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A b s t r a c t . We consider the linear stability of a toroidal flux tube lying in the equatorial plane of 
a differentially rotating s tar and investigate its dependence on superadiabaticity, magnetic field 
strength, and gradient of angular velocity. 
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1. Introduction 

A fundamental question in relation with the dynamo mechanism is whether mag-
netic flux can be stored in the solar convection zone for a time sufficiently long to 
permit the operation of the solar dynamo. We set out from the hypothesis that the 
magnetic field in the convection zone is concentrated in individual flux tubes sepa-
rated by nearly field-free plasma. Parker (1975) pointed out that magnetic buoyancy 
of flux tubes in thermal equilibrium might lead to a rapid loss of magnetic flux. 
In order to avoid this problem, some authors have proposed that magnetic flux is 
stored within the overshoot region below the convection zone (see, e.g., Moreno-
Insertis, 1992). Here we consider a toroidal flux tube lying in the equator of a 
differentially rotating star and investigate the effects of the rotationally induced 
forces in determining whether the equilibrium is stable or unstable. Both axisym-
metric and non-axisymmetric perturbations about the equilibrium configuration are 
considered, as well as differential rotation and different rotation rates between the 
flux tube and the surrounding medium. Our work is an extension of the stability 
analysis performed by van Ballegooijen (1983). Our treatment is not restricted to 
small differences between the rotation rates of the flux tube and its environment 
and it consistently includes the rotationally induced forces. 

2. Model and basic equations 

We use a frame of reference rotating with angular velocity Ω (equal to the rota-
tion rate of the matter inside the equilibrium flux tube) with origin in the center 
of the star. We employ cylindrical coordinates (τ,φ,ζ) and denote {e r ,e^ ,e^} the 
corresponding unit vectors. In the following, the subscripts "e" and "i" stand for 
quantities outside the flux tube (external medium) and inside (internal medium), re-
spectively. If the star rotates differentially with angular velocity Ωβ(τ), the external 
velocity field in the equatorial plane is v e ( r ) = r[Qe(r) — 

The equation for the external medium in stationary equilibrium ( d / d t = 0) is: 

pe(ve . V)ve = — gradpe + pe [g - Ω Λ (Ω Λ r)] -f 2pewe Λ Ω, (1) 

which, for an axially symmetric equilibrium, reduces to: 

^ = Pe(g - e r + rQ2) = -pe(g - rQ2). (2) 
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The motion of the flux tube is described within the framework of the thin flux 
tube approximation for curved flux tubes (Spruit, 1981; Ferriz-Mas and Schüssler, 
1993). Denote equilibrium quantities with "0". The application of the momentum 
equation to a flux tube whose unperturbed path is a circumference of radius ro 
("toroidal flux ring") yields the following equilibrium condition: 

Α _ ( £ ! « _ Λ Λ _ ! Ϊ Ί ? | Ο > ) + 2 > ( Ω > 0 - Ω ' ) = Ο Ι ( 3 ) 
ro9o \pio J \ 9o J 9o 

where vA =f Β0/^/4πρΐ0 is the Alfvén speed in the equilibrium flux tube, and 
def 

Qeo = Oe(ro). This equation expresses a balance among curvature force, buoyancy 
force, and rotationally induced forces. 

3. Linearization and dispersion relation 

Consider perturbations contained in the equatorial plane; it can be shown that 
perturbations in latitude are decoupled from these. Introduce the unperturbed 
arc-length «ο as Lagrangian coordinate (so = ΓοΦο), and call ξ the Lagrangian 
displacement vector: r(so,t) = ro +£(so,t). The thin flux tube equations are lin-
earized about the equilibrium configuration, and Fourier components of the form 
ξ ~ exp(iu>t + ιτηφο) are considered. It proves useful to introduce a length unit, 
Η ά= Pio/(goPio), and a time unit, r = y/2 H/va - The frequency ω and the angular 
velocities Ω, Ωβο are cast in dimensionless form: Co — ru, Ω — τΩ, Ωβο — τΩβο· 

def 
Also, / = H/ro is a measure of the curvature of the unperturbed flux tube. 

The dispersion relation for perturbations within the equator is of the form 

ώ4 + d2 ώ2 + di ω + d0 = 0 . (4) 

In the case β =f δπ^,ο/^ο ^ 1 (which is a good approximation for the deep parts 
of the convection zone of cool stars like the Sun), the coefficients of the dispersion 
relation take a particularly simple form: 

d2 = 2 ( σ - 1 - 2 m 2 ) / 2 + - / - - f " - ^ + ß6 + 

7 7 \ 7 2 J 

+ ( σ - 1 ) ( Ω 2 0 - Ω 2 ) - 4 Ω 2 - 4 9 Ω 2 0 > 

di = 1 6 m / ( / - i ) ö , 

do = -2m2 f2 [2{σ + 3 - m 2 ) / 2 - - / + - + βδ + (σ - 1) (Ω2
0 - Ω2) - 49Ω2

0] , 
7 7 

def ~ where q = ΓοΩ^(Γο)/(2Ωβο). The prime denotes the derivative with respect to 
def 

radius. The parameter σ — [dlogg(r)/d log r]ro expresses the dependence of the 
acceleration of gravity with depth (σ —1.82 for the bottom of the solar convection 
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zone). The superadiabaticity is defined as δ = V—Vad, where V = [d\ogT/d\ogp]rQ 
and Vad is the corresponding adiabatic value. The dispersion relation (4) differs 
from that given by van Ballegooijen (1983) [cf. his Eq. (51)] since our treatment is 
not restricted to small differences between Ω and Ωβο· 

4. Stability 

A mode is unstable if Im (α;) < 0; otherwise, the perturbation does not grow. A dis-
cussion of the perturbations perpendicular to the equatorial plane (i.e., in latitude) 
can be found in Moreno-Insertis ei al. (1992); these perturbations give rise to the 
poleward slip instability (Spruit and van Ballegooijen, 1982). 

4 . 1 . A X I S Y M M E T R I C M O D E S : m = 0 

The dispersion relation is ώ2 (ώ2 4- d2) = 0. The stability criterion is d2 < 0, i.e., 

βδ < 2(1 - σ ) / 2 - i f + - ( I - I ) + (1 - σ)(Ω2
0 - Ω2) + 4Ω2 + 4q Ω2

0 . (5) 
Ί Ί \Ί ί ) 

4 . 2 . N O N - A X I S Y M M E T R I C M O D E S : m > 1 

A necessary and sufficient condition for stability is (Ferriz-Mas and Schüssler, 
1993): 

(d2 - 4c?o)2 + d 2 _ i d o d 2 + dl) < 0 . (6) 

Flux tube equilibria with Ω φ Ωβο are possible in the equatorial plane [see Eq. (3)]. 
A positive difference Ω€ο — Ω (the matter in the flux tube rotates more slowly than 
the surrounding matter) exerts a stabilizing influence, while more rapid internal 
rotation favors instability. Differential rotation exerts a stabilizing effect for q > 0 
(rotation rate increasing outward), and destabilizing for q < 0; it plays a crucial role 
in determining the stability of non-axisymmetric modes, but not in the stability of 
axisymmetric modes, for which the term 4Ω2 is dominant (see also van Ballegooijen, 
1983; Moreno-Insertis et al, 1992). 

As an application of criterion, we show in Fig. 1 the stability diagram on the 
(jBo,i)-plane for the modes m = 1, using values typical for the bottom of the 
solar convection zone. The dotted regions indicate stability. We have taken q = 
0.06 (consistent with helioseismological results) and Ωβο = Ω. For field strengths 
higher than 1.1 · 105 G, the regions of stable and unstable equilibria are no longer 
separated by a single dividing line (curve of marginal stability). A second region 
of stability appears (region II) which extends into the superadibatically stratified 
part of the convection zone and is connected to the main stability region I by a 
common boundary point. It should be noted that the "island-like" stability region 
II is a consequence of having included rotation, and is not merely a consequence of 
the particular values of the parameters we have chosen. Region II separates regimes 
of instability due to different mode couplings (Ferriz-Mas and Schüssler, 1993). Its 
position and form depend on the values of the parameters, especially on q and on 
Ωβο — Ω. 

https://doi.org/10.1017/S007418090017384X Published online by Cambridge University Press

https://doi.org/10.1017/S007418090017384X


48 

5 .0 *10 4 l.oxio5 

Magne t i c f ie ld : BQ (Gauss) 

Fig. 1. Stability diagram on the (Bq , 6)-plane for the modes m = 1. The regions of stability 
are marked with dots. The values of the parameters are typical for the bot tom of the solar 
convection zone: ro = 5 - 1 0 ^ 
7 = 5 /3 . Here Ω = Q e 0 = 2.7 

km, g0 = 519 ms , q = 0.06, / = 0.114, σ = - 1 . 8 2 and 

5. Conclusions. Work in progress 

An analytical stability criterion for the non-axisymmetric modes of a flux ring lying 
in the equatorial plane of a rotating star has been derived. Stratification, differential 
rotation and different rotation rates between the matter inside and outside the 
flux tube determine the stability. At this stage, we cannot decide on the physical 
relevance of the 'island-like' stability region in connection with the possibility of 
storing strong magnetic fields in the superadiabatically stratified lower part of the 
convection zone proper. To that end, the case of flux tube equilibria outside the 
equatorial plane has to be treated; this is the issue of an ongoing investigation. 
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