
DISCRETE GROUPS OF MOTIONS 

LEON GREENBERG 

1. Introduction. This paper deals with the discrete groups of rigid 
motions of the hyperbolic plane. It is known (12) that the finitely generated, 
orientation-preserving groups have the following presentations: 

Generators: #i, bi, . . . , ap, bp, Si, . . . , Sd, cu • • • , cr. 

Defining relations: k\. . . kpSi . . . SdCi . . . cT = 1, 

5ÏI = sr = . . . = sr = i, 
where km = ambmam~lbm~l. We shall denote this group by F(p; n\, . . . , nd; r). 

In particular, the finitely generated free groups are contained among these. 
Indeed, one purpose of this paper is to indicate some geometrical methods 
for investigating free groups. 

The above groups also include the orientation-preserving discrete groups of 
motions of the sphere and Euclidean plane (3). But the results we shall 
obtain are mainly concerned with the hyperbolic groups and are either easy 
or false for the Euclidean and spherical groups. For instance, we shall extend 
the following theorem of Howson (7) to discrete groups of motions: if S and 
T are finitely generated subgroups of a free group, then S C\ T is also finitely 
generated. This theorem is trivial for the Euclidean and spherical groups, 
which contain no infinitely generated subgroups. We shall generalize the 
theorem of Karrass and Solitar (8) that if F is a free group and H is a finitely 
generated subgroup which contains a normal subgroup of F, then H is of 
finite index. This theorem is trivial for the spherical groups and is false for 
most of the Euclidean groups. For the above reasons we shall consider only 
the case of discrete hyperbolic groups. We shall usually omit ''discrete hyper
bolic." We mention the interesting result of Nielsen (11), Bundgaard (1), 
and Fox (5) that the above groups all contain subgroups of finite index with 
no elements of finite order. 

2. Hyperbolic groups. Let D be the disk {z\ \z\ < 1} in the complex 
plane, D its closure and E its boundary. D can be given a Riemannian metric 
so that it becomes the Poincaré model of the hyperbolic plane. The geodesies, 
which we shall call /z-lines, are arcs of circles orthogonal to E. The isometries 
are the linear fractional transformations which preserve D. They are of the 
forms 
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ç, , az + b r cz + d 
s{z) = toTi and T(z) = ~d¥Tc ' 

where aâ — bb = ce — dd = 1. 
T h e t ransformation S is called a t ranslat ion if it has two fixed points which 

are on E. This is equivalent to the condition \a + d\ > 2. A translat ion maps 
each circle through the fixed points onto itself. In part icular , the h-Yme through 
the fixed points is invar iant and is called the axis of the t ransformation. 5 is 
called a rota t ion if it has a fixed point in D, and a l imit-rotat ion if it has a 
single fixed point on E. These conditions are respectively equivalent to 
\a + <x| < 2 and \a + d\ = 2. T is a reflection in an h-Yme if d + d = 0. 
Otherwise T is a glide-reflection, t h a t is, the product of a t ranslat ion along 
an axis X with a reflection in X. 

For each t ransformation 5 or T, there are a pair of Wines X and X', called 
the isometric circles of the t ransformation (see (4)) . 5 is the product of a 
reflection in X and a reflection in the perpendicular bisector of the Euclidean 
line through the centres of the circles X and X'. If T is a glide-reflection, this 
product must be combined with a reflection in the h-Yme through the fixed 
points of T; if T is a reflection, X = X' is the h-Yme of reflection. 5 is a t rans
lation, rota t ion or l imit-rotat ion, according as X and X' do not intersect, do 
intersect, or are tangent . A discrete, hyperbolic group G has a canonical 
fundamental region, denoted RG, which consists of the region in D outside 
of the isometric circles of all elements of G. 

A subset M of D is called h-convex if with every two of its points it contains 
the h-Yme segment between them. For any subset M of Z), we denote by [M], 
the /^-convex closure of M, t h a t is, the intersection of all /^-convex subsets 
of D which contain M. 

T h e set of limit points LQ of a group G is the intersection with E of the 
set of limit points of {g(z)\ g (z G}, where z is any point in D. This set is 
independent of z (E D, because the t ransformations in G preserve hyperbolic 
distances, and these become arbi trar i ly small relative to Euclidean distance, 
as E is approached. LG is a closed set, invar iant under G. T h e convex figure 
of G is the set KG = [LG] C\ D. This is an /^-convex set which is invar iant 
under G. 

For each l imit-rotation g (z G, it is possible to find a limit-circle CQ so 
t h a t : 

(a) Cg is t angen t to E a t the fixed point of g, 

(b) CgCKGj 

(c) If gi and gi are l imit-rotat ions such t h a t g2 = fgif~l, w h e r e / Ç G, then 

(d) If Zi and z2 are two points interior to Cgi u is the fixed point of g, and 
Z<L — f(zi), w h e r e / £ G, t h e n / is either a l imit-rotat ion with fixed point 
u, o r / is a reflection in an M i n e with one endpoint a t u. 
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We shall denote by K* G the region obtained from KG by deleting the interior 
of each Cg. K*G is neither unique nor fc-convex, but it is invariant under G. 
We shall say that K* G is compact mod G, if there exists a disk r = {z\\z\ < r 
< 1} such that 

K%CGT = U gT. 
geG 

This is equivalent to the compactness of the surface obtained from K* G by 
identifying points congruent under G. Nielsen (10; 12) has proved that G is 
finitely generated, if and only if K* G is compact mod G. 

It is not hard to see (by constructing the fundamental region) that every 
hyperbolic group F{p; n1} . . . , nd; r) is realized as a group without limit-
rotations. In fact, according to Nielsen (12), for any finitely generated, hyper
bolic group G, there is a homeomorphism 5 of D, such that sGs~1 is a group of 
motions without limit-rotations. When G contains no limit-rotations, 
K*G = KG. 

3. The results. Coxeter (2) and Goldberg (6) have shown that every 
abelian subgroup of the modular group F(Q; 2, 3; 1) is cyclic. We shall prove 
the following stronger version of this for the discrete, orientation-preserving, 
hyperbolic groups. 

THEOREM 1. If F(p; tiu n2, . . . , nd; r) is hyperbolic, then the centralizer of any 
element is cyclic. The possible finite orders are the divisors of ni, n2, . . . , nd. Any 
finite subgroup is a cyclic group, conjugate to a subgroup of (Si), (6*2), . . . , or (Sd). 

Proof. It is well-known that two orientation-preserving linear fractional 
transformations commute if and only if they have the same fixed points. 
Therefore the centralizer of a rotation or limit-rotation is a group of rotations 
or limit-rotations with the same fixed point, and the centralizer of a trans^ 
lation is a group of translations with the same invariant axis. Each of these 
groups leaves a curve (or curves) invariant—a circle in D, for a group of 
rotations, a limit-circle for a group of limit-rotations, an /z-line for a group 
of translations. Because the group is discrete, there must be an element which 
transforms a given point (on the invariant curve) the least distance in a 
fixed direction. This element generates the group, which is therefore cyclic. 

The group F(p; n\, n2, . . . , nd\ r) has a fundamental region, which has 
among its vertices, the points Z\, z2, . . . , zd which are fixed points for 
Su S2, . . . , Sd respectively. If z is a fixed point of a rotation S, there is an 
element/which maps z into one of the points zk. Then/Sf -1 is in the subgroup 
generated by Sk. Therefore the order of fSf~\ which is the same as the order 
of S, divides nk. 

Let G be any finite subgroup of F(p; ni, . . . , nd; r), and let 7\ and T2 be 
two elements (necessarily rotations) with fixed points t± and t2 in D. We shall 
show that ti = t2. Assuming otherwise, let X3 be the Mine through ti and t2, 
and r3 the reflection in X3. There are Mines X2 and Xx through the points t\ 
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and t2 respectively, such that if rt is the reflection in X*, then 7\ = f2r3 and 
T2 = r%t\. Therefore TXT2 = r2rx. If Xi and X2 diverge, r2fi is a translation; 
if Xi and X2 are asymptotic (meet at a point on £ ) , then r2Y\ is a limit-rotation. 
Since these are transformations of infinite order, it follows that Xi and X2 

must meet at a point t$ in D, and 2"3 = r\r2 is a rotation whose fixed point 
is /3. The group (ri, r2, r3) has the triangle /i£2£3 as fundamental region. This 
group is infinite, since the images of tit2t^ under (ri, r2, r3) cover D; since 
(7\ , T2, r3) is of index 2 in (fi, r2, r3), the former subgroup is also infinite. We 
conclude that t\ = t2, and G is a cyclic group conjugate to a subgroup of 
<5,>, <S2>, . . . . or (5,). 

For hyperbolic groups which contain orientation-reversing transformations, 
the only exceptions are the following. The centralizer of a translation or 
glide-reflection can be a product of cyclic groups Cœ X C2. The centralizer 
of a reflection can be the group Cœ X C2 or 7^(0; 2, 2; 1) X C2. A finite sub
group can be a dihedral group. 

THEOREM 2 . 7 / 5 and T are finitely generated subgroups of a discrete group, 
then S C\ T is also finitely generated. 

Proof. Let H = 5 C\ T and let G be the finitely generated discrete group 
generated by 5 and T. As we remarked in § 2, we can suppose that G contains 
no limit-rotations. By Nielsen's theorem, there exist disks 

Ts = {z\ \z\ <rs < 1}, TT = {z\ \z\ < rt < 1} 

such that Ks C STS and KT C TV T. Let r = max (rs, rt) and T = {z\\z\ <r\. 
Then 

X s C ^ r and KTCTT. 

Choose coset representatives {s^, {tj} so that 

5 = U Hsi and T = U Ht,. 
i 3 

Then 

X s C ST =HUstT, 
i 

KT C 7T = H U ^ r . 

Also 

since 
CLsr\LT. 

We now show that stT r\ KT 9^ 4> for only a finite number of representatives 
st. For any h £ H, sfT H / ^ T ^ 0 if and only if T H s^htjT 9* 0. Now if 
d(2i, 2;2) is the hyperbolic distance between the p o i n t s ^ and z2 in D, and the 
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hyperbolic radius of T is p, then r P gT ^ <£ if and only if d(0, g(0)) < 2p. 
Bu t the discreteness of G implies t h a t there are only a finite number of ele
ments g (z G with this last property. Therefore there are only a finite number 
of elements g = s{~lht2- with F P gT 3^ </>. Note t ha t if 

^ i l h\tJX
 = Si'l "2^2» 

then 

si2s~^hi = h2tj2tjl
1 £ S H T = H. 

Therefore s^s^1 and tj2th~
l £ H , so 

S il $i2i * ji = 131 

and hi = h2. I t follows t ha t there are only a finite number of the stl tjt h for 
which stY P htjY 7^ 0, and therefore only a finite number of the st for which 

Since KH C KT, there are only a finite number of the st, say s^, s i2, . . . , sin> 
so t ha t stT C\ KH 9^ 0. Fur thermore , the elements of H map KH and i £ s 
onto themselves and consequently Ks — KH onto itself. I t follows t h a t 
s{Y P KH y± <f> if and only if HstT P KH j* </>. Recalling t ha t 

we now obtain 

KHCHUsikY. 

Let Y' be a disk with centre 0 and radius r' < 1, which is large enough to 
contain 

n 

U sikT. 

Then i£# C # 1 " , or i£# is compact mod H. Nielsen's theorem now implies 
t h a t H is finitely generated. 

T H E O R E M 3. / / H is a finitely generated subgroup of G and if LH = LG, then 
[G : H] is finite. 

Proof. If LG = </>, then G must be finite. If LG consists of a single point 2, 
then the elements of G and H are l imit-rotations whose fixed point is z, and 
possibly reflections in Mines with one endpoint a t z. I t is easy to see t h a t 
the index [G: H] is finite in this case. If LG contains more than one point, 
then K*G and K*H are non-empty sets. By Nielsen's theorem there is a disk 
r = \z\ \z\ < r < 1} so t h a t K*H C HT. Since G is discrete, there can be 
only a finite number of elements g £ G so t h a t r P gT 9e <f>. We shall show 
t h a t every g £ G is congruent mod H to one of these elements, which we 
denote by gi, g2, . . . , gn- Let 2 Ç T P i£*# (we suppose t h a t T is large enough 
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so t h a t this intersection is not empty) and let g Ç G. Since KG = i£#, we 
have K*G C ^ * H - ^ * G is invar iant under G, so g{z) Ç i£*#. Therefore there 
exists h £ H so t h a t ftg(z) G T. T h u s r H AgT 9* 0 (since Ag(z) G T C\ hgT) 
and /̂ g = g* for some k. I t follows t h a t [G: H] is finite. 

T h e following is proved in (4, p. 43) . 

L E M M A 1. If S is a closed subset of E which contains more than one point, and 

S is invariant under a group G, then S Z) LG. 

Definition. An iV-chain of a group G is a sequence of subgroups Gi, G2, . . . , Gn 

such t h a t : 
(a) Gk* {1} (k = 1 , 2 , . . . , » ) , 
(b) either Gk is a normal subgroup of Gk+i, or Gk+i is a normal subgroup 

of Gk. 

We shall say t h a t two subgroups H and K are A7-equivalent if there is an 
A^-chain H = Gi, G2, . . . , Gw = K. A subgroup which is A7-equivalent to G 
will be called an A r-subgroup. 

We shall call a group quasi-abelian if it leaves invar iant an W i n e or a 
point in D. Such a group is either abelian or has an abelian subgroup of 
index 2. G is quasi-abelian if and only if LG consists of 0, 1, or 2 points. T h e 
following Lemma shows than an A7-equivalence class consists entirely of 
quasi-abelian groups if it contains one such group. 

L E M M A 2. If G and H are N-equivalent subgroups of a discrete group and G 
is not quasi-abelian, then LG = LH. 

Proof. Let the A7-chain be G = Gi, G2, . . . , Gn = II. We proceed to prove 
by induction t h a t 

LGk = LG (fe = 1, 2, . . . , » ) . 

Clearly LQl = LG. Assume LGk = LG. If Gk C Gk+U then LGfc C LGk+l. On 
the other hand, LGk is invar iant under Gk+X. For let g G Gyt+i and s0 G LGfc. 
There is a sequence {hj} C Gfc so t h a t for any z G D, 

lim Aj (2) = z0. 

Now ghjg~l £ G& and 

lim /^g~ (s) == zoj 

so t h a t 

l img /^g" 1 ^ ) = g(z0). 

Therefore g(z0) G LGk1 and LGfc is invar iant under Gk+i. Since L ^ = LG and 
G is not quasi-abelian, LGk contains more than 2 points. By Lemma 1, 
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T h u s 
LG = LGk = LGk+1. 

I t remains to consider the case where Gk+i is a normal subgroup of Gk. In 
this case LGk+1 C LGk. Moreover, in the same manner as above we can show 
t h a t LGk+1 is invar iant under Gk. 

We assert t ha t LGk+1 contains more than one point. If LGk+1 — </>, then 
GJC+I is a finite group. Gk+i is either a group of rotat ions (and possibly re
flections) with a common fixed point z £ D or a reflection group of order 2. 
In the first case the point z mus t be invariant under all t ransformations 
in Gk. Then Gk is also a finite group, so t ha t 

LG = LGk = 0. 

Bu t this implies t ha t G is quasi-abelian. In the second case, Gk+± consists of 
the identi ty and a reflection r in some h-Yme X. T h e elements of Gk leave X 
invariant . LGk is either empty or consists of the endpoints of X. This is t rue 
also of LG, so t ha t G must be quasi-abelian. If LGk+1 contains only a single 
point z, then this point is invariant under Gk. Gk is a group of l imit-rotations 
with limit-centre z (and possibly reflections in h-Ymes with one endpoint a t 
z). Then 

LG = LGk = {z} 

and it follows t ha t G is quasi-abelian. 
Lemma 1 now implies t ha t LGk+1 Z) LGk, so t ha t 

LG = LGk = LGk+l. 

I t now follows t h a t L # = LGk = LG. 
T h e previous lemma and Theorem 3 imply the following. 

T H E O R E M 4. Let H be a finitely generated N-subgroup of a non-quasi-abelian 
group G. Then [G: H] is finite. 

LEMMA 3. If U and V are subnormal subgroups of a non-quasi-abelian group, 
then UnV,*{l}. 

Proof. Let Fi, Ui, and V± be the orientation-preserving subgroups of index 
2 in F, U, and V respectively. In the proof of Lemma 2, we saw t h a t if an 
iV-subgroup of F is a reflection group or order 2, then F is quasi-abelian. 
Therefore neither U nor V are reflection groups, so Ui and V\ are non-trivial, 
subnormal subgroups of F\. There exist normal series 

Fy D F* D . . . D Fn = Ui, 

Fl D Fi D . . • D F'n = Vlt 

where some of the Fk or some of the Fk' might coincide. We shall prove 
inductively t ha t Fk C\ Fk is a non-trivial non-abelian group. II Ft C\ Fi = {1}, 
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then each element of F2 commutes with each element of F2 But two orienta
tion-preserving transformations commute, if and only if they have the same 
fixed points. This implies that F2 (and F2) is a commutative group. The 
elements of F2 must be rotations with a common fixed point %\ € Dy limit-
rotations with a common fixed point z2 Ç JE, or translations with a common 
axis X. Since F2 is normal in Fx, the elements of F\ must have the same in
variant point or Wine. Therefore F\ is abelian, and F is quasi-abelian. From 
this contradiction we conclude that F2C\F2 9^ {1}. Furthermore F2 C\ F2 

is not abelian, since this together with its normality in F± would imply that 
F\ is abelian. Now suppose that Fk r\ Fk

r ^ {1 j and is non-abelian. Fk+\ P\ Fk 

and Fk Pi Fk+\ are normal subgroups of Fk C\ Fk. By the same argument as 
before, we conclude that Fk+1 H Fk+l' = (Fk+1 H Fk') C\ (Fk C\ Fk+l') ^ {1} 
and is not abelian. It now follows that U C\ V 9^ {!}. 

THEOREM 5. Let H and K be two non-quasi-abelian subgroups of a discrete 
group. Then H and K are N-equivalent, if and only if there is a non-trivial 
subgroup J which is simultaneously subnormal in H and K. 

Proof. The "if" part is obvious; we shall prove the "only if" part. There 
is an .Y-chain H = Gi, G2l . . . , Gn = K. The series 

G1DG1nG2DGlnG2nG,D . . . H Gk 
A - = l 

is a normal series. We shall prove inductively that 
m 

nGk 
k=l 

is a non-trivial, subnormal subgroup of Gm. This is certainly true for m = 1; 
assume that this is true for m = p. If Gp is a normal subgroup of Gp+i, then 

n G t = n G t ^ {is-

Since 
p+i 

HGk 
k=l 

is subnormal in Gp, which is normal in Gp+i, it follows that 

P + I 

HGk 
k=l 

is subnormal in Gp+\. Now suppose that Gv+i is a normal subgroup of Gp. Gv 

cannot be quasi-abelian. The conditions of Lemma 3 are fulfilled, with 

F = Gp, U= H Gk, V = Gp+1.. 
k=l 

Therefore 
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p+1 
HGk9* {I}. 

Since 
V 

is subnormal in Gv, 
V 

Gp+i 

is subnormal in Gv C\ Gp+i = Gp+i. I t now follows t h a t the group 

J= C\Gk 
k=l 

is a non-trivial, subnormal subgroup of H and K. 
This theorem implies t ha t if G is not quasi-abelian, then a subgroup H is 

an TV-subgroup if and only if it contains a subnormal subgroup of G. 

T H E O R E M 6. Let H be a finitely generated non-quasi-abelian subgroup of G. 
Then there is a subgroup GH of G such that 

(a) G H is N-equivalent to H, 
(b) if K C G and K is N-equivalent to H, then K C GHj 

(c) [GH : H] is finite. 

Proof. Let GH = {g\ g G G, gLH = LH}. Since 

H C G Hi LH C LGH. 

Lemma 1 implies t ha t LH Z) LGff, so t h a t LH = LGH. Theorem 3 now implies 
t ha t [GH: H] is finite. From this it follows t ha t H has a finite number of 
conjugate subgroups in GH. The intersection of these conjugate subgroups is 
a normal subgroup F of finite index in GH. Since GH is infinite, F is non-trivial. 
Therefore the sequence, GH, F, H, is an TV-chain, and GH is iV-equivalent to 
H. If K is iV-equivalent to i J , Lemma 2 implies t h a t K leaves LH invariant , 
so t ha t K C GH. 

T H E O R E M 7. Let H and K be finitely generated non-quasi-abelian subgroups 
of a discrete group. Then the following statements are equivalent: 

(a) H and K are 2V'-equivalent; 
(b) there is a group J which is simultaneously normal and of finite index in 

H and K; 
(c) LH = LK. 

Proof. If (a) is true, then GH = GK. (These are the groups introduced in 
Theorem 6.) Since H and K are of finite index in GH, this is also t rue of 
H C\ K. Therefore H C\ K contains a nontrivial subgroup / which is normal 
and of finite index in GH- J is also normal and of finite index in H and K. 
This shows t h a t (a) implies (b). 
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If (b) is t rue , then H and K are iV-equivalent. Therefore LH = LK. This 
shows t h a t (b) implies (c). 

Now suppose (c) is t rue , T h e n GH = GK. I t follows t h a t H and K are both 
iV-equivalent to GH = GK, and hence to each other. 

I t would be interesting to determine whether there are algebraic conditions 
equivalent to the condition LH = LK, when H or K is infinitely generated. 

T h e following is proved in (9, p . 76). 

L E M M A 4. Let U and V be two groups such that the isometric circles of U 

are contained in Rv and the isometric circles of V are contained in Rv. Then 

the group generated by U and V is the free product U *V, and Ru*v = Ru^Rv-

T H E O R E M 8. Let H be a finitely generated subgroup of a finitely generated 
non-quasi-abelian group G. Then [G: H] is finite if and only if H is contained 
in no infinitely generated subgroup of G. 

Proof. If H is of finite index, then any larger group mus t also be of finite 
index, and so it is finitely generated. 

Now suppose H is of infinite index. We shall find a subgroup of G which 
contains H and is infinitely generated. We may assume t h a t G contains no 
l imit-rotat ions. Then RH, which cannot be contained in D, contains intervals 
on E. We first show t h a t one of these intervals contains points of LG in its 
interior. 

If LH = LG, then by Theorem 3 [G: H] is finite. T h u s there is a point 
ZQ G L G — LH. Let z G RH; there is a sequence {gn} C G such t h a t 

\\mgn(z) = ZQ. 
W->oo 

Since RH is a fundamental region for H, there is hn G H so t h a t hngn(z) c RH. 
T h e sequence {hngn(z)} has a subsequence which converges to a point 
Zi G RH F\ E. T h e point %\ is a limit point of G and belongs to an interval 
7i of RH (^ E- %i might possibly be an endpoint of I\. Since G is not quasi-
abelian, LG consists of more t han two points , and hence it is a perfect subset 
of E (see (4, p . 68)) . T h u s there is a sequence {xn} in LG which converges 
to z\. Suppose this sequence is outside Ix. z\ is the endpoint of an isometric 
circle of an element h G H. T h e t ransformation h maps I\ outside RH C\ E, 
and maps a neighbouring interval, containing almost all of the sequence {x„j, 
onto an interval I of RH Pi E. Therefore I contains points of LG in its interior. 

As is shown in (10), the fixed points of the t ranslat ions of G are dense 
in LG in the following sense. If x, xf G LG and / and J' are intervals of E 
which contain x and xr respectively, then there is a t ranslat ion g G G, with 
a fixed point in each interval. A sufficiently high power gn has isometric 
circles X and A' which intersect E inside / and J' respectively. Since the 
interval I C RH ^ E contains points in LG, it contains an infinite sequence 
of such points, which we denote by {Vi, yi, 3̂ 2, 3;2/, . . . , } . Le t Ik, Ik

f be mutual ly 
disjoint subintervals of I which contain yk and yk' respectively. There is a 

https://doi.org/10.4153/CJM-1960-036-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-036-8


DISCRETE GROUPS OF MOTIONS 425 

translation gk Ç G whose isometric circles X* and \k' intersect E inside Ik and 
Ik respectively. By Lemma 4, the group generated by {gi, g2, . . . ,} is a free 
group F of infinite rank, whose fundamental region RF is the region in D 
outside of all \k and X/. Lemma 4 now implies that the group K generated 
by H and F is the free product H * F. Thus K is an infinitely generated group 
containing H. 

THEOREM 9. Let H be a finitely generated subgroup of a non-quasi-abelian 
group G. If H has a non-trivial intersection with every non-cyclic subgroup 
of G, then [G:H] is finite. 

Proof. We shall show that LH = LG. Since G is not quasi-abelian, LG is a 
perfect subset of E. Let z 6 LG, and let I be an open interval of E which 
contains z. I contains infinitely many points of LG. Choose four of them 
Zi, Zii £2, z2'. Let Ii , I / , 12, 12 be non-intersecting subintervals of 7, which 
contain z±} Zi, Zi, z2 respectively. As in the proof of Theorem 8, there are 
translations gi and g2 G G, such that the isometric circles Xi and X/ of gi 
intersect E inside I\ and 7 / respectively, and the isometric circles X2 and \2 

intersect E inside 7"2 and I2 respectively. The group Ky generated by gi and 
g2, is a free group of rank 2. By hypothesis, the intersection H C\ K is non-
trivial. It follows that H has an element whose fixed points are in I. Since this 
is true for any interval I containing 3, it follows that z G LH and LH = LG. 
Theorem 3 now implies the required result. 

COROLLARY. Let H and K be finitely generated non-quasi-abelian subgroups 
of a discrete group. If H has a non-trivial intersection with every non-cyclic 
subgroup of K, then [K\ H C\ K] is finite. 

Proof. By Theorem 2, H C\ K is finitely generated. The Corollary now 
follows from Theorem 9. 
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