ON THE ABSOLUTE NÖRLUND SUMMABILITY OF A FOURIER SERIES

BY

D. S. GOEL AND B. N. SAHNEY

1. Let $\sum A_{n}$ be a given infinite series and $\left\{s_{n}\right\}$ the sequence of its partial sums. Let $\left\{p_{n}\right\}$ be a sequence of constants, real or complex, and let us write

$$
\begin{equation*}
P_{n}=p_{0}+p_{1}+\cdots+p_{n} \tag{1.1}
\end{equation*}
$$

If

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} s_{k} \rightarrow \sigma \tag{1.2}
\end{equation*}
$$

as $n \rightarrow \infty$, we say that the series $\sum A_{n}$ is summable by the Nörlund method (N, p_{n}) to σ. The series $\sum A_{n}$ is said to be absolutely summable $\left(N, p_{n}\right)$ or summable $\left|N, p_{n}\right|$ if σ_{n} is of bounded variation, i.e.,

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\Delta \sigma_{n}\right|=\sum_{n=1}^{\infty}\left|\sigma_{n}-\sigma_{n-1}\right|<\infty \tag{1.3}
\end{equation*}
$$

2. Let f be a periodic function with period 2π, and integrable in the sense of Lebesgue. The Fourier series associated with f, at the point x, is

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \sum_{n=0}^{\infty} A_{n}(x), \text { say } \tag{2.1}
\end{equation*}
$$

We write

$$
\phi(t)=\phi_{x}(t)=\frac{1}{2}\{f(x+t)+f(x-t)-2 f(x)\} .
$$

The following theorem has been proved by Hsiang [3].
Theorem A. Let $\left\{p_{n}\right\}$ be a sequence of positive constants. If $\left(p_{n}-p_{n-1}\right)$ is monotonic and bounded,

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{n}{P_{n}(\log n)^{a}}<\infty \tag{2.2}
\end{equation*}
$$

for some $a>0$, and

$$
\begin{equation*}
\left(\log \frac{1}{t}\right)^{a}\left|\phi_{x}(t)\right|=0(1), \quad \text { as } t \rightarrow 0+ \tag{2.3}
\end{equation*}
$$

then the Fourier series of f is summable $\left|N, p_{n}\right|$ at x.

The object of the present paper is to generalize the above theorem of Hsiang and to give an alternate simple proof.

We shall prove the following theorem.
Theorem. Let p_{n} be a sequence of positive constants. If $\left(p_{n}-p_{n-1}\right)$ is monotonic and bounded, and if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n}{P_{n} H(n)}<\infty \tag{2.4}
\end{equation*}
$$

where $H(u)$ is a positive increasing function such that

$$
\begin{equation*}
\int_{1}^{n} \frac{1}{H(u)} d u=0\left(\frac{n}{H(n)}\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
H\left(\frac{1}{t}\right)\left|\phi_{x}(t)\right|=0(1) \quad \text { as } \quad t \rightarrow 0 \tag{2.6}
\end{equation*}
$$

then the Fourier series of f is summable $\left|N, p_{n}\right|$ at x.
3. We shall require the following lemmas for the proof of the theorem.

Lemma 1. [2] If $p_{n}>0,\left\{p_{n}-p_{n-1}\right\}$ is monotonic and bounded, and if the series

$$
\sum \frac{\left|t_{n}^{\prime}\right|}{P_{n}}<\infty
$$

where $t_{n}^{\prime}=\sum_{k=0}^{n}(n-k+1) A_{k}$, then $\sum A_{n}$ is summable $\left|N, p_{n}\right|$.
Lemma 2. If (2.5) and (2.6) are satisfied, then

$$
t_{n} \equiv t_{n}(x)=\sum_{k=0}^{n}(n-k+1) A_{k}(x)=\mathbf{0}\left(\frac{n}{H(n)}\right) \quad \text { as } \quad n \rightarrow \infty .
$$

Proof. We have [1, p. 19]

$$
\begin{aligned}
\pi t_{n} & =\int_{0}^{\pi} \phi(t) \frac{\sin ^{2}(n+1) \frac{t}{2}}{\sin ^{2} \frac{t}{2}} d t \\
& =\left\{\int_{0}^{1 / n}+\int_{1 / n}^{\pi}\right\} \phi(t) \frac{\sin ^{2}(n+1) \frac{t}{2}}{\sin ^{2} \frac{t}{2}} d t \\
& =I_{1}+I_{2}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\left|I_{1}\right| & \leq \int_{0}^{1 / n}|\phi(t)| \frac{\sin ^{2}(n+1) \frac{t}{2}}{\sin ^{2} \frac{t}{2}} d t \\
& \leq \sup _{0<t<(1 / n)}|\phi(t)| \int_{0}^{\pi} \frac{\sin ^{2}(n+1) \frac{t}{2}}{\sin ^{2} \frac{t}{2}} d t \\
& =0(n+1) 0\left(\frac{1}{H(n)}\right)=0\left(\frac{n}{H(n)}\right) \text { as } n \rightarrow \infty \text { by }(2.6)
\end{aligned}
$$

because

$$
\frac{1}{\pi(n+1)} \int_{0}^{\pi} \frac{\sin ^{2}(n+1) \frac{t}{2}}{\sin ^{2} \frac{t}{2}} d t=1
$$

and

$$
\begin{aligned}
& \frac{1}{4} I_{2}=\int_{1 / n}^{\pi} \phi(t) \frac{\sin ^{2}(n+1) \frac{t}{2}}{t^{2}} d t+0(1) \\
&\left|\int_{1 / n}^{\pi} \phi(t) \frac{\sin ^{2}(n+1) \frac{t}{2}}{t^{2}} d t\right| \leq A \int_{1 / n}^{\pi}|\phi(t)| \frac{1}{t^{2}} d t, \quad(A \text { is a constant }) \\
& \leq A \int_{1 / n}^{\pi} \frac{1}{H\left(\frac{1}{t}\right) t^{2}} d t \\
&=0\left(\frac{n}{H(n)}\right) \text { by condition }(2.5)
\end{aligned}
$$

therefore

$$
I_{2}=0\left(\frac{n}{H(n)}\right)
$$

Hence

$$
t_{n}=0\left(\frac{n}{H(n)}\right)
$$

4. Proof of the theorem. By Lemma 2 and (2.4) we have

$$
\frac{\left|t_{n}\right|}{P_{n}}=0\left(\frac{n}{P_{n} H(n)}\right),
$$

where $\sum n /\left(p_{n} H(n)<\infty\right.$.
The theorem now follows by Lemma 1.

References

1. G. Alexits, Convergence problems of orthogonal series, Pergamon Press, New York, 1961.
2. S. N. Bhatt, An aspect of the local property of $\left|N, p_{n}\right|$ summability of a Fourier series, Indian J. Math. 5 (1963), 87-91.
3. F. C. Hsiang, On the absolute Nörlund summability of a Fourier series, J. Austral. Math. Soc. 7 (1967), 252-256.

University of Calgary, Calgary, Alberta

