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1. Introduction. Let A be a ring and G a finite group of ring automor-

phisms of A. The totality of elements of A which are left invariant by G is a

subring of A. We call it the G-fixed subring of A. Let A = A(A,G) = Σ ΘΛκ<>

be the crossed product of A and G with trivial factor set, i.e. {ua} is a Λ-free

basis of J and UaUx = w7τ, «Λ = <;U)#i for λ e /], and let Γ be a subring of the

G-fixed subring of A which has the same identity as A. Then we have a ring

homomorphism

δ: Δ{A,G) -> Honir(Λ,Λ)

defined by δUua)(x) = λa{x)y where Homr(Λ> Λ) is the Γ-endomorphism ring of

A regarded as Γ-right module.

In [4], we generalized the notion of Galois extension, which was first de-

fined by Auslander and Goldman [1] for commutative rings, to non commutative

case, and discussed the Galois theory for non commutative rings. Our definition

of Galois extension is as follows. A ring A is called a Galois extension of Γ

relative to G if the following conditions are satisfied:

I. Γ is the G-fixed subring of A,

II. A is a finitely generated projective Γ-right module,

III. δ is an isomorphism of J(A,G) to Homr(Λ, A).

On the other hand, Chase, Harrison and Rosenberg [3] gave another definition

of Galois extension, which is equivalent to the above in commutative case, and

developed a Galois theory for commutative rings. In order to state other defi-

nition, we set Trix) = Σ<K#) for # e A. Then A is called to be a Galois extension

of Γ relative to G if the following two conditions are satisfied #

CHR I. Γ^TΛA).

CHR II. T h e r e exist xu x2, . . . and xr and yu y i, . . . yr in A such that
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, I, if tf = 1
for ( J E G XiXiσiyi) =

ι0, if <;#1.

In §2, we discuss the relationship between these two definitions of Galois

extension and we shall show that if A and Γ are algebras over a commutative

ring R and Γ is i?-separable then they are equivalent to each other. In § 3, we

shall give an improvement of the Galois theory established in [4] which is also

a generalization of the Galois theory in [3] to non commutative case. In §4,

for a Galois extension A of Γ relative to G, we consider a ring-automorphism

μ of A which leaves invariant each element of Γ and we shall show that p is

an element of G under some assumption.

2. Galois extension. Throughout this section, A stands for a ring with

identity, G a finite group of ring automorphisms of A and Γ a subring of A

which has the same identity as A. We shall call A a Galois extension of Γ

relative to G if the three condition I, II, III in § 1 are satisfied. A is regarded

as Δ(A,G)- left module through δ. Then a right multiplication of an element

γ of Γ induces a Δ(AyG)- endomorphism of A if Γ is a subring of the G-fixed

subring of A We shall denote it by γr and set {γr\γeΓ}=Γr. Then the

condition I is equivalent to

V. Γr = Horn ι

Δ(Λ,A).

The following lemma is proved in [4].

LEMMA 2.1. A is a Galois extension of Γ relative to G if and only if Γr —

Horn A (A, A) and Δ(A, G) = AuΛ, where # = Σ ^ σ .
oG(?

LEMMA 2.2. AuA = J(A, G) if and only if the condition CHRll holds.

Proof. Since AuA is a two sided ideal of Δ(A, G), J(Af G) = AuA if and only

if 1 e AuA. But 1 e AuA if and only if there exist xu Xu Xr, yu yz9 . . . yr

r r
in A such that 1 = Σ Xiuyi = Σ Xi<j(yi)ua. Thus we obtain this lemma.

PROPOSITION 2.3. Tr{A) = HomίiA, A) if and only if A is a finitely gener-

ated projectiυe Δ-module.

Proof. In Lemma 3 in [4], we obtained the isomorphism κ\ Hom7

Δ(Λ, J)-»

uΛ, defined by κ(f) =/(l). For the homomorphism γ: Homi(Λ, Δ) ->Homi(Λ, A)

defined by r(/)U) =/Q)l, the following diagram is commutative;
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Homi(Λ,J) —>

[ r
uΛ —> A

where κf is a monomorphism defined by κ'(f) = / ( l ) for / e Homi (Λ, A), and

r' is a homomorhpism defined by γ'(uλ) = (uλ)l = Tr(λ) for uλ&uA. Since

Im(r'*:) = Im(r') = Tr(A), Im(tc') = Tr(A) if and only if γ is an epimorphism.

On the other hand, for epimorphism τ' Homi (Λ, Λ) -> Homi(Λ, J) ®.ΔΛ defined

by r ( / ) = / ® l , and for the homomorphism μ: Homi (Λ, J) (g)Δ/i-* Homi(Λ, Λ)

defined by μ(f®λ)(x) -f(x)λ, we have the following commutative diagram '•

Homi(Λ, A) -^> Homi (A, A)

> /

Homi(yf, J)(g)Δ/lκ

Because, for / e Homi(/ί, yί), ^(/)(^)=M/01)U) = /U)l=r(/)U). There-fore r is an epimorphism if and only if μ is an epimorphism. But by Proposition

A. 1 in C2], μ is an epimorphism if and only if A is a finitely generated pro-

jective J-module. Therefore we obtain this proposition.

PROPOSITION 2.4. a) A is a Galois extension of Γ relative to G if and only

if the condition I and CHR II. are satisfied, b) The condition CHR L holds if

and only if the condition I holds and A is a finitely generated projective Δ-module.

Proof, a) is obtained in above, b) Since Tr(A) is a two sided ideal of the

G-fixed subring of A. Tr(A) = Γ if and only if Tr(A)r = Homi (A. A) and Γr =

Homi(yl, A). Therefore b) follows from Proposition 2.3.

THEOREM 2.5. Let TcA be algebras over a commutative ring R, and let Γ

be separable over R. Then A is a Galois extension of Γ relative to G if and

only if the conditions CHR I. and CHR II. hold.

Proof. If Γ is separable over R and A is a Galois extension of Γ relative

to G, then d = Komr(Λ, A) is separable over R and A is a finitely generated

projective J-module by Colrollary 1 in [41 Therefore by Proposition 2.4 CHR

I. and CHR II. hold. The converse follows from Proposition 2.4.

COROLLARY 2.6. (Chase, Harrison and Rosenberg) Let A be a commutative

ring. A is a Galois extension of Γ relative to G if and only if the conditions

CHR I. and CHR II. hold.
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Proof. Setting Γ=i? in Theorem 2.5 we have this corollary.

3. Galois theory. In this section, we shall improve Theorem 5 in [4] and

develope the Galois theory of separable algebra over a commutafive ring having

the indecomposable center by using the Galois theory of commutative inde-

composable ring in [3].

PROPOSITION 3.1. Let ΓciΛ be algebras over a commutative ring Rt A a

Galois extension of Γ ralative to G, and Γ a separable algebra over R. Then,

for every subgroup H of G, the H-fixed subring ΛH of A is also a separable

algebra over R.

Proof. Since Γ is separable over R, by Proposition 4 in [4] Δ(Af G) is also

separable over R. For the decompositions of G with respect to H\ G =

H t e + ••• + H o r = o [ H + σ [ H + ••• + a'rH, ^ = * ί = 1, w e h a v e

®Auo=zJ(A,H)®Y)A(AiH)uσi and Σ J(Λ,#) w*. = Σ t t σ ^ U , H). We shall

show that Δ(A,H) is an ^-separable subalgebra of Δ(A,G). Since Δ(A,G)

is separble over Rf Δ(AtG) is a J(Λ,G)e-pro jective module. Now Δ(Λ, G)e =

A(AtG)®RA(A,G)° = *ΣiθJ(A,H)eUoi®u°, therefore Δ(AtG) is a J(Λ, H)e-pro-

jective module. Since J(Λ,Ή) is a direct summand of d(Λ,G) as J(A,H)e

-module, ΔiA,H) is Δ(A, H)e-pτojective, therefore Δ(A,H) is separable over R.

On the other hand, A is a finitely generated projective Γ-module, hence by

Corollary 1 in [4] A is a finitely generated projective Δ(A, G)-module. Since

Δ{Λ,G) is a Δ(Λ,H)-free module, A is a finitely generated projective d(A,H)

-module. Therefore by Corollary 1 in [4] HomΔ(Δ,fl)(Λ, A) = ΔH is separable

over R.

Using Theorem 2.3 in [3] and Theorem 5 in [4], we have

THEOREM 3.2. Let A and Γ be separable algebras over a commutative ring

R, and suppose that the following conditions are satisfied:

1) The center C of A is indecomposable.

2) There is a finite group G of ring automorphisms of A such that G induces

the group of automorphisms of C isomorphic to G.

3) Γ is the G- fixed subring of A.

4) A is finitely generated and projective over R.

Then A is a Galois extension of Γ relative to G, and there is a 1-1 dual cor-
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respondence between subgroups of G and R-separable subάlgebra of A containing

Γ in the usual sense of Galois theory.

Proof. Simce A is separable and finitely generated projective over /?, the

center C of A is finitely generated projective and separable over R. From

Theorem 2.3 in [33, the indecomposable ring C is a Galois extension of the

G-fixed subring S of C relative to G. From Theorem 5 in M , A is a Galois

extension of Γ relative to G. By Proposition 3.1, for every subgroup H of G

the infixed subring AH is separable over R, and A is a Galois extension of AH

relative to H by Theorem 5 in [4]. Conversely, for every separable subalgebra

Ω over R such that Γc.Ω<z.A, Ω is separable over S, and Proposition β in [4]

holds for the indecomposable ring C by Theorem 3.3 in [3], hence by the same

argument as in Theorem 5 in C4] we have that A is a Galois extension of Ω

relative to a subgroup of G. Therefore Ω is the fixed subring of A by a sub-

group of G. Thus we obtain a Galois theory for separable algebra over R.

4. Automorphisms of Galois extension. In this section, we assume that

A is a central separable algebra over C, G is a finite group of ring automor-

phisms of A which induces the group of automorphisms of C isomorphic to G,

and for the G-fixed subring R of C, C is a Galois extension of R relative to G.

Then by Theorem 5 in [4] A is a Galois extension of Γ relative to G, where

Γ is the G-fixed subring of A.

LEMMA 4.1. Let C be a ring, Ma projective C-module. For any subset Xu

x2, . . . xn in M, in which at least one element x% is not zero, there exist elements
n

clf c2, . . . cn in C such that at least one of a's is not zero and Σ#OV = 0 with

yi^C implies always Σ ^ i = 0.
ί = l

Proof, we can prove the lemma similarly to Lemma 6 in [4].

PROPOSITION 4.2. Let p be a ring automorphism of A which leaves invariant

each element of Γ. Then we have p = ^Σλ^σ where {λσ} is a family of orthogonal
σ = G

idempotents in the center C, and 1 = Σ λ o . Furthermore* if σ^τ and λσ^0 λτ*

0, then a"1Uo)^τ"Hλτ).

Proof. Since p e Horn£(Λ, Λ) = J(Λ, G) = Σ θ Λu0, we havep = ΣΛ*tf with

Λ*eΛ. For any x in A, p x = p(x) p. therefore ΣAσ <j(x) σ =
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(ΣΛσ<?), and we obtain

(*) λσΰ(x) = *Σιλττ(x)λβ for x^A and σ^G.

If * is taken in C, then λσ<j(x) = ΣΛχ/tσrU\ therefore Σ>Mσr(*) + Q J -
τεff

= 0 for any x in C. By Lemma 4.1 and linearly independence of {σ}aeσ over

C, we obtain λσ-λl and ;τΛσ = 0 for τ^σ. Therefore {λσ} is a family of ortho-

gonal idempotents and ΣΛσ = l since p ( l ) = l . On the orther hand, from (*)

we have for x, y in A, λ<,σ(xy) =*Σλττ(xy)λa, and we have λβ'σ(x) σ(y) = Σ

Λτr(#)/Urljy) for any x^A and jy e C. By the same reason as above, we have

λo a(x) =λσσ(x)λa and λτ τ(x) λa = 0 for τ * <J, therefore λax=*λσ xλo for every x

in Λ. On the other hand, for any x in A, xλσ = ΣΛτ#Λσ = *Σλτxλχλσ = Aσ̂ Aσ,

therefore Λσ is contained in the center C of Λ. Since p(A) = A, for any y in A

there exist Λ in /ί such thatjy = p(x) = Σ^σ'^(^) . Since λay = λa σ(x)=σ{σ~1{λσ) x)

for each a in G, it follows that σ~1(λay) = ̂ "H^o)'^ for each J G G . Accordingly,

if Λσ and λτ are non zero and σ^τ, then ^"HAT) #τ" 1 (λτ) . Because, if σ^iλσ)

= r-1(Aτ) then <y"1(;,<y) = r"1(Aτ3'). Put > = Aσ, and we have σ"ι(λo) = tf^UJ) =

τ -Hλτλσ) = r'HO) = 0 , it is a contradiction.

COROLLARY 4.3. If the center C of A is indecomposable, then any Γ-ring

automorphism of A is contained in G.

PROPOSITION 4.4. If there are orthogonal indecomposable idempotent elements

eu e2 . . . en in C such that Σ ^ = 1, and if there exist au ^2, . . . on of G such
t = l

n

that aϊ\ei) ^σjι{ej) for i^jy then p = Σ e w is a Γ-ring automorphism of Λ.
i = l

Proof, p is clearly a ring endomorphism, and leaves invariant each element

of Γ. Now, we shall show that p is an epimorphism of A to A. Since e% is
n

indecomposable in C and Σ ^ ί = l, <tjι(ei) is also indecomposable in C and
t = l

n

ΣtfF1^./) = 1 for each i, therefore jΓHe,-) is one of {eu). But, (JΓH^ ) *a]\ej)

for / ^ F / hence {eu e2> . . . ^rt} -- {σϊΊ(ei)f σ71(e2), . . . <snl(en)}- Therefore 1 =

βι), and aT1(ei)*ajι{ej) = 0 for t^y . For anyjy in A, put xx = ̂ "K^^ ^ Γ 1 ^ ) ,t=1

σJ1i1 = 1, 2, . . . #, and # = ΣΛΓ/, then σJ1(ej)xi = 0 for ί = ŷ, and aViedxi = Λ, . Hence
t = l

i ] ) l 3'. Thus
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μ is an epimorphism.

We shall prove that p is a monomorphism. The following proof of this

part is due to Professor H. Nagao. If p(x)=0, then ajι{p(x)) = 'Σσj1(ei)σJί(oi(x))

+ σj1(ej)x = 0 for each j , and σj\ej)aj\p(χ)) = a]\ej)χ = 0 for j = 1, 2, . . . n,
n

therefore x= 'ΣσJί(ej)x = 0. Accordingly, p is an automorphism of A.
3 = 1
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