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AN INJECTIVE FAR-FIELD PATTERN OPERATOR AND
INVERSE SCATTERING PROBLEM IN A FINITE DEPTH

OCEAN
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The inverse scattering problem for acoustic waves in shallow oceans are different from that in the spaces of R2

and R3 in the way that the "propagating" far-field pattern can only carry the information from the N +1
propagating modes. This loss of information leads to the fact that the far-field pattern operator is not
injective. In this paper, we will present some properties of the far-field pattern operator and use this
information to construct an injective far-field pattern operator in a suitable subspace of L2(dCi). Based on this
construction an optimal scheme for solving the inverse scattering problem is presented using the minimizing
Tikhonov functional.

1980 Mathematics subject classification (1985 Revision): 35R30, 76Q05.

1. Introduction

The inverse scattering problem for acoustic waves, which consists in recovering the
shape of a scatterer from the far-field pattern of the scattered field, forms the basis of a
wide variety of areas in the engineering sciences such as remote sensing, nondestructive
testing and imaging etc., and for this reason has been the object of study by scientists in
a number of diverse disciplines. Rapid progress in this field has been made since the
early seventies, and a survey of these results can be found in the papers by Colton [4]
and Sleeman [12]. However, nearly all intensive efforts in this field are devoted to the
cases of R2 and R3. It has been noticed that in some situations, for instance in a finite
depth ocean, the remote sensing and imaging problems will lead to an inverse scattering
problem in a special space instead of R2 and R3. In the homogeneous finite depth
ocean, Gilbert and Xu [8] showed that the "propagating" far-field pattern can only
carry the information from the N +1 propagating modes; here N is the largest integer
less than (2/c/i — n)/2n. This loss of information makes this problem different from that in
whole space case in the way that the far-field pattern operator is not injective.

Before we can describe this non-injective property of the far-field pattern more
precisely, we need to give a formulation of the corresponding direct problem, that is of
the exterior boundary value problem for the time harmonic acoustic scattering by a soft
object.
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Let Rj = {(x,z); x=(x,,x2)eR2, O^z^n} be a region corresponding to the finite
depth ocean, where h is the ocean depth. Let fi be an object imbedded in RjJ, which is a
bounded, convex domain with C2 boundary 3il having an outward unit normal v. If the
object has a sound soft boundary <3Q, an incoming wave u', which is incident on d£l, will
be scattered to produce a propagating wave us as well as its far-field pattern. This
problem can be formulated as a Dirichlet boundary value problem for the scatttering of
time-harmonic acoustic waves in Qe: = RjJ\Q, namely to find a solution ueC2(R£\Q)n
C(R£\Q) to the Helmholtz equation

=0, in Rfc
3\H, (1.1)

such that u satisfies the boundary conditions

M = 0, as z=0, (1.2)

du n . . . . .
— = 0, as z = h, (1.3)
oz
u = 0, on SO. (1.4)

Here k=£(2n+\)n/2h, h = 0, l,...,oo is a positive constant known as the wave number,
and M = M' + US, where u' and us are the incident (entire) wave and the scattered wave
respectively. The scattered wave has the modal representation

u*= I ct>n(zK(x), (1.5)
n=0

where

0n(z) = sin[fc(l-a2)"2z], (1.6)

and the nth mode of us, u*(x), satisfies the radiating condition

0, r = |x|, n = 0,l,...,oo. (1.8)

This problem is uniquely solvable [14]. Let G(z, £, |x — £|) be the Green's function in
R£ satisfying boundary condition (1.2) and (1.3), then the scattered wave us can be
represented as
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us(x,z) = j(u^-G^\da, (x,z)efl., (1.9)

and has the asymptotic expansion

where we denote (x, z) in cylindrical coordinates by (r, 9, z), and

an ov̂
(1.11)

x=(cos0,sin0), and ^

Let us denote

-»0w}- (1-12)

We then call the function f(9,z,k): = Y^=ofn{0,z,k)eVN the representation of the
propagating far-field pattern of the scattered wave. The operator F:L2(d£l)->VN defined
by

(Fg)(9,z,k):=- i 4>.(z
n=o en

(1.13)
x=(cos0,sin0), 0^9^2n,0^z^h.

is called a far-field pattern operator (cf. [9]). Unlike the whole space case in which by
choosing dfi properly, from F<)) = 0 it follows that <f> = 0 (cf. [7,10]), here the null space
of F, N(F), is not necessarily empty even if k is not an eigenvalue of interior Dirichlet
problem on fi. A particular example of this occurs for 0<k<n/2h; then N= — 1 and for
any incoming waves the far-field pattern is identically zero. Even in the case of
sufficiently large k, F$ = 0 only means that the N + l propagating modes are identically
zero. Therefore, the far-field pattern operator F is not an injection over the Hilbert space
L2(dil).

The inverse scattering problem we wish to consider is as follows: given the far-field
pattern /(x,z,fc) for one or several incoming (entire) waves, find the shape of the
scattering object SI. In order to solve this problem, we need to find some kind of inverse
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operator of F. Therefore, it is important to find out under what kind of restriction F
becomes an injection.

In Sections 2 and 3, we will present some properties of the far-field pattern operator
and use this information to construct an injective far-field pattern operator in a suitable
subspace of L2(dQ). Based on this construction an optimal scheme for solving the
inverse scattering problem is presented using the minimizing Tikhonov functional.

2. Injective theorem of far-field pattern operator

In view of [14,9], we can represent the scattered wave us in the form of combined
single and double layer potential:

u°(x,z)= J ( / - + AWk|x-£|)s(&0«fo4, (2.1)
an \0V{ /

where Im I > 0 and g(£, £) satisfies

+ XS)g=-2ui. (2.2)

Here,

Kg: = 2\d-^-gdo, (2.3)
an

\ (2.4)
an

+ kS) is invertible for any /c>0, k^(2n+ \)n/2h, n = 0, l , . . . ,oo, and its inverse is
a bounded linear operator in L2(dQ), denoted by (I + K + XS)"1.

For r = |x |> |£ | = :r', we can expand G(z, £, |x — £|) in the form of a normal mode
representation

"> n = 0 m = 0 WPnW
(2.5)

[cos (m6) cos (m9') + sin (m0) sin (m0')]-

In view of the asymptotic behavior of HlJ;\kanr), we can conclude that us has an
asymptotic expression

i °° / 2 \ 1 / 2

ws(x,z) = — e 1It/4 Y e'kanr(f>n(z)
2h n = 0 \nkanr)

(2.6)
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1 = 0 a

where eo= 1, £m = 2 for m ^ 1.
Here a natural way to define the far-field operator is to define F:L2(dQ)-*VN by

{Fg)(0,z,k):= X>n(z) ^ j t ^ + A'PniOJJka^cosmie-e^do. (2.7)

We know that

• = {yv + A l<t>n(OJm(kanr')sm mfl], (2.8)

{r,6,z)ed£l, n,m = 0,l,...,co,

are a complete system in L2(dQ), [6]. Let

and Wjj(dCl) be the orthogonal space to WN(dQ.) in L2(dQ) under the usual L2(d£l) inner
product, then ^V(F) = Wjj(dil), here AT(F) is the null space of the far-field pattern operator
F. Hence, if ge W^{8O), then from (2.6)

(2.9)

i.e. the propagating far-field pattern of us is identical to zero.
Now we want to formulate a mapping from incoming waves to far-field pattern. At

this stage, we think of the object Q as known and fixed. Let

«nm<pn{z)Jm{kanr)eime, ( x , z ) e R t
3 l (2.10)
J

for any u'eA(k, Rj|), denote 14 = " ' ^ which is a continuous function on dCl. Since
(I + K + AS) is invertible for any k>0, we can express geL2(dd) as

(2.11)
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Combining (2.7) and (2.10), we define a mapping FgnA(k,Rl)^VN by

Fgnu': = F o(I + K + kS)~l(-2u],). (2.12)

Let

(2.13)

(2.14)

then we can see from (2.9) that N(Fan) = AX(N,dSl).

Definition 1. Let u[,u'2eA(k,R£) be two incoming waves, we say that u\ is equiva-
lent to u2 if «j— u^eA^N,<5Q), which is denoted by u'1~u'2-

Let {«'} be the equivalent class under this equivalent relation ~, then for any given
far-field pattern / e R(Fgn), the range of Pen, there exists an equivalent class {«'}, such
that for any element in the class,

iW = /- (2-15)

We call {u'} an equivalent class solution.
Define

| |" ' | | fn := J ((Z + K + A S ) " ^ ! , ! 2 ^ ; (2-16)

then we call u'e/l(fc, R^) a minimal norm solution of integral equation (2.15) if

Fanu' = /

such that

u'e(u')

Theorem 2.1. / / u' e A(N, 5Q), SMC/I that Fanw' = 0, then

u'=0, on 30.

Proof. We have w'e/l(N,5Q), so g ^ ^ + K + A S ) " 1 ^ W (̂3fi). We can represent
Fan"' as

(Fgau
i)(O,z) = Fg= £ £ £m^n(z)

n = O m = 0
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(fl,z)e[0,2n]x[0,/i].

an

It follows that

= 0, l , . . . ,oo. (2.18)

Hence, ge Wjj{dQ), and g = 0 on 3fi. Consequently, uj, = (/ + K + AS)g = 0 on

Corollary. Let {u1} be an equivalent class solution of (2.15), then there is a unique
u'o e A(N, 3d) such that any element of {u1} can be written as

whereu\eAy{k,dil).
Since

oa ea

||u'||an^||Mb||an f°r a n y element of {u'}, from which we can conclude:

Theorem 2.2. Let {u1} be the equivalent class solution of (2.15), which has a unique
decomposite expression

\, ui,eA(N,dil), rteA^

then u'o is the minimal norm solution of (2.14).

Theorem 23. / / u' e A(N, 8(1) such that the corresponding propagating far-field pattern
f{6, z) = 0, then the corresponding scattered wave u3 = 0 in RjJ\fi.

Proof. Let w'e A(N,dd), such that
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By Theorem 2.1, w' = 0 on 3Q. Hence us=— u' = 0, on 3Q. The uniqueness theorem of
direct scattering problem (cf. [4]) follows

MS = 0, inRj\Q.

3. An alternative injective theorem

As pointed out in the last section, Fgn:A(k,Rl)-^VN is not an injection; however, we
can restrict Fgn on a linear subspace related to dSl so that Fgn is an injection in the
linear subspace. One possible choice for this purpose is to take A(N, 8Q) as the domain
of Fgn. However, in order to formulate the inverse problem in terms of single layer
potentials, which has proved efficient in the R3 case in [10], we need to introduce a
different restriction on Fatl.

We first prove the following lemma.

Lemma 3.1. Let D be a bounded convex region in RjJ, such that k>0 is not a Dirichlet
eigenvalue of D, then

IJ-mn- = 4>n(2)Jm(kanr) cos m9,

»%: = <t>n(z)Jm(kanr)S\nm9, (3.1)

are complete in L2(dD).

Proof. It suffices to show that if geL2(dD), such that

f gir,z,d)l4>n(z)JJkanr)cos(m0)]rf<x = O, (3.2)
da

I g{r, z, 6) WH{z)JM(kamr) sin (mfl)] da = 0, (3.3)
an

for m, n = 0 , 1 , . . . , oo, then g is identically zero on 3D.
Let

u(x,z):= | G(z,C,|x-£|)g(r',C\0V<7 (3.4)
an

then U E O for |x| sufficiently large. But u is a solution to the Helmholtz equation, sou
= 0 in RjJ\£> by the analyticity of u. Moreover,

u+—u- = 2g, ondD, (3.5)
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and

Since u+=0, we know M _ = 0 on dD. By assumption, fc is not a Dirichlet eigenvalue of
D, so U E O in D. It follows that

1 (du+ <3u_\ . , „
g = - - — — - = - =0 , on 3D.

2 \ ov ov y

Now we can represent the solution to the exterior Dirichlet problem in the form of an
acoustic single-layer potential

<7, (x,z)eR6
3\fi, (3.7)

where D is an auxiliary region contained in Q.
The potential (3.6) solves the exterior Dirichlet problem provided that the density <j> is

a solution of the integral equation of the first kind

| | ^ (3.8)
dD

We introduce an integral mapping T:L2(dD)-*L2(d£l) by

(7>)(x,r):=jG(z,C,|x-S|M&0<frc. M ^ n (3.9)

dD

and write (3.8) as

7 > = - M ' . (3.10)

Since the boundary dCl and the auxiliary surface 3D are disjoint, the integral operator
T has a smooth kernel and therefore it is compact and cannot have a bounded inverse.
Hence, the integral equation (3.10) is ill-posed.

However, it is not our purpose to solve the direct problem by solving (3.10). We are
concerned with finding a linear subspace of A(k, RjJ) so that the restriction of the
far-field pattern operator F to this subspace is injective.

Here we remark that, similar to the case discussed in [10], equation (3.10) can have a
solution only for those incoming waves u' for which the scattered wave u* can be
analytically extended into the exterior of dD. Some discussion related to this question
may be found in [11] and [13]. However, for an arbitrary region this is still an open
problem.
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Suppose for a region Q and an incoming wave u' the equation (3.10) has a solution $,
then we can write the far-field pattern operator Fen: A(k,Rl)->VN in the form of

\ (3.11)
an

where (j>eL2(dD) is a solution of (3.10). Let

„ : = span{//<!„>,/42,>; n = 0 , 1 , . . . , J V ; m = 0, l , . . . , o o } ,

ueL2(dD); J uudff = 0 for a n y u e (

{ u e L 2 { d D ) ; u = T</>; for s o m e </>e [

; " = ^ ; for s o m e (pe

,R3
b); u\meTUN},

Theorem 3.2.

Proof. If u'eB^N^il), then there is a function <j>eUjj such that

Hence,

Fsau>= £ £
n=0 m = 0

due to the fact that

J #«, 0 W.tO^Jto.'O cos (m0')] AT = 0,

I =0,
ao

for m = 0,1 oo, n = 0,1,...,N.
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Theorem 33 . Suppose u'eA(k,Rl) and equation (3.10) has a solution in L2(dD). If
Fanu' = 0 then u'eB^N^Q).

Proof. For u'eA(k,Rl), let <f>eL2(dD) be a solution of (3.10), then the scattered wave
u3 can be written as

3D

For r = |x|-»oo, we have

n = O m = O

[ J MZ, 0 MQJJka/) sin (mff) da] sin me]=0,
La» J J+

It follows that

| flf, 0 [_4>n{QJm{kanr') cos (m0')] d<x = 0,
SD

\ ftZ, 0 W.(0-Uk»,/) sin (mfl')] da=0,
3D

for m = 0 ,1 , . . . , oo, n = 0 , 1 , . . . , N.

Hence 4> e Ujj and u%n =-T<j>eTUij.

Corollary. Suppose u'eA(k,R^) and equation (3.10) /ias a solution in B(N,dD). If
Fdilu' = 0, t/jen u' = 0 and

us = 0 in R£\n.

4. The inverse problem and its approximation solutions

In view of Section 3, if u' is an incoming wave which admits a solution to equation
(3.10), i.e.

Tcf>=-ui, <peL2(dD), (4.1)
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then we can introduce a far-field operator F t : L
2{dD)-*VN as:

= 0 m = 0 dD

(4.2)

For a given far-field pattern, it leads to an integral equation of the first kind, namely

F, <j>=f, onT, (4.3)

where r : = {(l,0,z); Og0^2
We know that Fl is an injection if k is not a Dirichlet eigenvalue of D and the

domain of Fu ^(FJ, is UN. However, we cannot expect in general that a solution to
(4.3) exists.

One of the basic techniques to treat ill-posed integral equations of the first kind is the
classical Tikhonov functional

(4-4)

After we have determined </>„ and the corresponding approximation us
a for the

scattered wave us, we look for the unknown surface dQ as the location of the zeros of
us

a + u'. As suggested in the whole space case (cf. [10,2]), we make an a priori
assumption on the unknown surfaces that if U is the set of all possible surfaces, the
elements of U can be described by

A: = {(O,O,zo) + r(x)x;xeB},

where B is the unit sphere and 0<zo<h is a known constant, r(x) belongs to a compact
subset

As usual, Cl'f(B), 0</?^ l , denotes the space of uniformly Holder continuously
differentiable functions on the unit sphere furnished with the appropriate Holder norm.
The functions rx{x) and r2(x) in the definition of V represent the a priori information.

If dD is contained in the interior of the surface represented by r[x)\+(0,0,zo), (for
simplification, we sometimes just say by r(x)), we locate dQ by minimizing

over all surfaces A in U; or, similar to [10], neglecting the Jacobian of r(x), by
minimizing
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2 ^ (4.5)

over all functions r e V.
Combining (4.4) and (4.5), we can formulate the inverse problem as minimizing the

functional:

|| (4.6)

Here we use T to denote the single-layer acoustic potential

(7»(x,z): = | G(z,Z,\x-Z\)4>d(r, (x,z)e*3
b\dD.

dD

That is, we seek <f>* e UN and r*eV such that

(4.7)
Now we establish existence of a solution to this nonlinear optimization problem and

investigate its convergent property as a-»0.

Theorem 4.1. The optimization formulation of the inverse scattering problem has a
solution.

Proof. Let [<j>n, rn) e UN x V be a minimizing sequence. This means that

. (4.8)

Since V is compact, we may assume that rn-*re U, as n-»oo.
In view of

,z), n^co, (4.9)

and a > 0 , we know that the sequence {0n} is bounded. Hence, we may conclude that
{</>„} converges weakly to some <peUN as n->oo. From the fact that F and T are
compact operators it follows that

F<t>n^>F<f>, n - > o o ,

a n d

But then from (4.7) we know
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This, together with the weak convergence, implies that

| | | | O , n^oo , (4.10)

and <t>eUN due to the fact that UN is a closed set. Hence
ti((f>, r; f, a) = lim &$„ rn; f a) = M(f a). (4.11)

This completes the proof.

Theorem 4.2. Let u' e B(N, <5Q) and f0 be the corresponding far-field pattern of a
domain dCl which is described by some reV, then

limM(/o,a) = 0.
<x->0

Proof. Let e > 0 be arbitrary, then there exists <j>eUN such that

Since the far-field pattern of the scattered wave depends continuously on the boundary
data of MS, we can find a constant depending on dQ, C = C(dGl), such that

\\Fi<t>-fo\\LHn^C\\(T<l>-us)0r\\LHB). (4.12)
In view of u' + ws=0 on dCl, we have

From the above we have the following result.

Theorem 4.3. Let u'eB(N,dQ) be an incoming wave such that u'\BiiBTUN and f be
the corresponding far-field pattern of a domain Q such that dCl is described by a null
sequence and let (#„, rn) be a solution to the minimization problem with regularization
parameter an. Then there exists a convergent subsequence of the sequence {rn}. There is
only a finite number of limit points and every limit point represents a surface on which the
total field us + u' vanishes.

Proof. From the compactness of V, there exists a convergent subsequence of {rn}
which converges to, say, r*. Without loss of generality, we may assume that rn-*r*, as
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n-KX>. Let M* denote the unique solution to the direct scattering problem for the object
with boundary A* described by r*, then

(u* + u'')or*=0, on B. (4.13)

Here we can think of that un as the solution to an exterior Dirichlet problem with
boundary values T$n|An on the boundary An described by rn.

Similar to the proof of Theorem 2.2 in [2] (also cf. [10]), we can show the following
lemma.

Lemma. Let {r*}, r* be surfaces in Rj), rn-*r* as n-*<x>. Let u' be an incoming wave,
{«„} and u* be scattered waves satisfying

= 0, on B;

| | ( ) 0 , as n->co;

then for any closed set G in R%\D,

lk-«*IU.G-0, n-oo. (4.14)

where D is contained in the interior region ofr* and \\ • \\x G is the maximum norm over G.

From the lemma we know the far-field patterns Fl^}n of un converge uniformly to the
far-field pattern / * of «*. Moreover, by Theorem 4.2,

ll^i^n-Zll^n^O. as n-oo.

Therefore, we can conclude that the far-field patterns coincide

/ = /*•

Recall that / is the far-field pattern with respect to an incoming wave uleB(N,dQ)
such that Tcj) = — u' admits a solution <£0 e UN. Therefore, we can represent the scattered
wave as:

X,Z), (x,z)6R6
3\n.

Since f = F1(j)0,

\\Fl(<l>n-(l>0)\\LHr) = \\Fi(Pn-f\\mn^0, asH^co. (4.15)

Now (4.2) implies that

I kanr') cos (m^)] do-+0,
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j [</>„ - 4>o\ t<fin(QJm{kanr') sin (m0')] da^O,
dD

when n->oo. It follows immediately that

\\Tcl>n-u%_G = \\n4>n-(t>o)L,G^0, as«^o). (4.16)

Consequently,

^ o ) | | e o , c + |K-«*||0OiC-»0, n->co, (4.17)

due to (4.14) and (4.16), where G is any closed set in R%\D. In view of (4.17) and that
u* + u' = 0 on A and A*cRfc

3\D, we can conclude that

us + u' = 0, on A*. (4.18)

If there existed an infinite number of different limit points, then by the compactness of
V we could find a convergent sequence of these limit points. Thus it would follow that
there was an arbitrarily small region for which us + u' is an eigenfunction for the
Laplacean. This is impossible; hence the number of limit points is finite.
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