WHITEHEAD GROUPS OF SEMIDIRECT PRODUCTS OF FREE GROUPS

by KOO-GUAN CHOO

(Received 12 April, 1977)

1. Statements of main theorems. Let G be a group. We denote the Whitehead group of G by Wh G and the projective class group of the integral group ring $\mathbb{Z}(G)$ of G by $K_0\mathbb{Z}(G)$. Let α be an automorphism of G and T an infinite cyclic group. Then we denote by $G \times_{\alpha} T$ the semidirect product of G and T with respect to α . For undefined terminologies used in the paper, we refer to [3] and [7].

One of the problems in algebraic K-theory is to determine which classes of G will give rise to the triviality of both Wh G and $\tilde{K}_0\mathbb{Z}(G)$. In [3, 6] we have shown that both Wh G and $\tilde{K}_0\mathbb{Z}(G)$ are trivial for certain classes of semidirect products of free groups. The main purpose of this paper is to find a wider class of such groups which includes, in particular, those in [3, 6].

First we recall the following definition [7, p. 214]: Any group possessing only a single element will be called a group of type 0. Inductively, we define G to be a group of type n+1 if $G = H \times_{\alpha} T$ where H is a group of type n. In particular, any free abelian group of finite rank n is a group of type n. Farrell and Hsiang have shown the following:

LEMMA 1 [7, Theorem 29]. If G is a group of type n, then Wh G = 0 and $\tilde{K}_0\mathbb{Z}(G) = 0$.

Moreover, Farrell and Hsiang have pointed out that if G is a group of type n, then $\mathbb{Z}(G)$ is right Noetherian and of finite right global dimension, and so $\tilde{C}(\mathbb{Z}(G), \alpha) = 0$, where α is any automorphism of G, by [8, Theorem 1.6].

Now let G be a group of type n, F_1, F_2, \ldots a set of free groups, each of rank at least two, and let

$$H_k = G \times F_1 \times \ldots \times F_k \tag{1}$$

be the direct product of G, F_1, \ldots, F_k ($k = 1, 2, \ldots$). Then we extend the results of Farrell and Hsiang to the following theorems.

THEOREM 1. For each $k = 1, 2, \ldots$, Wh $H_k = 0$, $\tilde{K}_0\mathbb{Z}(H_k) = 0$ and $\tilde{C}(\mathbb{Z}(H_k), id) = 0$.

THEOREM 2. Let α be an automorphism of H_k which leaves all but one of the F_j (j = 1, ..., k) pointwise fixed. Then for any infinite cyclic group T, Wh($H_k \times_{\alpha} T$) = 0, $\tilde{K}_0\mathbb{Z}(H_k \times_{\alpha} T) = 0$ and $\tilde{C}(\mathbb{Z}(H_k \times_{\alpha} T), id) = 0$. In addition, $\tilde{C}(\mathbb{Z}(H_k), \alpha) = 0$.

REMARK. The results in Theorem 1 and Theorem 2 clearly extend those of [3, Theorem A, Theorem B and Lemma 1].

Next, let us recall the following definition. Let G be a group, $F = \{t_{\lambda}\}_{\lambda \in \Lambda}$ a free group with free generators t_{λ} and $\mathscr{A} = \{\beta_{\lambda}\}_{\lambda \in \Lambda}$ a set of automorphisms β_{λ} of G. If $w(t_{\lambda}) = w(t_{\lambda_1}, \ldots, t_{\lambda_j})$ is a word in $t_{\lambda_1}, \ldots, t_{\lambda_j}$, defining an element in F, we denote the automorphism $w(\beta_{\lambda_1}, \ldots, \beta_{\lambda_j})$ (substituting t_{λ_1} in w by β_{λ_j} , $l = 1, \ldots, j$) by $w(\beta_{\lambda})$. The semidirect

Glasgow Math. J. 19 (1978) 155-158

KOO-GUAN CHOO

product $G \times_{\mathscr{A}} F$ of G and F with respect to \mathscr{A} is defined as follows: $G \times_{\mathscr{A}} F = G \times F$ as sets, and multiplication in $G \times_{\mathscr{A}} F$ is given by

$$(g, w(t_{\lambda}))(g', w'(t_{\lambda})) = (gw(\beta_{\lambda})^{-1}(g'), w(t_{\lambda})w'(t_{\lambda})),$$

for all $(g, w(t_{\lambda}))$, $(g', w'(t_{\lambda}))$ in $G \times_{\mathfrak{sd}} F$. If $\beta_{\lambda} = \beta$ for all $\lambda \in \Lambda$, then $G \times_{\mathfrak{sd}} F$ is just the semidirect product $G \times_{\beta} F$ of G and F with respect to $\beta(cf. [4])$.

Now let H_k be as given by (1) and α , T as given in Theorem 2. Let $F = \{t_{\lambda}\}_{\lambda \in \Lambda}$ be a free group and $\mathscr{A} = \{\alpha^{n_{\lambda}} \times \operatorname{id} T\}_{\lambda \in \Lambda}$ a set of automorphisms $\alpha^{n_{\lambda}} \times \operatorname{id} T$ of $H_k \times_{\alpha} T$ induced by the automorphisms $\alpha^{n_{\lambda}}$ of H_k , where n_{λ} is any integer, for all $\lambda \in \Lambda$. Then we form the semidirect product

$$H' = (H_k \times_{\alpha} T) \times_{\mathscr{A}} F$$

of $H_k \times_{\alpha} T$ and F with respect to \mathscr{A} . Note that if $n_{\lambda} = 1$ for all $\lambda \in \Lambda$, then H' reduces to $H = (H_k \times_{\alpha} T) \times_{\alpha} F$. Then we extend the results in [4] to the following theorem, the proof of which gives, in particular, a short, direct proof of that in [4].

THEOREM 3. Wh H' = 0 and $\tilde{K}_0 \mathbb{Z}(H') = 0$.

2. A general theorem. In this section, we prove the following more general result.

THEOREM 4. Let G be a group of some particular form such that G and $G \times T$ are of the same form, where T is any infinite cyclic group. Suppose that the Whitehead group of any such group is trivial. Let $H_k = G \times F_1 \times \ldots \times F_k$, where F_1, \ldots, F_k are free groups each of rank at least two. Then

Wh
$$H_k = 0$$
, $\tilde{K}_0 \mathbb{Z}(H_k) = 0$ and $\tilde{C}(\mathbb{Z}(H_k), id) = 0$

for each k = 1, 2, ...

We remark that the proof of this theorem is similar to that in [6, Theorem] and we use the following lemma in [6].

LEMMA 2. Let G be a group such that Wh G = 0, $\tilde{K}_0\mathbb{Z}(G) = 0$ and $\tilde{C}(\mathbb{Z}(G), id) = 0$. Then for any free group F, Wh $(G \times F) = 0$. [It follows from the Bass-Heller-Swan decomposition formula (cf. [1] or [3, Theorem 1]) that the hypotheses are equivalent to Wh $(G \times T) = 0$.]

Proof of Theorem 4. First we note that for each $k = 1, 2, ..., H_k$ and $H_k \times T$ are of the same form.

We prove the theorem by induction on the number of the free groups.

For k = 1, we have $H_1 = G \times F_1$. Since $Wh(G \times T) = 0$, by hypothesis, it follows from Lemma 2 that $Wh H_1 = 0$. Since $H_1 \times T$ is of the same form as H_1 , we also have $Wh(H_1 \times T) = 0$, and so, by the the Bass-Heller-Swan decomposition formula, $\tilde{K}_0 \mathbb{Z}(H_1) = 0$ of $\tilde{C}(\mathbb{Z}(H_1), id) = 0$. This starts the induction.

Now suppose inductively that the theorem holds for some k = m and for any G of the given form. Then using Lemma 2 again, we get Wh $H_{m+1} = Wh(H_m \times F_{m+1}) = 0$. By the above observation that H_k and $H_k \times T$ are of the same form for each k, we also have

156

WHITEHEAD GROUPS

Wh $(H_{m+1} \times T) = 0$, and we deduce, again from the Bass-Heller-Swan decomposition formula, that $\tilde{K}_0 \mathbb{Z}(H_{m+1}) = 0$ and $\tilde{C}(\mathbb{Z}(H_{m+1}), id) = 0$. This completes the proof.

3. Proofs of main theorems. Now we give the proofs of our theorems.

Proof of Theorem 1. We remark that if G is a group of type n, then $G \times T$ is a group of type n+1. Thus G and $G \times T$ are of the same form. Hence the assertions follow immediately from Theorem 4, by the results of Farrell-Hsiang (Lemma 1).

Proof of Theorem 2. As mentioned above, if G is a group of type n, then $\mathbb{Z}(G)$ is right Noetherian and of finite right global dimension. Then, as shown in [2] and [9], $\mathbb{Z}(G \times F)$ is right coherent and of finite right global dimension, where F is any free group. The same arguments as were used in the proof of [3, Theorem B] establish the result.

Proof of Theorem 3. Let the generator of T be t. Let

$$s_{\lambda} = t^{-n_{\lambda}}t_{\lambda}$$

for all $\lambda \in \Lambda$, where n_{λ} is given as above, and let F' be the group generated by s_{λ} ($\lambda \in \Lambda$). Then clearly F' is a free group isomorphic to F. Moreover, by changing the generators in $T \times F$, the group $H' = (H_k \times_{\alpha} T) \times_{\mathscr{A}} F$ can be easily seen to be isomorphic to the direct product $H'' = (H_k \times_{\alpha} T) \times F'$, which is just $(F' \times H_k) \times_{\alpha} T$. Thus, by Theorem 2, Wh $H'' = 0 = \tilde{K}_0 \mathbb{Z}(H'')$. Hence Wh H' = 0 and \tilde{K}_0 (H') = 0, as required.

REMARK. Let G_1 and G_2 be as given in [6]. Then as shown in the proof of Theorem 3, G_1 can be seen to be canonically isomorphic to the group $(A \times_{\alpha} T) \times F''$, where F'' is a free group isomorphic to F. Similarly G_2 is canonically isomorphic to $(G_1 \times_{\beta} T') \times F'''$, where F''' is a free group isomorphic to F'. Thus G_2 is of the form

$$(((A \times_{\alpha} T) \times F'') \times_{B} T') \times F''',$$

i.e. G_2 is of the form $H_2 \times_{\beta} T'$, where H_2 is as given by (1). Hence the results in Theorem 3 give, in particular, the main theorem in [6] and hence that in [5].

REFERENCES

1. H. Bass, A. Heller and R. G. Swan, The Whitehead group of a polynomial extension, Inst. Hautes Études Sci. Publ. Math. No. 22 (1964), 61-79. MR30 #4806.

2. K. G. Choo, K. Y. Lam and E. Luft, On free product of rings and the coherence property, Algebraic K-theory II: "Classical" algebraic K-theory and connections with arithmetic, Lecture Notes in Mathematics 342 (Springer, 1973), 135-143. MR 50 #13154.

3. K. G. Choo, The projective class group of the fundamental group of a surface is trivial, Proc. Amer. Math. Soc. 40 (1973), 42-46. MR48 #2222.

4. K. G. Choo, Whitehead groups of certain semidirect products of free groups, Proc. Amer. Math. Soc. 43 (1974), 26-30. MR49 #2890.

5. K. G. Choo, Whitehead groups of certain semidirect products of free groups, II, Nanta Math. 9 (1976), 138-140.

6. K. G. Choo, The projective class groups of certain semidirect products of free groups, Nanta Math. 10 (1977), 44-46.

KOO-GUAN CHOO

7. F. T. Farrell and W. C. Hsiang, A formula for $K_1R_{\alpha}[T]$, Proc. Sympos. Pure Math., vol. 17, (Amer. Math. Soc., 1970), 192–218. MR41 #5457.

8. F. T. Farrell, The obstruction of fibering a manifold over a circle, Indiana Univ. Math. J. 21 (1971), 315-346.

9. S. M. Gersten, K-theory of free rings, Comm. Algebra 1 (1974), 39-64.

10. J. Stallings, Whitehead torsion of free products, Ann. of Math. 82 (1965), 354-363. MR31 #3518.

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY OF SYDNEY SYDNEY, N.S.W. 2006 AUSTRALIA

158