LATTICE-ORDERED GROUPS HAVING AT MOST TWO DISJOINT ELEMENTS \dagger

by P. F. CONRAD and A. H. CLIFFORD
(Received 23 May, 1959)

1. Introduction. Let $L=L(+, \vee, \wedge)$ be a lattice-ordered group, or l-group (Birkhoff [1, p. 214]). Two elements a and b of L will be called disjoint if $a>0, b>0$, and $a \wedge b=0$. It is easily seen that if L does not contain two disjoint elements, then it is linearly ordered (and, of course, conversely). What can we say about l-groups containing two but not more than two mutually disjoint elements?

Let A and B be linearly ordered groups (o-groups), and let $A \oplus B$ be the cardinal sum of A and B. That is, $A \oplus B$ is the direct sum of A and B, and (a, b) is positive in $A+B$ if and only if a is positive in A and b is positive in B. An l-group L containing $A \oplus B$ as a convex normal subgroup (or l-ideal) is called a lexico-extension of $A \oplus B$ if every positive element of L not in $A \oplus B$ exceeds every element of $A \oplus B$. It then follows (subsection 2.9 below) that $L /(A \oplus B)$ is an o-group. Such an l-group L is easily seen to satisfy the following condition :
(D) There exists a pair of disjoint elements in L, but no triple of pairwise disjoint elements exists in L.

The following theorem shows that condition (D) characterizes L.
Theorem \ddagger. An l-group satisfying (D) is a lexico-extension of the cardinal sum $A \oplus B$ of two linearly ordered subgroups A and B of L by an o-group C.

The following steps in the proof of this theorem would follow from results of Jaffard [2] if L were abelian: that G_{p} and G_{q} are linearly ordered from his Theorem 1, p. 235 ; that the subgroup of L generated by L_{p} and L_{q} is the cardinal sum $G_{p}+G_{q}$ from his Proposition 3, p. 241. These occur in subsections 2.7 and 2.8 respectively.
2. Proof of the theorem. Let $L^{*}=\{x \in L: x>0\}$. Select p and q in L^{*} such that $p \wedge q=0$. Let $L_{p}=\{x \in L: x \wedge q=0\}$ and let $L_{q}=\{x \in L: x \wedge p=0\}$.
2.1. L_{p} and L_{q} are linearly ordered convex subsemigroups of L.

If $0 \leqslant x \leqslant a \in L_{p}$, then $0 \leqslant x \wedge q \leqslant a \wedge q=0$. Thus $x \in L_{p}$, and hence L_{p} is convex. L_{p} is a semigroup [1, p. 219]. Let x and y be two non-zero elements in L_{p}. Then $x \wedge y>0$, for otherwise $0=x \wedge y=x \wedge q=y \wedge q$, contrary to (D). Now $x=x^{\prime}+(x \wedge y)$ and $y=y^{\prime}+(x \wedge y)$ with $x^{\prime} \wedge y^{\prime}=0$. Since L_{p} is convex, x^{\prime} and y^{\prime} belong to L_{p}. Thus either $x^{\prime}=0$ and $x \leqslant y$ or $y^{\prime}=0$ and $y \leqslant x$.
2.2. The subsemigroup of L generated by $L_{p} \cup L_{q}$ is the direct sum $L_{p} \oplus L_{\alpha}$, and it is convex.

If $x \in L_{p} \cap L_{q}$, then $x \wedge p=x \wedge q=p \wedge q=0$, and hence $x=0$ by (D). If $x \in L_{p}$ and $y \in L_{q}$, then $x \wedge y \in L_{p} \cap L_{q}$ because L_{p} and L_{q} are convex. Thus $x \wedge y=0$, and so $x+y=x \vee y$

[^0]$=y \vee x=y+x$. If $0 \leqslant x \leqslant a+b$, where $a \in L_{p}$ and $b \in L_{q}$, then $x \wedge a \in L_{p}$ and $x \wedge b \in L_{q}$. Thus
$$
x=x \wedge(a+b)=x \wedge(a \vee b)=(x \wedge a) \vee(x \wedge b)=(x \wedge a)+(x \wedge b) \in L_{p} \oplus L_{a},
$$
and hence $L_{p} \oplus L_{q}$ is convex.
2.3. If $0<p^{\prime} \in L_{p}$ and $0<q^{\prime} \in L_{q}$, then $L_{p}=L_{p^{\prime}}$ and $L_{q}=L_{q^{\prime}}$, where
$$
L_{p^{\prime}}=\left\{x \in L: x \wedge q^{\prime}=0\right\} \quad \text { and } \quad L_{q^{\prime}}=\left\{x \in L: x \wedge p^{\prime}=0\right\} .
$$

If $x \in L_{p}$, then, since $q^{\prime} \in L_{q}, x \wedge q^{\prime}=0$. Thus $x \in L_{p^{\prime}}$ and hence $L_{p} \subseteq L_{p^{\prime}}$. Similarly $L_{q} \subseteq L_{q^{\prime}}$. In particular, $0<p \in L_{p^{\prime}}$ and $0<q \in L_{q^{\prime}}$. By reversing this argument, we have $L_{p^{\prime}} \subseteq L_{p}$ and $L_{q^{\prime}} \subseteq L_{q}$.
2.4. If $a \in L^{*}$ and $a \notin L_{p} \oplus L_{\alpha}$, then $a>L_{p} \oplus L_{q}$.

We first show $a>p . \quad$ Let $d=a \wedge p$. Then $d \in L_{p}, a=d+\bar{a}, p=d+\bar{p}$, and $\bar{a} \wedge \bar{p}=0$. If $\bar{p}=0$, then $p=d<a$. Now $p \wedge \bar{a}>0$, for otherwise $\bar{a} \in L_{q}$ and hence $a=d+\bar{a} \in L_{p} \oplus L_{q}$. If $\bar{p}>0$, it follows that \bar{p} and $p \wedge \bar{a}$ are strictly positive elements in the linearly ordered semigroup L_{p}, and hence $0<p \wedge \bar{a} \wedge \bar{p}=p \wedge 0=0$. This contradiction shows that $a>p$, and similarly $a>q$. Therefore $a>p \vee q=p+q$. It follows from 2.3 that $a>p^{\prime}+q^{\prime}$ for every p^{\prime} in L_{p} and every q^{\prime} in L_{q}.

2.5. If $a, b \in L^{*}$ and $a \wedge b=0$, then $a, b \in L_{p} \oplus L_{q}$.

If neither a nor b belongs to $L_{p} \oplus L_{q}$ then, by $2.4, a \wedge b>p>0$. If, say, a belongs to $L_{p} \oplus L_{q}$ but b does not, then $b>a$ by 2.4, and $a \wedge b=a>0$. Hence they must both belong to $L_{p} \oplus L_{q}$.
2.6. The semigroup $L_{p} \oplus L_{q}$ is invariant under o-automorphisms of L (in particular under inner automorphisms of L).

If π is an o-automorphism of L, then $p \pi \wedge q \pi=(p \wedge q) \pi=0 \pi=0$. By 2.5, $p \pi$ and $q \pi$ both belong to $L_{p} \oplus L_{q}$. But, by 2.6, we can replace p by any non-zero element in L_{p}, and q by any non-zero element in L_{q}. Thus $L_{p} \pi$ and $L_{q} \pi$ are contained in $L_{p} \oplus L_{q}$, and hence so is $\left(L_{p} \oplus L_{q}\right) \pi$.
2.7. The set $G_{p}=\{x \in L: x \wedge q=0$ or $x \vee(-q)=0\}$ is a convex, linearly ordered subgroup of L.

Clearly $G_{p}=L_{p} \cup N_{p}$, where $N_{p}=\{x \in L: x \vee(-q)=0\}=\left\{-x: x \in L_{p}\right\}$, and N_{p} is a convex, linearly ordered subsemigroup of L. Evidently G_{p} is linearly ordered. To show that G_{p} is convex, suppose that $x<y<z$, where $x, z \in G_{p}$ and $y \in L$. If $x<y \leqslant 0$ or $0 \leqslant y<z$, then $y \in N_{p}$ or $y \in L_{p}$, respectively, since these sets are convex. Suppose (by way of contradiction) that y is not comparable with 0 . Then $x<0<z$, and hence $z,-x$, and $z-x$ all belong to $L_{\mathcal{p}}$. From $0<y-x<z-x$ and the convexity of L_{p}, we conclude that $y-x \in L_{p}$. Since L_{p} is linearly ordered, $y-x \leqslant-x$ or $y-x \geqslant-x$; hence $y \leqslant 0$ or $y \geqslant 0$. Hence G_{p} is convex. Clearly $G_{\mathfrak{p}}$ is closed with respect to taking inverses. Thus to prove that $G_{\mathfrak{y}}$ is a group, it suffices (by symmetry) to show that if $a \in N_{p}$ and $b \in L_{p}$, then $a+b \in G_{p}$. But $a \leqslant a+b \leqslant b$, and therefore $a+b \in G_{p}$ because G_{p} is convex.

Similarly, the set $G_{a}=\{x \in L: x \wedge p=0$ or $x \vee(-p)=0\}$ is a convex, linearly ordered subgroup of L.
2.8. The subgroup of L generated by G_{p} and G_{q} is their cardinal sum $G_{p} \oplus G_{q}$, and is a convex normal subgroup of L.

It is clear from the corresponding properties of L_{p} and L_{q} shown in 2.2 above that $G_{p} \cap G_{q}=0$, and that G_{p} and G_{q} commute elementwise with each other. Hence the group generated by $G_{p} \cup G_{q}$ is their direct sum $G_{p} \oplus G_{q}$. It is now clear that $G_{p} \oplus G_{q}$ is the difference group of $L_{p} \oplus L_{q}$, and the difference group of any normal convex subsemigroup of L^{*} is a normal convex subgroup of L. But $L_{p} \oplus L_{q}$ is normal and convex by 2.2 and 2.6, and hence the same holds for $G_{p} \oplus G_{q}$. Finally, to show that $G_{p} \oplus G_{q}$ is cardinally ordered, we must show that if $x+y \geqslant 0$, with x in G_{p} and y in G_{q}, then $x \geqslant 0$ and $y \geqslant 0$. Since x and y cannot both be strictly negative, we may assume (by symmetry) that $x \geqslant 0$. We must now show that $y \leqslant 0$ implies that $y=0$. But $y \leqslant 0$ implies that $0 \leqslant x+y \leqslant x \in G_{p}$, and so $x+y \in G_{p}$ by convexity. But this and $x \in G_{p}$ imply that $y \in G_{p}$, and hence that $y \in G_{p} \cap G_{q}=0$.
2.9. Setting $A=G_{p}$ and $B=G_{q}$, we have now established that the subgroup of L generated by A and B is their cardinal sum $A \oplus B$, and is a normal convex subgroup of L. By $2.4, L$ is a lexico-extension of $A \oplus B$; for if an element of L exceeds every element of $L_{p} \oplus L_{q}$, it evidently exceeds every element of $G_{p} \oplus G_{q}$. We now show that $C=L /(A \oplus B)$ is linearly ordered. Otherwise C would contain two disjoint elements $X=x+(A \oplus B)$ and $Y=y+(A \oplus B)$. Denote by $\overline{0}$ the identity element $A \oplus B$ of C. Since $X>\overline{0}$ and $Y>\overline{0}$, we can assume that x and y are positive elements of L not in $A \oplus B$, and hence exceeding every element of $A \oplus B$. But then $x \wedge y$ exceeds every element of $A \oplus B$. But $X \wedge Y=\overline{0}$ would require $x \wedge y \in A \oplus B$, which is plainly impossible.
3. An example. Let $L=I \times I \times I$, where I is the additive group of integers. For (a, b, c) and ($a^{\prime}, b^{\prime}, c^{\prime}$) in L we define

$$
(a, b, c)+\left(a^{\prime}, b^{\prime}, c^{\prime}\right)= \begin{cases}\left(a+a^{\prime}, b+b^{\prime}, c+c^{\prime}\right) & \text { if } c^{\prime} \text { is even } \\ \left(b+a^{\prime}, a+b^{\prime}, c+c^{\prime}\right) & \text { is } c^{\prime} \text { is odd. }\end{cases}
$$

We define (a, b, c) to be positive if $c>0$ or else $c=0$ and both a and b are $\geqslant 0$. This is the one and only non-abelian splitting lexico-extension of the cardinal sum $I \oplus I$ by I.

REFERENCES

1. Garrett Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publication, Rev. Ed. (1948).
2. Paul Jaffard, Contribution à l'étude des groupes ordonnés, J. Math. Pures Appl. (9) 32 (1953), 203-280.

Tulane University of Louisiana
New Orleans, Louisiana, U.S.A.

[^0]: \dagger This paper was prepared with the partial support of the National Science Foundation grant to the Tulane Mathematics Department.
 \ddagger Added in proof. This result has subsequently been extended to l-groups with n disjoint elements but not $n+1$ such elements, and, in fact, to l-groups in which each element is greater than at most a finite number of disjoint elements.

