THE DEGREE OF APPROXIMATION BY POSITIVE LINEAR OPERATORS ON COMPACT CONNECTED ABELIAN GROUPS

WALTER R. BLOOM and JOSEPH F. SUSSICH

(Received 3 May 1981)

Communicated by J. B. Miller

Abstract

In 1953 P. P. Korovkin proved that if (T_{n}) is a sequence of positive linear operators defined on the space C of continuous real 2π-periodic functions and $\lim T_{n} f=f$ uniformly for $f=1, \cos$ and \sin, then $\lim T_{n} f=f$ uniformly for all $f \in C$. Quantitative versions of this result have been given, where the rate of convergence is given in terms of that of the test functions $1, \cos$ and \sin, and the modulus of continuity of f. We extend this result by giving a quantitative version of Korovkin's theorem for compact connected abelian groups.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 41 A 65, 41 A 25; secondary 41 A 36, 43 A 70.

Throughout G will denote a compact Hausdorff abelian group, Γ its character group, and $C(G)$ the space of continuous functions on G with the uniform norm $\|\cdot\|$. A linear operator T on $C(G)$ will be called positive if $T f \geqslant 0$ whenever $f \geqslant 0$. It is well known that such an operator takes real functions into real functions, and $|T f| \leqslant T|f|$ for all $f \in C(G)$. In particular T is continuous with $\|T\|=\|T 1\|$, where 1 denotes the constant function with value 1 .

The so-called Korovkin theory is concerned with deducing convergence properties of a sequence (T_{n}) of positive linear operators from those of ($T_{n} f$) for f belonging to a (small) subset $S(G)$ of $C(G)$. We refer to $S(G)$ as a test set (for $\left(T_{n}\right)$). Korovkin [6] proved that when G is taken to be the circle group T then $\left\{1, e_{1}\right\}$ serves as a test set, where $e_{1}: e^{i x} \rightarrow e^{i x}$. Subsequently this result was given

[^0]in a quantitative form by Shisha and Mond (see [10], Theorem 3 and [11]) in which the rate of convergence of ($T_{n} f$) is estimated in terms of that of ($\left.T_{n} 1\right)$ and ($T_{n} e_{1}$) and the modulus of continuity of f. Censor (see [3], Theorem 2 and the remarks immediately preceding it) gave a version of this result for the multidimensional torus \mathbf{T}^{n}. For other results along these lines, including the case for algebraic polynomials on the unit interval, see [4], [6], [7], [8], [10] and [11]. In a new direction Nishishiraho [9] has given a quantitative version of Korovkin's theorem for compact subsets of a locally convex Hausdorff space, which includes the case where the underlying space is real Euclidean space.
In [1] we considered the Korovkin theory on a locally compact abelian group G, with test set $S(G)$ given by a set of continuous characters generating Γ. Here we shall make use of the ideas of Nishishiraho to recast these results in a quantitative form. Our results will include those of Shisha and Mond, and Censor for the periodic case. We shall also derive a corresponding result for the infinite dimensional torus.

For a nonempty subset Λ of Γ denote by $\langle\Lambda\rangle$ the subgroup of Γ generated by Λ, and by $A(G, \Lambda)$ the annihilator of Λ in G (see [5], (23.23)). We define the modulus of continuity of $f \in C(G)$ with respect to Λ by

$$
\omega(f, \Lambda, \delta)=\sup \{|f(x)-f(y)|:|\gamma(x)-\gamma(y)| \leqslant \delta \text { for all } \gamma \in \Lambda\},
$$

where $\delta \geqslant 0$. It is clear that $\omega(f, \Lambda, \delta)$ is a nondecreasing function of δ.

Lemma 1. For each subset Λ of Γ and each $f \in C(G)$ the function $\delta \rightarrow \omega(f, \Lambda, \delta)$ is continuous at 0 .

Proof. Write $K=A(G, \Lambda)=\cap\left\{C_{\delta}: \delta>0\right\}$, where

$$
C_{\delta}=\{x \in G:|\gamma(x)-1| \leqslant \delta \text { for all } \gamma \in \Lambda\} .
$$

We first show that for any open neighbourhood V of 0 there exists $\delta>0$ such that $C_{\delta} \subset K+V$. Indeed if not then $\left\{C_{\delta} \backslash(K+V): \delta>0\right\}$ is a family of closed sets with the finite intersection property and, since G is compact,

$$
K \backslash(K+V)=\bigcap\left\{C_{\delta} \backslash(K+V): \delta>0\right\} \neq \varnothing,
$$

a contradiction.
Now choose $\varepsilon>0$ and an open neighbourhood V of 0 such that $|f(x)-f(y)|$ $<\varepsilon$ whenever $x-y \in V$, and $\delta>0$ satisfying $C_{\delta} \subset K+V$. Then

$$
\begin{aligned}
\omega(f, \Lambda, \delta) \leqslant & \sup \{|f(x)-f(y)|: x-y \in K+V\} \\
= & \sup \{|f(x)-f(x+y)+f(x+y)-f(x+y+z)|: \\
& x \in G,-y \in K,-z \in V\} \\
\leqslant & \sup \{|f(x)-f(x+y)|: x \in G,-y \in K\} \\
& \quad+\sup \{|f(x)-f(x+z)|: x \in G,-z \in V\} \\
\leqslant & \omega(f, \Lambda, 0)+\varepsilon
\end{aligned}
$$

and, since $\omega(f, \Lambda, \delta)$ is nondecreasing as a function of δ, this establishes the result.

In order to show that $\omega(f, \Lambda, \delta)$ is subhomogeneous in δ we require a preliminary result concerning characters of compact connected abelian groups.

Lemma 2. Let G be connected and choose $n \in \mathbf{N}$ (the set of positive integers). Then $\cap\left\{\gamma_{i}^{-1}\left(\xi_{i}\right): i=1,2, \ldots, n\right\}$ is nonempty for every independent subset $\Lambda=$ $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}$ of Γ and for every $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\} \subset \mathbf{T}$.

Proof. Since Λ is independent we have that each γ_{i} is nonconstant and, using the connectedness of G, that $\gamma_{i}(G)=\mathbf{T}$. Choose x_{1} such that $\gamma_{1}\left(x_{1}\right)=\xi_{1}$ and suppose that x_{k} has been chosen satisfying $\gamma_{i}\left(x_{k}\right)=\xi_{i}$ for $i=1,2, \ldots, k$. We show how to choose x_{k+1} such that $\gamma_{i}\left(x_{k+1}\right)=\xi_{i}$ for $i=1,2, \ldots, k+1$.

First note that by [5], (24.10),

$$
\left\langle\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right\rangle=A\left\{\Gamma, \bigcap_{i=1}^{k} \operatorname{ker}\left(\gamma_{i}\right)\right\}
$$

and, since Λ is independent and its elements have infinite order ([5], (24.25), we must have $\gamma_{k+1}^{m} \notin\left\langle\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right\rangle$ for all $m \in \mathbf{N}$. It follows that for each $n \in \mathbf{N}$ there exists $z_{n} \in \cap_{i=1}^{k} \operatorname{ker}\left(\gamma_{i}\right) \backslash \operatorname{ker}\left(\gamma_{k+1}^{n!}\right)$. In particular, since $z_{n} \notin \operatorname{ker}\left(\gamma_{k+1}^{n!}\right)$, it follows that the $\gamma_{k+1}\left(j z_{n}\right)$ are pairwise distinct for $j=1,2, \ldots, n$. Hence the subgroup of \mathbf{T} generated by $\left\{\gamma_{k+1}\left(j z_{n}\right): j=1,2, \ldots, n, n \in \mathbf{N}\right\}$ is infinite and thus dense in T. Consequently we can choose a sequence $\left(y_{n}\right) \subset \cap_{i=1}^{k} \operatorname{ker}\left(\gamma_{i}\right)$ such that $\lim _{n} \gamma_{k+1}\left(y_{n}\right)=\xi_{k+1} \bar{\gamma}_{k+1}\left(x_{k}\right)$. Using the compactness of $\cap_{i=1}^{k} \operatorname{ker}\left(\gamma_{i}\right)$ we have the existence of $y \in \bigcap_{i=1}^{k} \operatorname{ker}\left(\gamma_{i}\right)$ and a subnet $\left(y_{n_{\mathrm{a}}}\right)$ of $\left(y_{n}\right)$ such that $\lim _{\alpha} y_{n_{\alpha}}=y$. From the continuity of γ_{k+1} it follows that $\gamma_{k+1}(y)=\xi_{k+1} \bar{\gamma}_{k+1}\left(x_{k}\right)$, and $\gamma_{k+1}\left(y+x_{k}\right)=\xi_{k+1}$. We also have $\gamma_{i}\left(y+x_{k}\right)=\gamma_{i}(y) \gamma_{i}\left(x_{k}\right)=\xi_{i}$ for $i=$ $1,2, \ldots, k$, and thus $x_{k+1}=y+x_{k}$ satisfies the required condition.

It should be noted that if for some compact abelian group $G, \cap\left\{\gamma_{i}^{-1}\left(\xi_{i}\right)\right.$: $i=1,2, \ldots, n\}$ is nonempty for some subset $\Lambda=\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}$ of Γ and every
$\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\} \subset \mathbf{T}$ then Λ must be independent with all its elements having infinite order. Indeed suppose there exist integers $m_{1}, m_{2}, \ldots, m_{n}$ not all zero such that $\gamma_{1}^{m_{1}} \gamma_{2}^{m_{2}} \cdots \gamma_{n}^{m_{n}}=1$, and choose $\xi_{1}, \xi_{2}, \ldots, \xi_{n} \in \mathbf{T}$ satisfying $\xi_{1}^{m_{1}} \xi_{2}^{m_{2}} \cdots \xi_{n}^{m_{n}} \neq$ 1. By the assumption on Λ we have the existence of $x \in G$ such that $\gamma_{i}(x)=\xi_{i}$ for $i=1,2, \ldots, n$. Then

$$
1=\gamma_{1}^{m_{1}} \gamma_{2}^{m_{2}} \cdots \gamma_{n}^{m_{n}}(x)=\xi_{1}^{m_{1}} \xi_{2}^{m_{2}} \cdots \xi_{n}^{m_{n}},
$$

contradicting our choice of the ξ_{i}. Thus the γ_{i} do not satisfy any nontrivial relation, so that in particular each γ_{i} has infinite order and Λ is independent. It follows that if every finite subset of a generating set of Γ satisfies the above condition then Γ is torsion free which, by [5], (24.25), implies that G is connected.

We can now prove:

Lemma 3. Let G be connected and let Λ be an independent subset of Γ. Then, for any $f \in C(G)$,

$$
\omega\left(f, \Lambda_{0}, \lambda \delta\right) \leqslant \pi(1+\lambda) \omega\left(f, \Lambda_{0}, \delta\right)
$$

for all $\lambda, \delta \geqslant 0$ and every finite nonempty subset Λ_{0} of Λ.

Proof. Firstly we show that for any $n \in \mathbf{N}$,

$$
\omega\left(f, \Lambda_{0}, n \delta\right) \leqslant \pi n \omega\left(f, \Lambda_{0}, \delta\right) .
$$

For $n=1$ the inequality is evident, so take $n \geqslant 2$ and suppose that $x, y \in G$ satisfy $|\gamma(x)-\gamma(y)| \leqslant n \delta$ for all $\gamma \in \Lambda_{0}$. Writing $m=\left[\frac{1}{2} \pi n\right]+2$, where $[\lambda]$ denotes the greatest integer not exceeding λ, we can choose $\xi_{1}(\gamma), \xi_{2}(\gamma), \ldots, \xi_{m}(\gamma)$ $\in \mathbf{T}$ such that $\xi_{1}(\gamma)=\gamma(x), \xi_{m}(\gamma)=\gamma(y)$ and

$$
\left|\xi_{j}(\gamma)-\xi_{j+1}(\gamma)\right|=n^{-1}|\gamma(x)-\gamma(y)| \leqslant \delta
$$

for $j=1,2, \ldots, m-1$. Using Lemma 2 we have the existence of $x_{1}, x_{2}, \ldots, x_{m} \in G$ with $x_{1}=x, x_{m}=y$ and $\gamma\left(x_{j}\right)=\xi_{j}(\gamma)$ for all $\gamma \in \Lambda_{0}$ and each $j=1,2, \ldots, m$. Then

$$
\begin{aligned}
|f(x)-f(y)| & =\left|\sum_{j=1}^{m-1}\left(f\left(x_{j+1}\right)-f\left(x_{j}\right)\right)\right| \\
& \leqslant(m-1) \omega\left(f, \Lambda_{0}, \delta\right) \leqslant \pi n \omega\left(f, \Lambda_{0}, \delta\right) .
\end{aligned}
$$

Now take any $\lambda \geqslant 0$ and put $n=[\lambda]+1$. Since $\omega\left(f, \Lambda_{0}, \delta\right)$ is nondecreasing as a function of δ we have

$$
\omega\left(f, \Lambda_{0}, \lambda \delta\right) \leqslant \omega\left(f, \Lambda_{0}, n \delta\right) \leqslant \pi n \omega\left(f, \Lambda_{0}, \delta\right) \leqslant \pi(1+\lambda) \omega\left(f, \Lambda_{0}, \delta\right) .
$$

For any positive linear operator T on $C(G)$ and nonempty $\Lambda \subset \Gamma$, write

$$
\tau(\Lambda)=\sup \left\{\sum\left[T|\gamma-\gamma(x)|^{2}(x): \gamma \in \Lambda\right]: x \in G\right\}^{1 / 2}
$$

When T is a convolution operator, given by $T f=\mu * f$ for some nonnegative bounded Radon measure μ, then using

$$
|\gamma-\gamma(x)|^{2}=2-\bar{\gamma}(x) \gamma-\gamma(x) \bar{\gamma}
$$

and applying T, we obtain

$$
\tau(\Lambda)=\left(\sum\{2 \hat{\mu}(1)-\hat{\mu}(\gamma)-\hat{\mu}(\bar{\gamma}): \gamma \in \Lambda\}\right)^{1 / 2}
$$

We define the modulus of continuity of $f \in C(G)$ with respect to T and Λ by

$$
\Omega(f)=\inf \left\{\omega\left(f, \Lambda_{0}, \tau\left(\Lambda_{0}\right)\right): \Lambda_{0} \subset \Lambda \text { is finite and nonempty }\right\}
$$

For a net (T_{ρ}) of positive linear operators on $C(G), \tau_{\rho}$ and Ω_{ρ} will be defined as above with respect to each T_{ρ}.

Lemma 4. Let $\Lambda \subset \Gamma$ with $\langle\Lambda\rangle=\Gamma$ and let $\left(T_{\rho}\right)$ be a net of positive linear operators on $C(G)$ such that $\lim \tau_{\rho}(\gamma)=0$ for each $\gamma \in \Lambda$. Then $\lim \Omega_{\rho}(f)=0$ for all $f \in C(G)$.

Proof. Let V be any open neighbourhood of 0 in G. We show that there exists a finite nonempty subset Λ_{0} of Λ and $\delta>0$ such that

$$
\begin{equation*}
\left\{x \in G:|\gamma(x)-1|<\delta \text { for all } \gamma \in \Lambda_{0}\right\} \subset V \tag{1}
\end{equation*}
$$

First note that by the duality of G and Γ, (1) holds for some $\delta^{\prime}>0$ and finite subset Λ^{\prime} of Γ (replacing δ, Λ_{0} respectively). Now take Λ_{0} to be a finite subset of Λ such that $\Lambda^{\prime} \subset\left\langle\Lambda_{0}\right\rangle$ and $\delta=n^{-1} \delta^{\prime}$, where
$n=\max \left\{i: \gamma \in \Lambda^{\prime}, \gamma=\gamma_{1} \gamma_{2} \cdots \gamma_{i}, \gamma_{j}^{\varepsilon_{j}} \in \Lambda_{0}\right.$ for $j=1,2, \ldots, i$ and some choice of $\left.\varepsilon_{j}= \pm 1\right\} ;$
in the above representation for γ a word of minimum length appears. Then (1) holds for this choice of Λ_{0} and δ, using the inequality

$$
\left|\gamma_{1} \gamma_{2} \cdots \gamma_{i}-1\right| \leqslant \sum_{j=1}^{i}\left|\gamma_{i}-1\right|
$$

Next consider $f \in C(G), \varepsilon>0$ and choose an open neighbourhood V of 0 in G such that $x-y \in V$ implies $|f(x)-f(y)|<\varepsilon$, and then $\Lambda_{0} \subset \Lambda$ finite nonempty and $\delta>0$ satisfying (1). Since $\lim \tau_{\rho}(\gamma)=0$ for each $\gamma \in \Lambda$ we have the existence of ρ_{0} such that

$$
\sum\left\{\tau_{\rho}(\gamma): \gamma \in \Lambda_{0}\right\}<\delta
$$

for all $\rho \geqslant \rho_{0}$, and it follows that for this range of ρ,

$$
\Omega_{\rho}(f) \leqslant \omega\left(f, \Lambda_{0}, \tau_{\rho}\left(\Lambda_{0}\right)\right) \leqslant \omega\left(f, \Lambda_{0}, \sum\left\{\tau_{\rho}(\gamma): \gamma \in \Lambda_{0}\right\}\right)<\varepsilon
$$

Our main result is an estimate of the rate of convergence of $\left(T_{\rho}(f)\right)$ in terms of that of $\left(\Omega_{\rho}(f)\right)$.

Theorem. Let G be connected, let T be a positive linear operator on $C(G)$, and take Λ to be any independent set generating Γ. Then, for $f, g \in C(G)$,

$$
\begin{equation*}
\|T f-f g\| \leqslant\|f\|\|T 1-g\|+\pi\left\|T 1+(T 1)^{1 / 2}\right\| \Omega(f) \tag{2}
\end{equation*}
$$

If $\left(T_{\rho}\right)$ is a net of positive linear operators on $C(G)$ such that $\lim \tau_{\rho}(\gamma)=0$ for all $\gamma \in \Lambda$ and $\lim T_{\rho} \mathbf{l}=g$ then $\lim T_{\rho} f=$ fg for all $f \in C(G)$.

Proof. Choose Λ_{0} to be any finite nonempty subset of Λ.
If $\tau\left(\Lambda_{0}\right)>0$ then, using Lemma 3, we have for any $x, y \in G$,

$$
\begin{aligned}
\mid f(x)- & f(y) \mid \leqslant \omega\left(f, \Lambda_{0},\left(\sum\left\{|\gamma(x)-\gamma(y)|^{2}: \gamma \in \Lambda_{0}\right\}\right)^{1 / 2}\right) \\
& \leqslant \pi\left[1+\tau\left(\Lambda_{0}\right)^{-1}\left(\sum\left\{|\gamma(x)-\gamma(y)|^{2}: \gamma \in \Lambda_{0}\right\}\right)^{1 / 2}\right] \omega\left(f, \Lambda_{0}, \tau\left(\Lambda_{0}\right)\right)
\end{aligned}
$$

Now apply T and evaluate at y to obtain

$$
\begin{aligned}
& |T f(y)-f(y) T 1(y)| \\
& \quad \leqslant \pi\left[T 1(y)+\tau\left(\Lambda_{0}\right)^{-1} T\left(\sum\left\{|\gamma-\gamma(y)|^{2}: \gamma \in \Lambda_{0}\right\}\right)^{1 / 2}(y)\right] \omega\left(f, \Lambda_{0}, \tau\left(\Lambda_{0}\right)\right) \\
& \quad \leqslant \pi\left[T 1(y)+(T 1(y))^{1 / 2}\right] \omega\left(f, \Lambda_{0}, \tau\left(\Lambda_{0}\right)\right)
\end{aligned}
$$

the second step following from the Cauchy-Schwarz inequality for positive linear functionals. Since these inequalities hold for all $y \in G$,

$$
\begin{equation*}
\|T f-f T 1\| \leqslant \pi\left\|T 1+(T 1)^{1 / 2}\right\| \omega\left(f, \Lambda_{0}, \tau\left(\Lambda_{0}\right)\right) \tag{3}
\end{equation*}
$$

If $\tau\left(\Lambda_{0}\right)=0$ then, for any $\varepsilon>0$ and $x, y \in G$,

$$
|f(x)-f(y)| \leqslant \pi\left[1+\varepsilon^{-1}\left(\sum\left\{|\gamma(x)-\gamma(y)|^{2}: \gamma \in \Lambda_{0}\right\}\right)^{1 / 2}\right] \omega\left(f, \Lambda_{0}, \varepsilon\right)
$$

Applying T as above we have

$$
|T f(y)-f(y) T 1(y)| \leqslant \pi T 1(y) \omega\left(f, \Lambda_{0}, \varepsilon\right)
$$

and, by Lemma 1 , the same inequality holds with 0 replacing ε.
Thus (3) holds for all finite nonempty $\Lambda_{0} \subset \Lambda$, from which (2) follows. The last statement of the theorem is proved by appealing to Lemma 4.

Of particular interest is the following special case of the theorem.

Corollary. Let G be connected and take Λ to be any independent set generating Γ. For any net $\left(T_{\rho}\right)$ of positive linear operators on $C(G)$ satisfying $T_{\rho} 1=1$ for all ρ we have

$$
\begin{equation*}
\left\|T_{\rho} f-f\right\| \leqslant 2 \pi \Omega_{\rho}(f) \tag{4}
\end{equation*}
$$

for all $f \in C(G)$. In particular if $\lim \tau_{\rho}(\gamma)=0$ for all $\gamma \in \Lambda$ then $\lim T_{\rho} f=f$ for all $f \in C(G)$.

There is no possibility of extending the result to groups that are not connected, as the following example shows.

Example. Consider the Cantor group $\mathbf{D}=\prod_{i=1}^{\infty} \mathbf{Z}(2)$, where $\mathbf{Z}(2)$ denotes the cyclic group of order two, and for each $n \in \mathbf{N}$ write G_{n} for the open subgroup given by

$$
G_{n}=\left\{\left(x_{i}\right) \in \mathbf{D}: x_{i}=0 \text { for } i \leqslant n\right\} .
$$

Denoting the characteristic function of G_{n} by 1_{n} we see that the

$$
k_{n}=2^{n} 1_{n}=\sum\left\{\gamma: \gamma \in A\left(\Gamma_{\mathbf{D}}, G_{n}\right)\right\}
$$

are nonnegative trigonometric polynomials, and $T_{n} f=k_{n} * f$ defines a sequence (T_{n}) of positive convolution operators on $C(\mathbf{D})$. We observe that $T_{n} 1=1$ for all $n \in \mathbf{N}$ and, since $\left(k_{n}\right)$ is a bounded approximate unit for $L^{1}(\mathbf{D}), \lim T_{n} f=f$ for each $f \in C(\mathbf{D})$. We show that there exists $f \in C(G)$ and $n_{0} \in \mathbf{N}$ such that (T_{n}) cannot satisfy (4) for all $n \geqslant n_{0}$.

It is well known that $\Gamma_{\mathbf{D}} \cong \prod_{i=1}^{\infty}{ }^{*} \mathbf{Z}(2)$ (the countable weak direct product of the groups $\mathbf{Z}(2)$). Writing γ_{i} for the continuous character of \mathbf{D} that (under the above isomorphism) has 1 in the i th entry and zero elsewhere, we see that $\Lambda=$ $\left\{\gamma_{1}, \gamma_{2}, \ldots\right\}$ is an independent set generating $\Gamma_{\mathbf{D}}$. Put $f=\sum_{i=1}^{\infty} 2^{-i^{2}} \gamma_{i}$. Then $f \in C(\mathbf{D})$ and

$$
\left\|T_{n} f-f\right\|=\left\|\sum_{i=n+1}^{\infty} 2^{-i^{2}} \gamma_{i}\right\|=\sum_{i=n+1}^{\infty} 2^{-i^{2}},
$$

using the property

$$
T_{n} \gamma= \begin{cases}\gamma, & \gamma \in A\left(\Gamma_{\mathbf{D}}, G_{n}\right) \\ 0, & \text { otherwise }\end{cases}
$$

Furthermore

$$
\begin{aligned}
\Omega_{n}(f) & \leqslant \omega\left(f,\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n+1}\right\}, \tau\left(\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n+1}\right\}\right)\right) \\
& =\omega\left(f,\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n+1}\right\}, 2^{1 / 2}\right)
\end{aligned}
$$

But the continuous characters of \mathbf{D} take the values ± 1 only, so that $|\gamma(x)-\gamma(y)|$ <2 implies that $x-y \in \operatorname{ker}(\gamma)$. It follows that

$$
\begin{aligned}
\Omega_{n}(f) & \leqslant \sup \left\{\left|\sum_{i=n+2}^{\infty} 2^{-i^{2}}\left(\gamma_{i}(x)-\gamma_{i}(y)\right)\right|: x, y \in \mathbf{D}\right\} \\
& =2 \sum_{i=n+2}^{\infty} 2^{-i^{2}} .
\end{aligned}
$$

Since $\lim _{n} \sum_{i=n+1}^{\infty} 2^{-i}\left(\sum_{i=n+2}^{\infty} 2^{-i^{2}}\right)^{-1}=\infty$ it is impossible for (4) to hold.
Our theorem includes the known quantitative estimates for convergence of a sequence of positive linear operators on $C(\mathbf{T})$. Indeed $\Lambda=\left\{e_{1}\right\}$ is an independent set generating \mathbf{Z}, the character group of \mathbf{T}. The modulus of continuity of $f \in C(\mathbf{T})$ with respect to Λ is

$$
\omega(f, \Lambda, \delta)=\sup \{|f(x)-f(y)|:|x-y| \leqslant \delta\},
$$

which is just the usual modulus of continuity. Now an easy calculation gives

$$
\tau\left(e_{1}\right)=2 \sup \left\{T\left(\sin ^{2} \frac{1}{2}(x-t)\right)(x): x \in \mathbf{T}\right\}^{1 / 2},
$$

and substituting into (2) gives Theorem 3 in [10].
We now consider the convergence of positive linear operators on $C\left(\mathbf{T}^{n}\right)$. Take $\Lambda=\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}$, where $\gamma_{i}: \mathbf{T}^{n} \rightarrow \mathbf{T}$ is the projection onto the i th coordinate, $i=1,2, \ldots, n$. Then Λ is an independent set generating the character group of \mathbf{T}^{n}. The modulus of continuity of $f \in C\left(\mathbf{T}^{n}\right)$ with respect to Λ is

$$
\omega(f, \Lambda, \delta)=\sup \left\{|f(x)-f(y)|:\left|x_{i}-y_{i}\right| \leqslant \delta \text { for } i=1,2, \ldots, n\right\},
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. We have

$$
\tau(\Lambda)=2 \sup \left\{\sum_{i=1}^{n} T\left(\sin ^{2} \frac{1}{2}\left(x_{i}-t_{i}\right)\right)(x): x \in \mathbf{T}^{n}\right\}^{1 / 2},
$$

and substituting into (2) gives [3], Theorem 2.
Finally we present an application of our results to the infinite dimensional torus \mathbf{T}^{∞}, the direct product of countably many copies of \mathbf{T}. Take $\Lambda=\left\{\gamma_{1}, \gamma_{2}, \ldots\right\}$, where γ_{i} is the i th coordinate projection of \mathbf{T}^{∞} onto \mathbf{T}. Let (k_{n}) be a sequence of nonnegative continuous functions on \mathbf{T} with $\left\|k_{n}\right\|_{1}=1$ for all $n \in \mathbf{N}$, and define $\left(K_{n}\right) \subset C\left(\mathbf{T}^{\infty}\right)$ by

$$
K_{n}(x)=\prod_{i=1}^{n} k_{n}\left(x_{i}\right), \quad x=\left(x_{i}\right) \in \mathbf{T}^{\infty}
$$

for a similar construction see [5], (44.53). We shall examine the convergence of the positive convolution operators T_{n} given by $T_{n} f=K_{n} * f, f \in C\left(\mathbf{T}^{\infty}\right)$. Suppose
that $\lim _{n} \hat{k}_{n}\left(e_{1}\right)=1$, so that by Korovkin's theorem, $\lim _{n} \hat{k}_{n}\left(e_{m}\right)=1$ for all $m \in \mathbf{Z}$, where $e_{m}=e_{1}^{m}$. We have

$$
\tau_{n}\left(\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}\right)=n^{1 / 2}\left(2-\hat{k}_{n}\left(e_{1}\right)-\hat{k}_{n}\left(e_{-1}\right)\right)^{1 / 2}
$$

using the property that $\hat{K}_{n}\left(\gamma_{i}\right)=\hat{k}_{n}\left(e_{1}\right)$ for $i \leqslant n$. Thus

$$
\begin{aligned}
& \left\|K_{n} * f-f\right\| \leqslant 2 \pi \Omega_{n}(f) \\
& \leqslant
\end{aligned} \begin{aligned}
& 2 \pi \omega\left(f,\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}, n^{1 / 2}\left(2-\hat{k}_{n}\left(e_{1}\right)-\hat{k}_{n}\left(e_{-1}\right)\right)^{1 / 2}\right) \\
& =2 \pi \sup \left\{|f(x)-f(y)|:\left|x_{i}-y_{i}\right| \leqslant n^{1 / 2}\left(2-\hat{k}_{n}\left(e_{1}\right)-\hat{k}_{n}\left(e_{-1}\right)\right)^{1 / 2}\right. \\
& \quad \text { for } i=1,2, \ldots, n\} .
\end{aligned}
$$

In particular if $\left(k_{n}\right)$ is the Fejér-Korovkin kernel (see [2], 1.6.1) then $\hat{k}_{n}\left(e_{1}\right)=$ $\hat{k}_{n}\left(e_{-1}\right)=\cos \pi /(n+2)$ and

$$
\left\|K_{n} * f-f\right\| \leqslant 2 \pi \sup \left\{|f(x)-f(y)|:\left|x_{i}-y_{i}\right| \leqslant \pi n^{-1 / 2} \text { for } i=1,2, \ldots, n\right\} .
$$

References

[1] Walter R. Bloom and Joseph F. Sussich, 'Positive linear operators and the approximation of continuous functions on locally compact abelian groups', J. Austral. Math. Soc. Ser. A 30 (1980), 180-186.
[2] Paul L. Butzer and Rolf J. Nessel, Fourier analysis and approximation, Volume I, One-dimensional theory (Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften, Mathematische Reihe, Band 40, Birkhäuser-Verlag, Basel, 1971).
[3] Erga Censor, 'Quantitative results for positive linear approximation operators', J. Approximation Theory 4 (1971), 442-450.
[4] R. De Vore, 'Optimal convergence of positive linear operators', Proceedings of the conference on the constructive theory of functions, Budapest, 1969, pp. 101-119 (Akad. Kiadó, Budapest, 1972).
[5] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, Volumes I, II (Die Grundlehren der mathematischen Wissenschaften, Bände 115, 152, Springer-Verlag, Berlin, Heidelberg, New York, 1963, 1970).
[6] P. P. Korovkin, 'On convergence of linear positive operators in the space of continuous functions', Dokl. Akad. Nauk SSSR 90 (1953), 961-964 (Russian).
[7] B. Mond, 'On the degree of approximation by linear positive operators', J. Approximation Theory 18 (1976), 304-306.
[8] B. Mond and R. Vasudevan, 'On approximation by linear positive operators', J. Approximation Theory 30 (1980), 334-336.
[9] Toshihiko Nishishiraho, 'The degree of convergence of positive linear operators', Tôhoku Math. J. 29 (1977), 81-89.
[10] O. Shisha and B. Mond, 'The degree of convergence of sequences of linear positive operators', Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 1196-1200.
[11] O. Shisha and B. Mond, 'The degree of approximation to periodic functions by linear positive operators', J. Approximation Theory 1 (1968), 335-339.

School of Mathematical and Physical Sciences

Murdoch University

Perth, Western Australia 6150

[^0]: © Copyright Australian Mathematical Society 1982

