Our definition
of Galois extension is as follows. A ring 4 is called a Galois extension of I
relative to G if the following conditions are satisfied:

I. I' is the G-fixed subring of 4,

Il. 4 is a finitely generated projective I-right module,

III. ¢ is an isomorphism of 4/4,G) to Hom T-(4, 4).

On the other hand, Chase, Harrison and Rosenberg [3] gave another definition
of Galois extension, which is equivalent to the above in commutative case, and
deVeloped a Galois theory for commutative rings. In order to state other defi-
nition, we set Tr(x) = >)a(x) for x€ 4. Then 4 is called to be a Galois extension

cEGR
of I' relative to G if the following two conditions are satisfied :

CHR I. I'=Tr(4A).
CHR II. There exist xi, #2, ... and x, and yi, 52, ... yr in 4 such that
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Lifo=1
0, if o=1.

In §2, we discuss the relationship between these two definitions of Galois

for s€ G 2ixio(yi) ={

extension and we shall show that if 4 and I are algebras over a commutative
ring R and I' is R-separable then they are equivalent to each other. In §3, we
shall give an improvement of the Galois theory established in [4] which is also
a generalization of the Galois theory in [3] to non commutative case. In §4,
for a Galois extension 4 of I" relative to G, we consider a ring-automorphism
o of 4 which leaves invariant each element of I" and we shall show that p is

an element of G under some assumption.

2. Galois extension. Throughout this section, 4 stands for a ring with
identity, G a finite group of ring automorphisms of 4 and I a subring of 4
which has the same identity as 4. We shall call 4 a Galois extension of I
relative to G if the three condition I, II, IIl in §1 are satisfied. A is regarded
as 4(4, G)- left module through 6. Then a right multiplication of an element
r of I" induces a 4(4, G)- endomorphism of 4 if I' is a subring of the G-fixed
subring of 4 We shall denote it by y, and set {y,|re7I'}=I,. Then the

condition I is equivalent to
I Iy =Homk (4, 4).
The following lemma is proved in [4].

Lemma 2.1, 4 is a Galois extension of I' relative to G if and only if Iy =
Hom' (4, 4) and 4(A,G) = Aud, where u= ) u..
oER

LEMMA 2.2, Aud= 4(A,G) if and only if the condition CHRII holds.

Proof. Since Aud is a two sided ideal of 4(4, G), 4(4,G) = Aud if and only

if 1€ Aud. But 1< Aud if and only if there exist %1, %, . .. %, Y1, Y2, - - . Yr
r r

in 4 such that 1 =) miuy; = %0(yi)us. Thus we obtain this lemma.
1=1 1=1,0EG

ProrosiTION 2.3. Tr(A) = Homk (4, A) if and only if A is a finitely gener-
ated projective d-module.

Proof. In Lemma 3 in [4], we obtained the isomorphism x; Hom% (4, 4) -
ud, defined by x(f) =£(1). For the homomorphism r: Hom4(4, 4) > HomA(4, 4)
defined by 7(f)(4) =5(2) 1, the following diagram is commutative ;
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Hom (4, 4) —> Hom',(, 4)

e

uA — A
where ' is a monomorphism defihed by #'(f) = f(1) for fe Hombk (4, 4), and
v' is a homomorhpism defined by 7'(#l) = ()1 =Tr(1) for uicsud. Since
Im (') =Im (¢!) = Tr(4), Im (') = Tr(4) if and only if r is an epimorphism.
On the other hand, for epimorphism r: Homk (4, 4) > Hom (4, 4) ® 4 defined
by t(f) =f®1, and for the homomorphism x: Homki (4, 4)® +4 » Hom% (4, 4)
defined by x(f®1)(x) =f(x)4, we have the following commutative diagram :

7
Hom) (4, 4) —> Hom! (4, A)
JI’T I
Hom (A4, 4) ® a4

Because, for f€ Homi (4, 4), pr(f)XD) =u(f 1)) = f(A)1=7(f)X). There-
fore 7 is an epimorphism if and only if x is an epimorphism. But by Proposition
A.1 in [2], # is an epimorphism if and only if 4 is a finitely generated pro-
jective 4-module. Therefore we obtain this proposition.

PropPoOSITION 2.4. a) A is a Galois extension of T relative to G if and only
if the condition I and CHR II. are satisfied. b) The condition CHR 1. holds if
and only if the condition I holds and A is a finitely generated projective A-module.

Proof. a) is obtained in above. b) Since T7(4) is a two sided ideal of the
G-fixed subring of 4., Tr(A) =TI if and only if T7(4), =Hom4 (4. 4) and I, =
Hom’ (4, 4). Therefore b) follows from Proposition 2.3.

THEOREM 2.5. Let I'C A be algebras over a commulative ring R, and let I
be separable over R. Then A 1s a Galois extension of I relative to G if and
only if the conditions CHR I. and CHR II. hold.

Proof. If I' is separable over R and A is a Galois extension of I’ relative
to G, then 4 =Hom?© (4, A) is separable over R and 4 is a finitely generated
projective 4-module by Colrollary 1 in [4]. Therefore by Proposition 2.4 CHR
I. and CHR II. hold. The converse follows from Proposition 2.4.

CoroLLARY 2.6, (Chase, Harrison and Rosenberg) Let A be a commutative
ring. A is a Galois extension of I' relative to G if and only if the conditions
CHR I and CHR 1II. hold.
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Proof. Setting I'=R in Theorem 2.5 we have this corollary.

3. Galois theory. In this section, we shall improve Theorem 5 in [4] and
develope the Galois theory of separable algebra over a commutafive ring having
the indecomposable center by using the Galois theory of commutative inde-

composable ring in [3].

ProrosiTiON 3.1, Let I'C A be algebras over a commutative ring R, A a
Galois extension of I' ralative to G, and I" a separable algebra over R. Then,
for every subgroup H of G, the H-fixed subring A¥ of A is also a separable

algebra over R.

Proof. Since I' is separable over R, by Proposition 4 in [4] 4(4, G) is also
separable over R. For the decompositions of G with respect to H; G = Hoi+
Hs+ +++ +Hor=0lH+¢'H+ +++ +40/H, s1=01=1, we have 4(4,G) =)

oEG
® o = 404 ) @ 334 (A, H) o, and 33404 H) thn, = Suoid (4, H).  We shall
show that 4(4,H) is an R-separable subalgebra of 4(4,G). Since 4(4,G)
is separble over R, 4(4,G) is a 4(4,G)°-projective module. Now 4(4,G)®=
44, G) @ rd(A,G)’ =238 A4, H)*us; @ uy,,, therefore 4(4,G) is a 4(4, H)*-pro-
jective module. Sin’éej 4(4, H) is a direct summand of 4(4,G) as 4(4, H)®
-module, 4(A,H) is 4(A, H)*-projective, therefore 4(4, H) is separable over R.
On the other hand, A is a finitely generated projective Imodule, hence by
Corollary 1 in [4] 4 is a finitely generated projective 4(4, G)-module. Since
4(A4,G) is a 4(A4, H)-free module, 4 is a finitely generated projective 4(4, H)
-module. Therefore by Corollary 1 in [4] Homa, m (4, A) = 47 is separable
over R.

Using Theorem 2.3 in [3] and Theorem 5 in [4], we have

TuEOREM 3.2, Let A and I" be separable algebras over a commutative ring
R, and suppose that the following conditions are satisfied:

1) The center C of A is indecomposable.

2) There is a finite group G of ring automorphisms of A such that G induces
the group of automorphisms of C tsomorphic to G.

3) I is the G-fixed subring of A.

4) A is finitely generated and projective over R.

Then A is a Galois extension of I relative to G, and there is a 1—1 dual cor-
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respondence between subgroups of G and R-separable subalgebra of A containing

T in the usual sense of Galois theory.

Proof. “Simce 4 is separable and finitely generated projective over R, the
center C of A is finitely generated projective and separable over R. From
Theorem 2.3 in [3], the indecomposable ring C is a Galois extension of the
G-fixed subring S of C relative to G. From Theorem 5 in [4], 4 is a Galois
extension of I' relative to G. By Proposition 3.1, for every subgroup H of G
the H-fixed subring 47 is separable over R, and 4 is a Galois extension of A7
relative to H by Theorem 5 in [4]. Conversely, for every separable subalgebra
2 over R such that 'cQcC 4, Q is separable over S, and Proposition 6 in [4]
holds for the indecomposable ring C by Theorem 3.3 in [3], hence by the same
argument as in Theorem 5 in [4] we have that 4 is a Galois extension of 2
relative to a subgroup of G. Therefore 2 is the fixed subring of 4 by a sub-

group of G. Thus we obtain a Galois theory for separable algebra over R.

4. Automorphisms of Galois extension. In this section, we assume that
A is a central separable algebra over C, G is a finite group of ring automor-
phisms of A which induces the group of automorphisms of C isomorphic to G,
and for the G-fixed subring R of C, C is a Galois extension of R relative to G.
Then by Theorem 5 in [4] 4 is a Galois extension of I" relative to G, where
I' is the G-fixed subring of A.

Lemma 4.1, Let C be a ring, M a projective C-module. For any subset xi,

X2, - .. %n tn M, in which at least one element xiis not zero, there exist elements

c1, €2, . .. cn in C such that at least one of ci's is not zero and >\ %y; =0 with
=1

yi € C implies always 2>)ciyi=0.
i=1

Proof. we can prove the lemma similarly to Lemma 6 in [4].

ProposiTION 4.2. Let p be a ring automorphism of A which leaves invariant
each element of I. Then we have p= Z}x,a where {A;} is a family of orthogonal
idempotents in the center C, and 1= 2;;6 Furthermore, if ot and A0 A=
0, then o0™'(2,) %7 (22). =

Proof. Since p=Hom¥P(4, A =4(4, G) =3 @ Au,, we have p= >,i,¢ with
aER

OEGR
lsEA. For any % in 4, p+x=0(x)*p, therefore DAs*a(x)oa= (D] Ar(x))*
ocEq TEQ
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(3 4.0), and we obtain
CEG

(%) Aoa(%) = DAt (%) Ao for x€ 4 and ¢s€G.
TEG
If x is taken in C, then A,0(x) = 32 dsv(%), therefore ) AAot(x) + (22— A5)a(x)
TEG oxT
TEG

=0 for any # in C. By Lemma 4.1 and linearly independence of {s},e¢ Over
C, we obtain A, =1} and A:4s =0 for r=4. Therefore {1,} is a family of ortho-
gonal idempotents and O%ch =1 since p(1)=1. On the orther hand, from (%)
we have for x, y in 4, A,0(xy) =1§GK:r(xy)Xq, and we have 2,°a(x)+a(y) =§G
A:7(x)A.7\y) for any ¥x= 4 and y = C. By the same reason as above, we have
Aova(%) = Aeo(%)As and Az7(x)*ds =0 for r = g, therefore A,x = A.*x4, for every x
in 4. On the other hand, for any x in 4, xlc=§61-.qu=§Ger/1~.lo=laxlo,
therefore A, is contained in the center C of A. Since p(A) = 4, for any y in 4
there exist # in 4 such that y = p(x) = %Aa-a(x). Since Aoy =As*0(x) =0(07(10)* %)
for each ¢ in G, it follows that ¢ *(1.y )G= o '(4,)+x for each s € G. Accordingly,
if 1, and A. are non zero and o7, then ¢ '(X,) =7t '(x:). Because, if ¢ (1)
=1"H2:) then ¢7(4:9) =t " (A:y). Put y=1, and we have ¢ '(1;) =¢7'(2}) =
73 (2=4s) =7 1(0) =0, it is a contradiction.

CoroOLLARY 4.3. If the center C of A is indecomposable, then any TI-ring
automorphism of A is contained in G.

ProposiTiON 4.4, If there are orthogonal indecomposable idempotent elements

e, e ...enin C such that >le; =1, and if there exist g1, o2, . . . an of G such
£=1
that o7 (e)) =07 '(e;) for i=j, then o= Deis; is a Iring automorphism of A.
i=1

Proof. p is clearly a ring endomorphism, and leaves invariant each element

of I Now, we shall show that p is an epimorphism of A to A. Since e; is

indecomposable in C and >le;=1, ¢;'(e;) is also indecomposable in C and
i=1

Slei'(e;) =1 for each i, therefore o7'(e;) is one of {er}. But, ¢i'(e;) x5 '(e;)
i1
for 7% 4, hence {ei, €z, ... en}={o7"(e)), 0; (&), ... orn'(es)}. Therefore 1=

Soi'(ei), and o7 '(e;)+05'(ej) =0 for ixj. For anyyin A, put % = o”1(e;) a7 (»),

i=1 : -

i=1,2,...nand x= 2%, then o7 '(e;)x; =0 for £x 7, and o7 '(e;)% = x;. Hence
i=1

o(%) =;Elleia;(x) =>0i(g7 (i) x) =;a;(x;) =>0i(a7' (€)o7 (¥)) =ﬁ‘.eiy =y. Thus
= 1 i=1
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p is an epimorphism.

We shall prove that p is a monomorphism. The following proof of this
part is due to Professor H. Nagao. If p(x) =0, then o7 '(p(x)) =107 '(€i)o; '(0i(x))
+ 7' (ej)x =0 for each 7, and 4j'(e;)a; ' (p(x)) = a7 (e;)x =0 f‘:; i=12...n

therefore ¥ = >)g;'(e;)x =0. Accordingly, p is an automorphism of A.
=1
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