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Whistling of deep cavities subject to turbulent
grazing flow: intermittently unstable
aeroacoustic feedback
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In this work, the classic problem of the aeroacoustic instability occurring in deep cavities
subject to a low-Mach grazing flow is revisited experimentally and theoretically. This
instability is caused by the constructive feedback between the acoustic modes of the
cavity and the turbulent shear layer that forms at its opening. Systematic experiments are
performed in order to construct a new theoretical model, which describes the aeroacoustic
system as two linearly stable oscillators, with linear reactive coupling, nonlinear damping
and nonlinear resistive coupling. This model constitutes the basis for a linear stability
analysis, and for the prediction of limit cycle amplitudes by using a describing function
approach and by searching the fixed points of amplitude equations. Moreover, it is shown
that only supercritical Hopf bifurcations are found in this aeroacoustic system, and that,
in contrast with many flow-induced vibration problems, frequency lock-in does not occur.
In the last part of the paper, the intermittency observed in the vicinity of the supercritical
Hopf bifurcations is successfully modelled by adding a coloured multiplicative noise to
the grazing flow velocity in order to account for the effect of turbulence. The necessary
conditions favouring intermittently stable or intermittently unstable intervals in such
systems are identified using stochastic differential equations governing the aeroacoustic
oscillations and Fokker–Planck equations ruling the probability density function of the
acoustic envelope. This work is relevant for many musical and industrial configurations
exhibiting this type of aeroacoustic instability, as well as for thermoacoustic instabilities
in turbulent combustors for aeronautic and power generation applications.
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1. Introduction

The sound of flutes is produced through aeroacoustic instabilities that result from the
constructive feedback between the acoustic modes of the instruments and the dynamics of
a shear layer (Fabre et al. 2011). These instabilities also cause numerous issues in industry
because they can induce significant noise pollution and unwanted vibrations leading to
fatigue failures (Ziada & Lafon 2014). They have been investigated over several decades
and they fall into the category of fluid-resonant cavity flows in the classification established
by Rockwell & Naudascher (1978). This type of instability can be further divided into two
groups: the self-sustained flow oscillations in shallow cavities (Rowley & Williams 2006),
and the ones of deep cavities (Tonon et al. 2011a).

In the former group, the unsteady cavity flows are governed by the mechanism
of Rossiter (1964) and they are particularly relevant for aeronautic applications of
high subsonic and low supersonic grazing flows. Canonical configurations have been
investigated numerically with dynamic systems and control theory (e.g. Illingworth,
Morgans & Rowley 2012), and with computational aeroacoustics methods, which are based
on direct numerical simulations and large eddy simulations (LES) of the compressible
Navier–Stokes equations (e.g. Rowley, Colonius & Basu 2002; Gloerfelt, Bailly & Juvé
2003; Yokoyama & Kato 2009) or on the linearization of these equations around a given
base flow (e.g. Yamouni, Sipp & Jacquin 2013; Sun et al. 2017).

In the latter group, to which belongs the aeroacoustic instability investigated in this
work, the self-sustained flow oscillations involve the longitudinal acoustic eigenmodes of
the deep cavity. These instabilities are usually relevant for low-Mach grazing flows and
their modelling has been the topic of intense research over several decades. Most of the
investigations considered the canonical problem of a single deep cavity, while some works
deal with multiple deep cavities (e.g. Tonon, Willems & Hirschberg 2011b; Dai & Aurégan
2018) and liners made of deep cavities equipped with perforated plates (Dai 2020). There
are also several studies dealing with various passive control methods to prevent whistling
of a deep cavity, such as flow obstacles inside the cavity (Matsuura & Nakano 2014), an
internal cavity liner (Hong et al. 2014) or changes of the curvature of the cavity opening
corners (Wang, He & Liu 2020).

Many of the studies focusing on single deep cavities, including the present investigation,
follow the work of Elder (1978), who proposed a feedback loop analysis with the cavity
opening and its aerodynamic forcing as a forward transfer function and the acoustic
resonance of the deep cavity as a backward transfer function. For example, Mast & Pierce
(1995) and Kook & Mongeau (2002), who used a frequency-domain describing function
analysis to predict the occurrence and the amplitude of deep cavity whistling. Another
example is Marsden et al. (2012), who used the same approach in combination with
particle image velocimetry (PIV) in the central plane of their cylindrical cavity.

A key element of this type of analysis is the forward transfer function, which is governed
by the unsteady vorticity–velocity cross-product, as pointed out by Howe (1980) and
Nelson, Halliwell & Doak (1983) about 40 years ago. The analytical models of this
transfer function can be grouped into two categories: the ones based on the work of
Howe (1997), which considers the shear layer as a thin vortex sheet, and the ones that
are based on discrete vortices that are periodically shed from the upstream corner of
the cavity (Nelson et al. 1983). One can for instance refer to the papers of Bruggeman
et al. (1991) or Dequand, Hulshoff & Hirschberg (2003) in which the latter formulation
is adopted. Dequand et al. (2003) also compared against simulations of the compressible
Euler equations and results from the vortex blob method of Peters & Hoeijemakers (1995).
More recently, Ma, Slaboch & Morris (2009) used particle image velocimetry to show
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Whistling of deep cavities subject to turbulent grazing flow

that shear layers do not appear as either a flapping vortex sheet or discrete vortices,
but rather as a combination of these two ideals, which depends on the grazing flow
velocity and on the self-sustained oscillation amplitude. While several studies concentrate
on a frequency-domain oriented analysis, there are also some investigations focusing
on time-domain simulations and transients, which are particularly relevant for music
instruments (e.g. Verge, Hirschberg & Caussé 1997; Terrien, Vergez & Fabre 2013).
Semi-empirical models of the forward transfer function can also be directly derived from
measurements of the impedance of the cavity opening and its shear layer (e.g. Graf &
Ziada 2010; Karlsson & Åbom 2010). Finally, it is important to mention that one can
use various computational methods to identify the aeroacoustic response of the cavity
opening. A first example is the paper of Martínez-Lera et al. (2009), in which the forward
transfer function is obtained from incompressible flow simulations, vortex sound theory
and system identification techniques. In fact, for sufficiently low frequencies, the cavity
opening is acoustically compact and the unsteady flow can be locally considered and
simulated as incompressible. Another example is the work of Gikadi, Föller & Sattelmayer
(2014), where the compressible Navier–Stokes equations are linearized around a mean
grazing flow obtained from LES and where the forward transfer function and transfer
matrices are successfully compared with the experiments from Karlsson & Åbom (2010).
One can also refer to the paper of Boujo, Bauerheim & Noiray (2018), who considered the
incompressible Navier–Stokes equations linearized around mean flows of the acoustically
forced cavity opening. The latter mean flows were obtained from LES for a range of
acoustic forcing amplitudes, in order to demonstrate that the forward transfer functions
can be extracted with this method in the linear regime, but also in the saturated nonlinear
regime.

In the present work the forward and backward transfer functions are measured for ranges
of grazing flow velocities, cavity depths and acoustic amplitudes, and used for deriving a
new low-order model of the aeroacoustic system in the form of two coupled oscillators.
This formulation allows us to revisit this classic problem and to provide novel insights
into the underlying deterministic and stochastic dynamics. This nonlinear model is used
for frequency-domain describing function analysis as well as for performing time-domain
simulations and for deriving amplitude and phase equations. We also add stochastic forcing
terms to this low-order predictive model to represent the effect of turbulence on the
aeroacoustic instability. In fact, the unsteady component of the flow in deep cavities subject
to turbulent grazing flows can be decomposed as turbulent fluctuations and coherent
fluctuations. The recent experimental works of Ishikawa et al. (2018) and of Boujo et al.
(2020) show the coexistence of these two types of fluctuations in the case of a whistle
and of a bottle. We will focus on the fact that our aeroacoustic oscillations are intermittent
for some combinations of turbulent grazing flow velocity and cavity depth. Intermittency
in dynamical systems has received considerable attention. In the case of thermoacoustic
instabilities, one can for instance refer to the early work of Clavin, Kim & Williams (1994)
or to the more recent studies from Nair, Thampi & Sujith (2014) or from Bonciolini
et al. (2018). Many of the investigations dealing with intermittency of thermoacoustic
systems concentrate on noise-driven subcritical Hopf bifurcations. We will show in the
present paper that thermoacoustic and aeroacoustic configurations exhibiting supercritical
Hopf bifurcations can also exhibit intermittency, with similar acoustic pressure statistics
that correspond to sporadic bursts of high-amplitude oscillations, but with a very
different dynamical signature. Indeed, we will show that the present aeroacoustic
system can be intermittently unstable, as in the systems investigated by Mohamad
& Sapsis (2015), and we will identify the necessary conditions for observing this
intermittency.
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Figure 1. Sketch of the experimental set-up used to investigate the side-branch cavity whistling. The system is
broken down into two subsystems: the deep cavity and the interface between the cavity and the channel along
which the shear layer develops.

The experimental set-up and the aeroacoustic instability are introduced in § 2. The
specific acoustic admittance of the deep cavity and the specific acoustic impedance of
its opening with and without grazing flow are presented in §,3, together with the linear
model of coupled oscillators and the analysis of its eigenvalues. In § 4, the nonlinear
problem is treated with a describing function analysis as well as with amplitude equations.
Finally, the experimental and theoretical analysis of the intermittency at play in the present
aeroacoustic system is investigated in § 5.

2. Experimental set-up and aeroacoustic instability

The system considered in the present work consists of a two metre long wind channel
with a square cross-section of side H = 62 mm, which is supplied by a blower and is
operated at atmospheric pressure. The temperature in the channel is maintained constant
at 23 ◦C with a heat exchanger located immediately downstream of the blower, which
corresponds to a speed of sound in the channel c of 345 m s−1. The bulk flow velocity
U in the channel is varied between 35 and 75 m s−1, respectively corresponding to
Reynolds numbers Re = UH/ν = 145 000 and 310 000, where ν = 1.5 × 10−5 m2 s−1

is the kinematic viscosity of the air. The bulk velocity is deduced from the mass flow
and the temperature in the channel, which are respectively measured with a Bronkhorst
IN-FLOW F-106CI and a thermocouple. A side-branch cavity is located in the middle
of the channel, as shown in figure 1. This rectangular cuboid spans across one of the
channel sides, exhibits a cross-section W × H with W = 30 mm and its length L can
be varied using a tight piston. Large plenums (0.5 m × 0.7 m × 0.7 m) equipped with
sound absorbing foam and catenoid horns are mounted at both ends of the channel in
order to create anechoic conditions upstream and downstream of the side-branch cavity.
The corresponding cutoff frequency is approximately 300 Hz, and the upstream and
downstream reflection coefficients drop below 0.1 beyond that frequency. The coordinate
system is defined as follows: the x axis points in the direction of the flow, and the y axis
inside the deep cavity, with the origin set in the middle of the junction. A turbulent shear
layer develops between the main channel and the side-branch cavity. Depending on the
mean flow velocity U and the cavity length L, an aeroacoustic instability can occur due
to a constructive feedback between the acoustic modes of the cavity and the aerodynamic
modes of the shear layer.

In the present study, the cavity length L is varied between 200 and 270 mm, and
the acoustic mode of the cavity, which is involved in the aeroacoustic instability, is the
three-quarter wave eigenmode, with its eigenfrequency being close to fa = 3c/4L. For this
range of length, the cavity length-to-width ratio L/W is approximately 8 and therefore
the configuration falls into the category of deep cavity whistling. Four G.R.A.S. 46BD
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Figure 2. (a) Mapping of the power spectral density of the acoustic pressure Spp recorded in the cavity at
y = 90 mm for mean bulk flow velocities in the wind channel ranging from 35 to 75 m s−1, and for a fixed
cavity length L = 250 mm. (b) Blue line: Spp in the cavity at y = 90 mm for U = 74 m s−1. Grey line: Spp in
the wind channel at y = −31 mm for the same velocity, but without cavity, i.e. L = 0 (the piston is flush to the
wind channel wall). (c) Raw acoustic pressure time trace at y = 90 mm, for L = 250 mm and U = 74 m s−1.
(d) Band-pass filtered acoustic pressure (inverse Fourier transform of the shaded area in panel b).

1/4′′ CCP microphones are flush mounted on the internal wall of the cavity, at y = 0,
45, 90 and 190 mm. The full set of microphones is used for the measurements of the
reflection coefficient presented in the next section. The acoustic pressure time traces used
to characterize the aeroacoustic instability were recorded with the third microphone, which
is located in the vicinity of a pressure antinode of the three-quarter wave mode for the
considered range of length L.

The length of the deep cavity is first fixed to L = 250 mm and the power spectral density
Spp of the acoustic pressure p at y = 90 mm is measured for a range of mean flow velocity,
U, between 35 and 75 m s−1. This mapping is presented in figure 2(a). One can see in
figure 2(b) that for U = 74 m s−1, the power spectral density of the acoustic pressure
exhibits a sharp high-amplitude peak at approximately 980 Hz, which is the signature of a
strong aeroacoustic limit cycle. Its harmonic at 1960 Hz is also visible in the power spectral
density. This limit cycle involves the three-quarter wave acoustic eigenmode of the deep
cavity, whose natural eigenfrequency can be approximated by 3c/4Le = 987 Hz, where
Le is the sum of the physical length L = 250 mm, and an end correction of 12 mm (see
§ 3.1 for a short discussion about this correction). From figure 2(a), one can clearly see the
signature of the three-quarter, five-quarter and seven-quarter wave pure acoustic modes
(estimated at 987 Hz, 1645 Hz and 2303 Hz respectively) on the left side of the map, i.e.
for low velocity for which the shear layer does not significantly interact with these acoustic
modes. The raw acoustic pressure time trace for U = 74 m s−1 is shown in figure 2(c). It
can be decomposed into two main components: slow fluctuations, which correspond to
the high-amplitude low-frequency content of the power spectral density (below 200 Hz),
and fast fluctuations originating from the aeroacoustic instability of the deep cavity. The
low-frequency content originates from the blower and the natural aeroacoustic sources of
the air supply line, as indicated in the acoustic power spectral density in the channel and
in the absence of a cavity, which is shown in figure 2(b). In order to isolate the dynamics
of the aeroacoustic limit cycle, the acoustic pressure signal is band-pass filtered with a
200 Hz bandwidth centred on the main peak (see shaded region in figure 2b). In the next
figures showing time traces and probability density functions of the acoustic pressure from
experiments, the signals are filtered in this way. The filtered time trace for U = 74 m s−1 is
shown in figure 2(d) and it features a slowly varying amplitude modulation that is typical
of a self-sustained weakly nonlinear oscillator subject to random forcing.
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Figure 3. (a) Picture of the test section placed in the middle of the wind channel. The length L of the
side-branch cavity is adjusted with the piston. The PIV field of view, which encompasses the turbulent
shear layer, is indicated with the dotted line rectangle. (b) Sketch of the experimental set-up used for PIV
measurements.

In order to get insights into the aeroacoustic feedback at play in these self-sustained
oscillations, PIV is used to characterize the dynamics of the shear layer. The use of PIV
for characterizing the shear layer dynamics of unsteady cavity flows has been reviewed
by Morris (2011). It is here combined with acoustic records to perform phase averaging
of the velocity field in the shear layer region, which is optically accessible through two
quartz windows, as shown in figure 3. These PIV measurements are made using a double
cavity laser (Photonics DM60Nd:YAG, 532 nm), a laser guiding arm, sheet optics and a
HighSpeedStar X camera from Lavision. The camera is equipped with a Nikon 100F/2.8D
lens and a 36 mm extension ring, and it is placed perpendicularly to the laser sheet formed
in the central plane of the channel. The seeding of the flow is achieved with a spray of
di-ethyl-hexyl-sebacat in the inlet plenum. A measurement of 2500 double-frame images
at a rate of 5 kHz with time interval of 10 μs between pairs of consecutive laser pulses is
performed in combination with the recording of acoustic signal at 50 kHz sampling rate.

The trigger of the camera and the acoustic pressure signal are used to assign to each
Mie-scattering image its corresponding phase angle with respect to the self-sustained
aeroacoustic oscillations. Instantaneous snapshots of the velocity magnitude |v| are
presented in the top row of figure 4 and show the presence of small scale turbulent structure
along the shear layer. Phase averaging was performed by considering instantaneous
velocity fields falling in the same phase bin in order to remove the zero-mean turbulent
component of the velocity v̌. The magnitude of the resulting phase-averaged component
of the velocity |〈v〉| is shown in the middle row of figure 4. One can observe that there
is no coherent vortex shedding from the upstream corner. In fact, the shear layer exhibits
a hardly discernible low-amplitude coherent flapping motion, despite the intense sound
level (≈130 dB) in the cavity that results from this aeroacoustic limit cycle. These results
indicate that the assumption of a thin vortex sheet (Howe 1997) should be adequate to
describe the present aeroacoustic limit cycle. The mean component of the velocity field v̄,
which is obtained by averaging the 2500 instantaneous fields, is then subtracted from the
phase-averaged velocity fields 〈v〉 in order to extract the zero-mean coherent component
of the velocity fluctuations ṽ. Note that these notations correspond to the following
decompositions of the total velocity field: v = v̄ + ṽ + v̌ = 〈v〉 + v̌ = v̄ + v′, where v′
are the zero-mean fluctuations. The vector field ṽ is presented in the bottom row of
figure 4 together with the magnitude of the vertical coherent velocity fluctuations. It shows
that the constructive aeroacoustic feedback involves the first longitudinal hydrodynamic
mode whose wavelength is close to the cavity width W. The nonlinear response of this
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Figure 4. Combined PIV and acoustic data processing for characterizing the shear layer dynamics of the
aeroacoustic limit cycle occurring when L = 250 mm and U = 74 m s−1. (a) Instantaneous velocity magnitude
|v| at 5 regularly spaced instants of an acoustic period. (b) Phase-averaged velocity magnitude |〈v〉|. (c) Vector
field of the zero-mean coherent component of the velocity fluctuations ṽ coloured by its vertical amplitude ṽy.
Movies can be seen in the supplementary material available at https://doi.org/10.1017/jfm.2020.984.

aerodynamic eigenmode to transverse acoustic forcing has been investigated numerically
by Boujo et al. (2018) with the same geometry but at a lower bulk flow velocity (U =
56 m s−1). It is worth mentioning that in the present configuration, knowledge of the
full time-dependent flow by PIV is not sufficient to quantitatively predict the forward
transfer function of the aeroacoustic problem. This is because the PIV only offers partial
information about the cavity flow: the sidewalls induce three-dimensional (3-D) dynamics
in the shear layer oscillation, which cannot be deduced from the PIV data that are only
available in the central plane.

3. Linear model of coupled oscillators

In this section, a linear model is derived to describe the aeroacoustic instability. As shown
in the sketch on the right of figure 1, the aeroacoustic system is broken into two coupled
subsystems: the deep cavity and the cavity opening subject to the turbulent grazing flow.
The acoustic velocity ũ is the irrotational part of the zero-mean coherent component of
the velocity, and in the remainder of the paper, we focus on its vertical component at the
opening ũy, which we will just denote u. In § 3.1, measurements of the specific acoustic
admittance of the deep cavity A = ρcû/p̂ and of the specific acoustic impedance of the
cavity opening Z = p̂/ρcû, are conducted and serve as a basis for the model derivation.
In these expressions, ρ denotes the air density and ·̂ stands for the frequency-domain
formulation for the acoustic velocity û and pressure p̂ at the cavity opening.

3.1. Impedance measurements and model derivation
Measurements of Z and A are made using the experimental set-ups respectively
shown in figures 5(a) and 5(b). Acoustic forcing is applied with loudspeakers and the
multi-microphone method (Schuermans et al. 2004) is used to reconstruct the amplitude
and phase of the forward and backward acoustic Riemann invariants f and g, with which
the reflection coefficient R and the specific impedance or admittance at a reference plane
are deduced. The specific impedance of the cavity opening Z and the specific admittance
of the deep cavity A, which are measured with this method, are respectively presented
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Figure 5. (a) Experimental set-up for measuring the reflection coefficient R, which is the ratio of the forward
and backward acoustic Riemann invariants f and g, and the specific impedance Z of the interface between the
cavity and the channel along which the shear layer develops. (b) Experimental set-up for measuring the specific
admittance of the deep cavity A.

in figures 6(a) and 6(b) for several bulk flow velocities U, and in figures 6(c) and 6(d)
for several cavity lengths L. The white circles correspond to the specific impedance
Z without flow. In that case, the specific resistance Re(Z) is rather constant and it is
equal to approximately 0.25 for the considered frequency range. This can be explained by
considering the analogy between the travelling acoustic waves f and g in the side-branch
cavity (see figure 5a) and the ones travelling toward and from an idealized compact area
expansion in a duct. In the latter configuration, the amplitude reflection and transmission
coefficients are respectively given by R = (ε − 1)/(ε + 1) and T = 2ε/(ε + 1), and the
specific impedance is Z = ε, where ε is the area ratio at the sudden area expansion. In
the present configuration, one can approximate the effective area expansion as the ratio
between the cavity cross-section WH and twice the wind channel cross-section 2H2,
because acoustic energy originating from the cavity is transmitted in both the upstream
and downstream directions of the channel. This leads to ε ≈ W/2H = 0.24, which is
very close to the measured specific acoustic resistance. In contrast with the real valued
Z = ε, the measured specific reactance is not zero. This is due to the fact that the inertia
of the air at the cavity opening is not accounted for. The inertia of this attached air
mass can be modelled as a fictive length of the cavity opening, based on the momentum
balance ρδHWsû = HWp̂, where s = iω is the Laplace variable (ω = 2πf is the angular
frequency), and the so-called end correction δ represents the fictive length of the cavity
opening. From this balance, one has Im(Z) = ωδ/c, and, as explained in § 6.7 of Rienstra
& Hirschberg (2012), this end correction is of the order of the hydraulic radius of the cavity
opening, which is approximately 25 mm in the present geometry. Based on the linear trend
of the measured specific reactance of the opening without flow (white circles in figure 6b),
one can deduce that δ � 12 mm.

In presence of the shear layer, the specific impedance of the cavity opening is
significantly affected. One can see in figures 6(a) and 6(b) that the specific resistance
and reactance both exhibit a frequency dependence oscillating around the values obtained
without channel flow, which is typical of the impedance of side branches subject to
grazing flow, e.g. Karlsson & Åbom (2010). This is due to the response of the first
longitudinal aerodynamic mode to the incident acoustic wave of complex amplitude f .
Further insights into the nonlinear aerodynamic response of this shear layer when it is
subject to incident acoustic waves are provided in the study of Boujo et al. (2018). One
can see in figure 6(a) that, for each velocity U, there exists a resistance minimum, which
corresponds to the eigenfrequency f1 of this aerodynamic eigenmode. The frequency of
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Figure 6. (a,b) Specific resistance Re(Z) and reactance Im(Z) of the cavity opening along which the shear
layer develops for several bulk flow velocities U. The black lines correspond to the fits based on (3.1). The red
dotted line in (a) highlights the presence of frequency ranges for which the resistance is negative, which means
that reflected waves g exhibit higher amplitude than incident waves f (necessary condition for an aeroacoustic
instability in the configuration of figure 1). (c,d) Modulus and phase of the specific admittance of the deep
cavity for different lengths L. The black lines correspond to the fits based on (3.2).

the minimum of Re(Z) increases linearly with the flow velocity, scaling with the Strouhal
number St1 = f1W/U ≈ 0.4, which has been already observed in several works on the
topic, e.g. Dequand et al. (2003). This corresponds to flow perturbations originating from
the upstream corner that travel at approximately 0.4U across the opening during one
acoustic oscillation cycle. The advection speed of the perturbations is roughly equal to the
mean value of the velocity across the shear layer, which ranges from very low velocities in
the cavity to the bulk velocity U in the mean channel (see figure 4). It is important to note
that the specific resistance minimum becomes negative for velocities exceeding 65 m s−1.
In fact, when the reflection coefficient satisfies |R| = |g/f | > 1, then Re(Z) < 0, which
is a necessary condition for self-sustained aeroacoustic oscillations in the configuration
presented in figure 1. This occurs (i) if the time and spatially averaged projection of the
unsteady component of the Lamb vector (ω × v)′ onto the acoustic field is positive (ω =
∇ × v is the vorticity), which corresponds to acoustic energy production according to
Howe’s energy corollary (Howe 1980), and (ii) if this acoustic energy production exceeds
the radiation losses in the wind channel. Readers interested by the space–time evolution
of the unsteady component of the Lamb vector in a similar configuration (self-sustained
aeroacoustic oscillations of a bottle whose neck is subject to a grazing flow) can refer to the
recent work of Boujo et al. (2020). In the present study, the measured specific impedance
is fitted using the following second-order transfer function

Z(s) = p̂
ρcû

= n
s2 + 2ms + ω2

l

s2 + 2ds + ω2
r

, (3.1)

with n the gain, m and d the damping coefficients and ωl and ωr the left and right angular
frequencies associated with the acoustic feedback of the shear layer. Approximating the
impedance with this second-order transfer function has two advantages: as explained
below, (i) it can be nicely fitted to the experiments, and (ii) it leads to a system of coupled
oscillators for describing the aeroacoustic instability. However, it has the drawback of
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having parameters that cannot be directly linked to the physics of the shear layer dynamics.
Besides, one can note that Howe (1997) proposed a four-pole approximation for the
conductivity of a rectangular aperture subject to low Strouhal flow, as an alternative to
his physics-based model, and whose coefficients were calibrated to best reproduce the
latter model.

Here, for each bulk flow velocity, optimization of the parameters of our second-order
model is performed in order to find the best fit of the measured specific impedance over
the frequency range of interest. The results are presented in figures 6(a) and 6(b), where
the solid lines show the best fits. As a further step, these optimized model parameters
can be linked to the system parameters (U, W and c) in the form of non-dimensional
numbers. First, very good estimates of the gains n can be obtained using the relationship
n0 = n/M2 = 11.8, where M = U/c is the Mach number. Second, the parameters m
and d providing the best impedance predictions can be very well approximated using
d1 = dW/U = 0.273 and m1 = mWM3/c = 2.75 × 10−4. Third, the left and right angular
frequencies ωl = 2π fl and ωr = 2π fr can be deduced from the following Strouhal
numbers Stl = flW/U = 0.375 and Str = frW/U = 0.461. It is important to mention that
the values obtained here for n0, d1, m1, Stl and Str cannot be generalized because they
depend on the detail of the side-branch geometry and on the turbulent boundary layer
thickness in the channel upstream of the cavity. It is, for instance, expected that they would
differ for other shapes of the cavity opening, e.g. with round corners, or for a rough wall
surface. Also, this model of the specific impedance of the cavity opening captures the
acoustic feedback of the shear layer eigenmodes from 600 to 1300 Hz only. In that regard,
one can refer to the work from Boujo et al. (2018) for a computation of these eigenmodes
in a side-branch configuration of the same opening width W and the same duct height H
(D in their paper), and subject to a turbulent flow of bulk velocity of 56 m s−1, which
corresponds to the yellow dots in figure 6(a). The minimum of the specific resistance in
the present work is at approximately 750 Hz, which may be attributed to a 3-D shear layer
mode that somehow corresponds to mode 1 (also 750 Hz) in § 3.3 of Boujo et al. (2018). In
fact, one cannot fully compare the latter numerical analysis based on the incompressible
linearized Navier–Stokes equations (LNSE) with the present experiments. Indeed, while
the incompressible assumption in the work of Boujo et al. (2018) is valid because the shear
layer is compact in this frequency range, there are three differences to keep in mind: (i) the
LNSE analysis is two-dimensional (2-D) only; (ii) the 2-D mean flow for the LNSE was
obtained from 3-D LES of a slice of 10 mm thickness with periodic conditions at the side
boundaries, which differs from the finite spanwise extension of 62 mm with no-slip side
boundaries of our experiment; (iii) the boundary layer thickness upstream of the opening
in the LES may also differ from the one in our experiment.

Now, having found a suitable model for the specific impedance of the cavity opening,
one focuses on the modelling of the cavity’s specific admittance at y = 0, whose
measured modulus and phase are shown in figures 6(c) and 6(d). The specific admittance
A is governed by the quarter wave resonances of the deep cavity, which occur at
frequencies fn = (2n − 1)c/4L, i.e. ωnL/c = π/2 mod π. The specific admittance of a
non-dissipative closed duct, below its cut-on frequency (pure one-dimensional acoustic
propagation), is A = i tan ωL/c. It was shown in § 2.1.2 of the paper from Bourquard
& Noiray (2019), that A asymptotically behaves, around ωn, as −γ s/(s2 + ω2

n), with
γ = 2c/L. This approximation provides an explicit formulation of quarter wave type
resonances as a second-order harmonic oscillator with equivalent mass ρLWH/2, i.e. half
of the mass of air in the deep cavity, and with equivalent stiffness [(2n − 1)2π2/8]K0
where K0 = ρc2(WH/L) is the stiffness associated with the bulk compression of an air
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column of length L and cross-sectional area WH. Therefore, it is natural to consider the
simple transfer function

A(s) = ρcû
p̂

= − γ s
s2 + 2αs + ω2

a
, (3.2)

where α is the acoustic damping in the cavity and ωa is the angular frequency of the
three-quarter wave resonance of the deep cavity. Using the measured specific admittance
(coloured dots in figures 6c and 6d) and setting γ = 2c/L and ωa = 3πc/2L, it is found
that a damping α � 40 rad s−1 provides an excellent match between the measured A and
the above transfer function model (solid lines in the figure) for the range of deep cavity
lengths considered in this work.

Combining (3.2) and (3.1), and expressing these transfer functions in the time domain,
one obtains the following system of differential equations for the acoustic pressure p and
the acoustic velocity u at the cavity opening:

ü + 2αu̇ + ω2
au = −γ ṗ

p̈ + 2dṗ + ω2
r p = n(ü + 2mu̇ + ω2

l u).

}
(3.3)

Using the first equation to express the second time derivative of the acoustic velocity ü,
the system can be rewritten as

ü + 2α u̇ + ω2
au = −γ ṗ,

p̈ + 2β ṗ + ω2
r p = μu̇ + σu,

}
(3.4)

with β = (2d + nγ )/2, μ = 2n(m − α) and σ = n(ω2
l − ω2

a). This system of oscillators
with resistive and reactive coupling depends on a set of a parameters, whose values are
directly linked, as described above, to the physical parameters U, L and W. It will now be
used to predict the aeroacoustic stability of the deep cavity subject to grazing turbulent
flow.

3.2. Linear stability analysis
Using x = (u, p)T, the system is expressed in the following matrix form:[

1 0
0 1

]
ẍ +

[
2α γ

−μ 2β

]
ẋ +

[
ω2

a 0
−σ ω2

r

]
x = 0. (3.5)

The linear stability depends on the sign of the real part of the system’s eigenvalues λ,
which are the roots of the characteristic polynomial

λ4 + λ32(α + β) + λ2(ω2
a + ω2

r + 4αβ + γμ) + λ(2αω2
r + 2βω2

a + γ σ) + ω2
r ω

2
a = 0.

(3.6)
Based on the previously identified scaling laws for the parameters of the linear model, the
polynomial roots are computed for a range of bulk flow velocity U and deep cavity length
L. These roots are two pairs of complex conjugate eigenvalues, of which only the ones with
positive imaginary part, i.e. positive angular frequency, are presented in figure 7. Several
comments are now made about this figure.

Firstly, the predicted linear stability of the aeroacoustic system for varying L and U is
presented in figures 7(a) and 7(c). The former and the latter respectively show the real and
imaginary parts (linear growth rate and oscillation frequency) of the most unstable of the
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Figure 7. Eigenvalues λ of the aeroacoustic system for a range of U and L. These eigenvalues are the roots of
(3.6). (a) Map of the real part (growth rate) of the largest eigenvalue λm as a function of L and U. The linear
stability limit is drawn in red, and the line where ωa = ωr in white. (b) Value of Re(λ) for L = 250 mm as a
function of U (black lines). The stability limit is drawn as a dashed red line, and the coloured circles correspond
to the eigenvalues with the largest real part, at the values of U considered in figure 6. (c) Map of the imaginary
part (frequency) of the most unstable eigenvalue λm. (d) Value of Im(λ) for L = 250 mm as a function of U
(black lines), superimposed with the acoustic mapping of figure 2. The black dashed lines correspond to the
frequencies of each oscillator of the coupled system: ωa (horizontal line) and ωr (linearly increasing with U).
The coloured circles correspond to the most unstable eigenvalues λm at the values of U considered in figure 6.
(e) Prediction of the most unstable eigenvalue for the velocities considered in figure 6. ( f ) Corresponding
experimental spectra for L = 250 mm and for these velocities.

two eigenvalues, which is denoted λm. The red line indicates the stability limit Re(λm) = 0.
It shows that, for L < 270 mm and U > 65 m s−1, the system is linearly unstable
around the white line, indicating coincidence of the resonance frequency of the deep
cavity ωa, which governs the oscillator equation for the acoustic velocity, and the
resonance frequency of the shear layer ωr, which governs the oscillator equation for the
acoustic pressure.

Secondly, a subset (for L = 250 mm) of the predicted system eigenvalues λ is presented
in figures 7(b) and 7(d). In the former, one of the eigenvalues has a significantly smaller
real part for the considered range of U, which implies that it is much more stable than
the other. The eigenvalue with the largest real part crosses the complex plane imaginary
axis when U � 65 m s−1, i.e. the system becomes linearly unstable beyond this bulk flow
velocity. In figure 7(d), the excellent match between the peak frequency of the overlayed
power spectral density and the frequency of the least-stable eigenvalue indicates that the
present coupled oscillators model performs very well. Moreover, in contrast with the
phenomenon of frequency lock-in in flow-induced vibration problems, which are also
modelled as coupled oscillators (De Langre 2006; Mohany et al. 2014; Shoshani 2018;
Dolci & Carmo 2019), the frequencies of the eigenvalues Im(λ) do not merge in the
range of L and U for which the present aeroacoustic system is linearly unstable. Indeed,
the black lines corresponding to the root loci are repelled from the intersection point
of the natural frequencies of the two oscillators (dashed black lines). The fundamental
topological difference of the coupled-oscillator root loci between flow-induced vibration
problems and aeroacoustic instabilities of deep cavities subject to grazing flow originates
from the differences in stability and coupling nature of the coupled-oscillator model. In
the case of the flow-induced vibration problems, the hydrodynamic oscillator is linearly
unstable and it is typically modelled as a van der Pol oscillator (De Langre 2006), the
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mechanical oscillator is linearly stable, and the coupling between these two oscillators is
usually purely reactive. In the present case of aeroacoustic instabilities of deep cavities,
which we model in this section with the system (3.4), both oscillators are linearly stable
and the system can become linearly unstable because of the presence of both resistive and
reactive coupling terms.

Finally, in figure 7(e), the most unstable eigenvalue λm is plotted in the complex plane
for the velocities considered in figure 6) and for L = 250 mm. These eigenvalues can
be compared with the corresponding experimental power spectral densities for the same
velocities U that are presented in figure 7( f ). The good agreement in terms of frequency
and the sharpening of the peak for U > 65 m s−1 again contribute to the linear model
validation.

4. Nonlinear deterministic model

The nonlinearities of the system are now investigated and modelled. To that end,
measurements of the specific acoustic impedance and admittance at relevant acoustic
amplitudes are performed. Considering that the admittance of the cavity does not feature
any noticeable dependence on the acoustic level at forcing amplitudes that correspond to
observed aeroacoustic limit cycles, it is considered in the remainder of the paper as a linear
oscillator.

4.1. Describing function analysis
Impedance measurements of the cavity opening are performed with the set-up shown in
figure 5(b) for a range of forcing amplitudes. This forcing amplitude is deduced from
the multi-microphone method and corresponds to the amplitude at a pressure antinode.
The results of these measurements for U = 74 m s−1 are presented in figures 8(a)
and 8(b), respectively showing Re(Z) and Im(Z). For increasing amplitude, there is a
monotonic decrease of the deviation of the specific impedance from the one without
flow, which shows that the shear layer responds with less strength to the acoustic forcing.
The underlying mechanism has been presented by Boujo et al. (2018) for U = 56 m s−1

and is in line with previous work on the subject: as the forcing amplitude grows,
coherent Reynolds stresses thicken the mean shear layer, which reduces the potential for
perturbation amplification at the forcing frequency. As a consequence, the range across
which the real part of the impedance is negative reduces progressively as the amplitude
increases. It is seen that, beyond a forcing amplitude of 200 Pa, Re(Z) is positive for
the whole frequency range. Noticeably, in the range 800 to about 1150 Hz, for which the
shear layer produces acoustic energy, this contribution is less energetic than the radiation
losses to the wind channel, and consequently, Re(Z) > 0 and the modulus of the reflection
coefficient |R| is lower than 1.

As in § 3.1, for each forcing amplitude, the parameters of the transfer function given in
(3.1) are optimized to best fit the measured specific impedance Z over the frequency range
presented in figures 8(a) and 8(b). The solid lines in this figure show these best fits. This
optimization has also been performed with measurements of the specific impedance for the
same set of bulk flow velocities as in figure 6. For each forcing amplitude, the optimized
model parameters (d, m, n, ωl and ωr) were linked to the system parameters U, W and c
with the scaling laws presented in § 3.1. The non-dimensional numbers, with which these
optimized model parameters can be deduced, are presented as coloured dots in figure 9 for
several acoustic forcing amplitudes, with the same colour code for the bulk flow velocity
U as in figure 6.
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Figure 8. (a) Real and (b) imaginary part of the specific impedance of the cavity opening for different acoustic
forcing amplitudes and for U = 74 m s−1. The white circles correspond to the specific impedance without flow.

0 0.2 0.4

200

Stl Str dW/U n/M2mWM3/c

E
x
c.

 A
m

p
 (

P
a)

400

600

800

0 0.2 0.4 0 0.5 1.0 0 2 × 10–4 4 × 10–4 0 5 10 15

(e)(b)(a) (c) (d)

Figure 9. Non-dimensional numbers, which link the system parameters U, W and c to the optimized model
parameters ωl, ωr, d, m and n as functions of the acoustic forcing amplitude. The symbols are coloured with the
same colour code for the bulk flow velocity U as in figure 6. The dashed lines show the scaling laws used in the
model of § 4.2. (a,b) Respectively show Stl = ωlW/2πU and Str = ωrW/2πU that are assumed independent
of the forcing amplitude in § 4.2. (c) Shows dW/U and the scaling law used in § 4.2: dW/U = d1 + d2|p|.
(d) Shows mWM3/c and the scaling law used in § 4.2: mWM3/c = m1 + m3p2. (e) Shows n0 = n/M2 that is
assumed constant in § 4.2.

Based on these data, it is possible to perform a describing function analysis for
predicting the amplitude of the aeroacoustic limit cycle, as was done by Noiray et al.
(2008) in the case of a thermoacoustic instability. In the present situation, it is possible
to predict the limit cycle amplitude and frequency as functions of the cavity length
L, as in the work of Noiray et al. (2008), and thanks to the model and the identified
scaling laws for its parameters, one can also construct bifurcation diagrams as functions
of the bulk flow velocity in the channel U. This is now performed for L = 250 mm
and U = 74 m s−1: the eigenvalues of the coupled system (3.4) are computed using the
optimized model parameters. For each of the forcing amplitudes, the real and imaginary
parts of the most unstable eigenvalue λm are displayed in figures 10(a) and 10(b). When
the amplitude increases, the linear growth rate of the system monotonically decreases
while the oscillation frequency does not significantly vary. The linear growth rate is
positive at very low amplitude (approximately 20 rad s−1) and, according to the describing
function framework, the aeroacoustic system becomes marginally stable when the real
part of λm vanishes, which in the present case occurs at approximately 150 Pa. This
predicted limit cycle amplitude is now compared to the actual self-sustained oscillation
amplitude, which is measured for L = 250 mm and U = 74 m s−1 using the experimental
set-up presented in figure 1. This comparison can be done with figures 10(c) and 10(d),
which respectively show the band-pass filtered acoustic signal measured at a pressure
antinode (only the positive acoustic pressure fluctuations are shown on this figure), and the
probability density function (p.d.f.) of the signal’s envelope. One can draw the following
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Figure 10. (a) Real and (b) imaginary parts of the most unstable eigenvalue from system (3.5) as functions of
the acoustic amplitude for L = 250 mm and U = 74 m s−1. The eigenvalues are the roots of (3.6) in which
the optimized model parameters ωl, ωr, d, m and n (dark blue circles in figure 9) were set. (c) Acoustic
pressure filtered around the limit cycle frequency as done in figure 2(d) (grey line, only p > 0 is shown),
and corresponding envelope B (thick black line), for L = 250 mm and U = 74 m s−1. (d) Probability density
function of the acoustic signal envelope P(B).

conclusions from figure 10: First, this describing function analysis provides a realistic
estimate of the limit cycle amplitude (approximately 150 Pa), but it cannot be used for a
quantitative prediction of the most probable amplitude (approximately 250 Pa). Second,
the deterministic and frequency-domain describing function framework cannot capture the
significant random fluctuations of the aeroacoustic limit cycle amplitude that are induced
by the forcing from the intense turbulence in the channel. The next section aims at filling
this gap by considering a nonlinear time-domain analysis of the problem and the turbulent
stochastic forcing will be accounted for in § 5.

4.2. Time-domain model of coupled oscillators
The starting point of this section is the time-domain model (3.4) of the two coupled
linear oscillators developed in § 3. One now aims at incorporating into this model relevant
nonlinear terms on the basis of the specific impedance measurements presented in the
previous section. One can deduce from the model parameters, which were optimized to
reproduce the specific impedance for different forcing amplitudes and flow velocities,
scaling laws that not only depend on the system parameters, but also on the acoustic
amplitude. These scaling laws are presented as dashed lines in figure 9. Considering
that Stl, Str and n0 do not vary significantly with the acoustic forcing, and that they are
respectively equal to 0.375, 0.461 and 11.8, the same simple laws as in § 3.1 are used in the
next sections: ωl = 2πStlU/W, ωr = 2πStrU/W and n = n0M2.

On the other hand, one can see in figures 9(c) and 9(d) that the values of dW/U and
mWM3/c significantly depend on the acoustic amplitude, and they can be respectively
approximated by a linear and quadratic regressions (dashed lines). Therefore, the model
parameters m and d are respectively deduced from dW/U = d1 + d2|p| with d1 =
0.273 and d2 = 8.03 × 10−4 Pa−1, and from mWM3/c = m1 + m3p2 with m1 = 2.75 ×
10−4 and m3 = 3.90 × 10−10 Pa−2. These scaling laws are now incorporated into the
time-domain model which becomes:

ü + 2αu̇ + ω2
a u = −γ ṗ,

p̈ + 2(β1 + β2|p|)ṗ + ω2
r p = (μ1 + μ3u2)u̇ + σu,

}
(4.1)
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with

β1 = U
W

d1 + γ M2

2
n0, β2 = U

W
d2, μ1 = 2n0M2

( c
WM3 m1 − α

)
, γ = 2c

L

μ3 = (ρc)2 2c
WM

n0m3, σ = n0M2

([
2π

U
W

Stl

]2

− ω2
a

)
, ωr = 2π

U
W

Str.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(4.2)

It can be noted that (i) the increase of the acoustic pressure amplitude p leads to an
increase of the effective damping coefficient (β1 + β2|p|) of the second oscillator, which
is associated with the lower receptivity of the thickened shear layer at higher amplitude,
and (ii) the increase of the acoustic velocity amplitude u yields an increase of the effective
resistive coupling coefficient (μ1 + μ3u2).

This nonlinear deterministic model of coupled oscillators for describing the aeroacoustic
dynamics of the deep cavity depends on a set of constants (n0, d1, d2, m1, m3, Stl, Str and
α) that were quantified from measurements, and on the system parameters ρ, U, c, L,
W and the Mach number M = U/c. One also recalls that the angular frequency of the
three-quarter wave resonance is ωa = 3πc/2L. Before augmenting this model in § 5 with
stochastic forcing from turbulence in order to explain the random fluctuations of the limit
cycle amplitude, the amplitude and phase equations of this deterministic model are derived
and analysed in the next section.

4.3. Amplitude and phase equations
The averaging procedure of Krylov & Bogoliubov (1936) is now applied to the system
of coupled oscillators (4.1) in order to obtain first-order differential equations for the
oscillation amplitude and phases. One assumes that oscillations occur at ω and that this
angular frequency satisfies ω � ωa � ωr and ωa + ωr � 2ω, where ωa and ωr correspond
to the natural angular frequency of the two coupled oscillators. The following ansatze for
the acoustic velocity and pressure are used:

u = A cos(ωt + ϕA) = 1
2 (a eiωt + a∗ e−iωt) with a = A eiϕA,

p = B cos(ωt + ϕB) = 1
2 (b eiωt + b∗ e−iωt) with b = B eiϕB,

⎫⎬
⎭ (4.3)

where A represents the velocity amplitude and B the pressure amplitude, and ϕA and ϕB
their phases. This averaging approach can only be applied if the oscillation amplitudes
and phases vary slowly with respect to the acoustic period, which is satisfied in the present
problem, and which corresponds to damping and coupling terms that are small compared
to the inertial and stiffness terms of the two oscillator equations. Assuming that the first
derivative of the acoustic velocity can be written as

u̇ = iω
2

(a eiωt − a∗ e−iωt), (4.4)

which implies, as explained by Balanov et al. (2009), that ȧ eiωt + ȧ∗ e−iωt = 0, one can
express the second time derivative of the acoustic velocity as

ü = iωȧ eiωt − ω2

2
(a eiωt + a∗ e−iωt). (4.5)
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Following the same procedure for p, substituting these expressions into the first oscillator
equation of (4.1), multiplying by e−iωt/iω, integrating over one cycle, dividing by eiϕA and
taking the real and imaginary parts of the equation yields

Ȧ = −αA − γ

2
B cos(ϕA − ϕB),

ϕ̇A = ω2
a − ω2

2ω
+ γ

2
B
A

sin(ϕA − ϕB).

⎫⎪⎪⎬
⎪⎪⎭ (4.6)

Similar treatment of the second oscillator equation in (4.1) yields

Ḃ = −β1B − β2
4

3π
B2 +

(μ1

2
+ μ3

8
A2
)

A cos(ϕA − ϕB) + σ

2ω
A sin(ϕA − ϕB),

ϕ̇B = ω2
r − ω2

2ω
+
(μ1

2
+ μ3

8
A2
) A

B
sin(ϕA − ϕB) − σ

2ω

A
B

cos(ϕA − ϕB).

⎫⎪⎪⎬
⎪⎪⎭ (4.7)

Defining the phase difference φ = ϕA − ϕB yields the following system of three coupled
equations for the slowly varying amplitudes and the phase of the coupled oscillators:

Ȧ = −αA − γ

2
B cos φ,

Ḃ = −β1B − β2
4

3π
B2 +

(μ1

2
+ μ3

8
A2
)

A cos φ + σ

2ω
A sin φ,

φ̇ = Δ −
(

γ

2
B
A

−
(μ1

2
+ μ3

8
A2
) A

B

)
sin φ + σ

2ω

A
B

cos φ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.8)

with Δ = (ω2
a − ω2

r )/2ω � ωa − ωr the detuning constant. The fixed points of this system
of first-order differential equations are found by searching for amplitudes and phase
difference that cancel the right-hand side expressions of (4.8) and that thus lead to
Ȧ = Ḃ = φ̇ = 0. For a few combinations of L and U, this search is initialized from
the amplitudes A and B and phase difference φ of limit cycles that were computed by
integrating the second-order system (4.1). The fixed points of the slow-flow system (4.8)
are then obtained for the full range of L and U by continuation of the local minimum
search from neighbouring solutions. The results are presented in figure 11, which shows
the acoustic velocity amplitude A, the acoustic pressure amplitude B that is afterward
compared with experimental data and their phase difference φ at conditions featuring
aeroacoustic limit cycles. These results show that, according to this deterministic model,
the deep cavity subject to turbulent grazing flow undergoes supercritical Hopf bifurcations
only. This is further illustrated in figures 11(a) and 11(b) for three values of the bulk
velocity U. One can see that over the entire range of combinations of L and U leading
to limit cycles, the phase difference between the acoustic pressure p and the acoustic
velocity u is nearly constant and slightly below −π/2, which is typical of standing mode
oscillations in quarter wave resonators. It is important to stress that the maps predicting the
stability border and the limit cycle amplitudes in figure 11 for a wide range of bulk velocity
U and cavity length L, were obtained by using the scaling laws presented in figure 9 as
dashed lines. These scaling laws allow reliable prediction of the specific impedance Z of
the cavity opening geometry investigated in this work, for broad ranges of bulk velocity U
and acoustic amplitude.

In figure 12(a), the limit cycle amplitude B, which is predicted from the slow-flow
system (4.8) for U = 74 m s−1 and for several cavity lengths L, is compared to the p.d.f. of
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Figure 11. (b,d) Limit cycle amplitudes A and B and ( f ) phase difference φ as functions of L and U. They are
fixed points of the slow-flow equations (4.8) and they were obtained by searching the zeros of the right-hand
side of these equations. The origin is the only fixed point in the white region delimited by the stability border
presented in figure 7; (a), (c) and (e) cuts showing the limit cycle amplitude for U = 67, 70 and 74 m s−1 as
functions of L.
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Figure 12. (a) The p.d.f.s of the envelope of the band-pass filtered acoustic pressure for several cavity lengths
L, compared to the predicted bifurcation diagram of the slow-flow system (4.8), which shows the limit cycle
amplitude B for U = 74 m s−1 as a function of L. For each L, the p.d.f. is normalized by its maximum Pm.
The one in the red rectangle is also shown in figure 10(d). (b) Comparison between the measured and modelled
specific resistance of the opening for U = 74 m s−1. This is a close-up view of data presented in figure 8 in
order to highlight the smoothness of the modelled Re(Z).

the band-pass filtered acoustic pressure envelope measured with the experimental set-up
shown in figure 1. The overall agreement between model predictions and most probable
amplitude from the experiments is very good, albeit the former displays (i) a smoother
dependence on the cavity length L, (ii) with bifurcation points shifted by a relatively
small offset of approximately 10 mm (approximately 5 % of the range of cavity length
displayed in this figure). The former difference (i) is due to the fact that the actual specific
impedance is not as smooth as the second-order transfer function adopted in this work to
model it (see figure 12(b) showing Re(Z) for U = 74 m s−1). The latter small difference
(ii) may be reduced by using the values of the parameters obtained from the best fits of
the specific impedance at U = 74 m s−1 (dark blue dots in figure 9), which yield, at low
acoustic amplitude, the solid black line in figure 12(b), instead of using the more general,
but slightly less accurate at a given U, scaling laws defining the model parameters for
broad ranges of velocity and acoustic amplitude (dashed lines in figure 9).

So far, we have seen that good overall predictions of the stability borders and limit
cycle amplitudes can be obtained from the deterministic model (4.1) and its corresponding
slow-flow dynamics (4.8) over the full range of cavity lengths L and duct velocities U,
and this with a few scaling laws for defining all the model parameters as function of U,
W and c. However, the stochastic dynamics of the acoustic pressure and the resulting
p.d.f.s cannot be predicted with these deterministic approaches, which motivates the
developments presented in the next section.
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Figure 13. The p.d.f.s of the band-pass filtered acoustic pressure P( p) for U = 74 m s−1 and several cavity
lengths L. The corresponding p.d.f.s of the signal envelope are given in figure 12(a) with colour gradients.

5. Intermittently unstable aeroacoustic feedback

In this section, the model complexity is further increased by adding stochastic forcing
to the deterministic dynamic system (4.1), in order to capture the random fluctuations
of the limit cycle amplitude, the intermittently unstable aeroacoustic feedback and the
associated p.d.f.s of the acoustic pressure. As shown in figure 10(c) with the time trace
of the band-pass filtered acoustic pressure signal, these fluctuations can have significant
amplitudes. As shown in figure 10(d), they lead to broad distributions P(B) of the acoustic
pressure amplitude B, which contrasts with the Dirac distributions that are found, for each
combination of L and U, in the deterministic description of the problem. This is also
illustrated in figure 13 that presents the p.d.f.s of the band-pass filtered acoustic pressure
P( p) for U = 74 m s−1 and several cavity lengths L. In a deterministic scenario, the
p.d.f.s would be (i) the Dirac distribution δ( p) for L = 200 mm and 270 mm, for which the
aeroacoustic system is presumably linearly stable, and (ii) a distribution of pure sine waves
(i.e. P( p) = 1/(π

√
1 − ( p/a)2) with p = a sin ωt and a constant) for the other lengths,

for which the system apparently exhibits stable limit cycles. The actual distributions in
figure 13 are obviously significantly different from the latter ones, indicating that stochastic
forcing from the turbulence should be added to the model.

5.1. Intermittency modelled with randomly forced coupled oscillators
The Gaussian-like p.d.f.s of the presumably aeroacoustically stable cases (L = 200
and 270 mm in figure 13) can justify incorporating additive stochastic forcing to the
deterministic model (4.1). Indeed, linearly stable oscillators that are subject to additive
white noise forcing display such Gaussian-like p.d.f.s. Furthermore, the p.d.f.s of the
acoustic pressure for L = 220 and 230 mm are typical of marginally stable oscillators
and weakly nonlinear self-sustained oscillators subject to additive white noise forcing
(Boujo & Noiray 2017). This random additive forcing at the side-branch cavity opening
can be attributed to the broadband noise generated by the highly turbulent flow in the wind
channel and its air supply line. Therefore, we add a Gaussian additive white noise ξ(t) of
intensity Γξ to the right-hand side of the equation for u in the system of coupled oscillators
(4.1).

Now, when L is decreased from 270 mm to 260 and then to 250 mm, the base of the
p.d.f. thickens. This indicates that the mean acoustic pressure amplitude increases, which
can be explained by the crossing of the supercritical Hopf bifurcation that was discussed in
the previous sections. However, these two p.d.f.s present distinct features that clearly differ
from the ones of weakly nonlinear self-oscillators subject to additive random forcing only.
Indeed, there is a central peak remaining, which is the marker of high probability of low
acoustic amplitude periods. In fact this is the signature of intermittency between low- and
high-amplitude acoustic oscillations.

909 A19-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

98
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.984


C. Bourquard, A. Faure-Beaulieu and N. Noiray

As a first remark, the intermittency at play in the present system differs from the
one found in systems that are governed by combined subcritical-Hopf and saddle-node
bifurcations, and that are subject to purely additive stochastic forcing. A thermoacoustic
example of the latter systems was investigated by Bonciolini et al. (2018) for quasi-steady
and finite-rate ramping of the bifurcation parameter. These systems exhibit, for a range
of bifurcation parameter values, two basins of attraction between which intermittent
jumps can be triggered by the additive random forcing, with resulting p.d.f.s having also
a prominent central peak. In contrast, the deterministic model derived in the previous
sections on the basis of specific impedance measurements clearly show that the present
aeroacoustic system features a supercritical-Hopf bifurcation. Consequently, the only
possible explanation for the observed intermittency is the presence of parametric noise
in the system, which can be linked to the theoretical investigation of Mohamad & Sapsis
(2015).

Therefore, considering the intense turbulence of the channel flow as well as the
low-frequency 3-D dynamics of the recirculation region, we propose to include a stochastic
component to our bifurcation parameter U, which leads to several terms with stochastic
multiplicative forcing. One can note that the low-frequency random fluctuations of the
flow at the opening of the deep cavity probably share several features with the ones that
were investigated by Basley et al. (2014) in the case of shallow cavities. Their detailed
analysis shows that the broadband slow fluctuations of the recirculating flow in shallow
cavities, which result from centrifugal instabilities, interfere with the (fast) Rossiter modes.
In the present deep cavity configuration, similar 3-D structures may alter the strength
of the aeroacoustic coupling at time scales that are long compared to the period of the
three-quarter wave acoustic eigenmode. We therefore express the bulk velocity in our
low-order model (4.1) as

U = Ū(1 + χ), (5.1)

where χ is an Ornstein–Uhlenbeck process obeying the Langevin equation

χ̇ = −χ

τ
+ ζχ , (5.2)

with τ the correlation time of the bifurcation parameter fluctuations and ζχ a Gaussian
white noise of intensity Γχ/τ 2. By incorporating this unsteady formulation of the bulk
velocity U, with a mean value Ū and a standard deviation σU , into the system of
coupled oscillators, the parameters β1, β2, μ1, μ3, σ and ωr become time dependent.
Using the model coefficients given in § 4.2, considering Ū = 74 m s−1 and setting Γξ =
5 × 109 m2 s−6, Γχ = 5 × 10−3 and τ = 0.05 s, which corresponds to σU = Ū

√
Γχ/2τ ≈

16 m s−1, time-domain simulations of (4.1) are performed for L = 245 and 250 mm. In
figure 14, these simulations are compared to the experimental results obtained at L = 255
and 260 mm. We consider this 10 mm cavity length offset for the comparison because, as
can be seen in figure 12, the predicted bifurcation diagram is staggered by approximately
10 mm from the experimental data. As a reminder, the origin of this relatively small offset
was discussed at the end of § 4.3. The parameters defining the additive and multiplicative
stochastic forcing, i.e. Γξ , Γχ and τ , were empirically adjusted in order to best match the
main features of the experimental time traces.

One can see in figure 14 that the model reproduces very well the p.d.f.s of the acoustic
pressure p and its envelope B, and especially the central peak of P( p). The underlying
intermittency between periods of low amplitude and bursts of high amplitude is thus well
captured by the model.
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Figure 14. Comparison of time traces and p.d.f.s of the acoustic pressure p and its envelope B between
experiments (a,b) and simulations using the coupled stochastic differential equations presented in § 5.1 (c,d).
The considered mean channel velocity is Ū = 74 m s−1, and the cavity lengths are L = 255, 260, 245 and 250
mm in (a), (b), (c) and (d) respectively. A 10 mm offset is chosen for this comparison because, as shown in
figure 12, the predicted bifurcation diagram is staggered by approximately 10 mm from the experimental data.

It is important to mention that the intensity of the fluctuating component of the
bifurcation parameter U is high enough, such that the instantaneous bulk velocity
alternately takes values in the range for which our model of the aeroacoustic system is
linearly stable, and in the one for which it is linearly unstable. Another important point is
that the correlation time τ of the bifurcation parameter fluctuations is long enough for the
system to adapt to the variations of U. Otherwise, we cannot reproduce with this model
the experimentally observed intermittency.

In order to shed light on the conditions leading to these intermittent high-amplitude
bursts or low-amplitude periods, a simplified model is scrutinized in the following section.

5.2. Intermittency modelled with a randomly forced van der Pol oscillator
We have established in the previous sections (i) that the present aeroacoustic system is
linearly unstable for a sufficiently large bulk flow velocity U and for a range of cavity
lengths L, (ii) that at the border of the region corresponding to the limit cycles (red line in
figure 7a), only supercritical Hopf bifurcations occur and (iii) that intermittency is induced
by parametric noise. To gain further insight into the conditions that lead to intermittency,
rather than carrying on with the model of coupled oscillators, it is convenient to consider
a simpler version of the supercritical Hopf bifurcation with parametric noise. Reckoning
with the fact that one of the eigenvalues of (4.1) is very stable (see figure 7b), it can be
shown that, in the vicinity of the Hopf bifurcation, our model of two coupled oscillators for
describing the aeroacoustic system can be approximated by a single van der Pol oscillator
subject to additive and multiplicative stochastic forcing. This van der Pol model is

η̈ + (−2[ν̄ + χ(t)] + κη2)η̇ + ω2
0η = ξ(t), (5.3)

where η is a new state variable that represents the aeroacoustic oscillations, ω0 is the
natural frequency of the oscillator, ν(t) = ν̄ + χ(t) is the instantaneous linear growth rate,
κ > 0 is the saturation constant and, as in the previous section, ξ is a Gaussian additive
white noise of intensity Γξ , i.e. of autocorrelation 〈ξξθ 〉 = Γξδ(θ) with δ the Dirac delta
function, and χ a coloured Gaussian multiplicative noise, with correlation time τ and
equilibrium variance σ 2

ν = Γχ/2τ , and whose Langevin equation is (5.2).
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Figure 15. (a) Bifurcation diagram of the deterministic problem (right axis, red curve), and characteristic
times of the stochastic problem (left axis). These characteristic times are (i) the inverse of the mean growth or
decay rate of the oscillation amplitude 1/ν̄ indicated as a solid blue line, (ii) the oscillation period T = 2π/ω0
indicated as a dashed blue line and (iii) the correlation time τ of the fluctuations of the instantaneous
linear growth rate ν. The coloured dots indicate the combinations of τ and ν̄ which were used for the
temporal simulations of (5.3), whose p.d.f.s are presented in (b,c). (b) The p.d.f.s of the linear growth rate.
These Gaussians have a mean ν̄ and a standard deviation σν . (c) The p.d.f.s of the oscillations for several
combinations of ν̄/σν and |τ ν̄|. Rare events are associated to heavy tails indicating high-amplitude bursts
(e.g. for ν̄/σν = −0.2 and |τ ν̄| = 10), or to a pronounced central peak indicating sporadic quiet periods (e.g.
for ν̄/σν = 1 and |τ ν̄| = 10). They reflect the intermittency of the system and they are very likely when
|τ ν̄| � O(1) and |ν̄/σν | � O(1).

Time marching of this equation is performed for various combinations of mean linear
growth rate ν̄, multiplicative noise correlation time τ and standard deviation σν , in order to
illustrate the conditions required for a high probability of intermittency. These conditions
are set by two non-dimensional parameters: ν̄/σν , which is related to the probability of
crossing the stability border, and ν̄τ , which compares the characteristic growth or decay
time of the oscillation amplitude with the correlation time of the instantaneous growth or
decay rate.

The natural frequency of the oscillator is set to f0 = ω0/2π = 1050 Hz, which is typical
of the present aeroacoustic instability. The mean linear growth rate ν̄ is successively set to
−30, −8, −4, 4, 8 and 30 rad s−1, which are also typical values of the present system in the
vicinity of the supercritical Hopf bifurcation, as shown in § 3.2. The saturation constant
is set to κ = 0.01 s−1 for all the simulations such that the resulting oscillation amplitude
is of the same order of magnitude as the acoustic pressure in the cavity. The intensity of
the additive noise is set to Γξ = 1012, such that the variance of η for ν̄ = −30 rad s−1

is similar to the variance of the band-pass filtered acoustic signal for U � 64 m s−1 and
L = 250 mm. The correlation time τ and variance σ 2

ν of the multiplicative random forcing
χ are changed for each simulation in order to obtain converged p.d.f.s for ν̄/σν = −10,
−1, −0.2, 0.2, 1 and 10, and for |τ ν̄| = 0.1, 1 and 10. The simulated time is 500 s for
|τ ν̄| = 10 and ν̄/σν = −0.2 and 0.2, and 240 s for the other simulated cases, which is
sufficiently long to obtain converged statistics.

The results of these temporal simulations are gathered in figure 15, which shows the
converged p.d.f.s of the state variable η. In this system, the parametric noise adds upon the
additive forcing, and its effect is scrutinized in the next paragraphs.

The first necessary condition for intermittency is that the standard deviation σν of the
fluctuations of ν is sufficiently large to have ν penetrating in R

+ (respectively R
−) when
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ν̄ < 0 (respectively ν̄ > 0). Indeed, for negative (respectively positive) mean growth rate,
if the instantaneous growth rate experiences deep excursions in R

+ (respectively in R
−),

rare events in the form of amplitude bursts (respectively intermittent quiet period) can
occur. This necessary condition is fulfilled for |ν̄/σν | � O(1). It corresponds to the four
middle columns of figure 15(c), where heavy tailed p.d.f.s. and pronounced central peaks
can be observed.

However, the condition |ν̄/σν | � O(1) is not sufficient for intermittency to occur. In
fact, sporadic excursions of ν in R

+ or R
− must last sufficiently long for the dynamic

system to react to this change of stability, i.e. for having a system intermittently unstable
(fat tailed p.d.f.) or intermittently stable (marked central peak). Therefore, there is a second
necessary condition for observing intermittency: the characteristic relaxation time of the
system 1/ν̄ must be shorter than the correlation time of the parametric stochastic forcing
τ . This condition is satisfied when |ν̄τ | � O(1), which corresponds to the two upper rows
in figure 15(c). When |ν̄τ | 	 O(1), the system is subject to slow random fluctuations of
the instantaneous linear growth rate ν, which corresponds to quasi-steady change of the
bifurcation parameter. When |ν̄τ | = O(1), rare events can still occur but the intermittence
is less marked. Finally, if |ν̄τ | 
 O(1), the fluctuations of the instantaneous growth rate
exhibit a correlation that is smaller than the characteristic relaxation time of the oscillation
amplitude, i.e. they are too fast to allow the system to adapt to them and the instantaneous
attractor cannot be reached.

In summary, the rare events happen (p.d.f.s with fat tails or marked central peak) when
the correlation time of the fluctuations of the instantaneous linear growth rate is of the
order of, or longer than, the inverse of the mean linear growth rate, and when the standard
deviation of these fluctuations is larger than the mean linear growth rate. It is important
to note that the model developed in this section can be used for a very wide range of
phenomena that can be described by a van der Pol oscillator subject to additive and
multiplicative coloured noise.

5.3. Amplitude dynamics: Langevin and Fokker–Planck equations
In order to complement the analysis of carried out in § 5.2, the amplitude equation
associated with the stochastic differential equations (5.3) is derived by performing
deterministic and stochastic averaging (Krylov & Bogoliubov 1936; Stratonovich 1967).
The derivation is based on the fact that the aeroacoustic system is weakly nonlinear, which
implies that the limit cycle is quasi-sinusoidal, and on the fact that the mean linear growth
rate satisfies ν̄ 
 ω0, which means that the amplitude and phase drift of the oscillation
slowly vary with respect to the acoustic period T = 2π/ω0. It is therefore convenient to
investigate the system dynamics using the coordinate system (A, ϕ), with

η = A cos(ω0t + ϕ) and η̇ = −Aω0 sin(ω0t + ϕ), (5.4a,b)

and A =
√

η2 + (η̇/ω0)2 and ϕ = − arctan(η̇/ω0η) − ω0t. Furthermore, we make the
assumption that the multiplicative Ornstein–Ulhenbeck noise χ , which is governed by
the Langevin equation (5.2), exhibits a correlation time τ that is significantly longer
than the acoustic period. In other words, when ω0τ/2π 	 1, χ can be considered as
constant during one oscillation period and one can apply the averaging process described
by e.g. Noiray (2017). For most of the cases considered in § 5.2, τ is at least one order
of magnitude longer than T (see coloured circles in figure 15a) and this condition is
well satisfied. The stochastic averaging procedure leads to a system of equations for the
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amplitude A, the phase drift ϕ and the parametric noise χ of the form

Ẏ = F (Y ) + B(Y )N . (5.5)

In this equation, the dynamics of the system state vector Y = (A, ϕ, χ)T is defined by
a deterministic contribution F (Y ) and by a stochastic forcing term B(Y )N , where N =
(ζA, ζϕ, ζχ )T is a vector of independent white Gaussian noises. The intensity of ζA and ζϕ

is Γξ/2ω2
0, and that of ζχ is Γχ/τ 2. The deterministic components of this coupled system

of Langevin equations are

FA(Y ) = (ν̄ + χ) A − κ

8
A3 + Γξ

4ω2
0A

, Fϕ(Y ) = 0, Fχ(Y ) = −χ

τ
, (5.6a–c)

and the stochastic components are given by

B(Y )N =
⎛
⎝ 1 0 0

0 A−1 0
0 0 1

⎞
⎠
⎛
⎝ ζA

ζϕ

ζχ

⎞
⎠ . (5.7)

One can notice that the equation for A does not depend on ϕ and one can therefore focus
on the independent system of Langevin equations

Ȧ = (ν̄ + χ) A − κ

8
A3 + Γξ

4ω2
0A

+ ζA, (5.8)

χ̇ = −χ

τ
+ ζχ , (5.9)

and write its corresponding two-dimensional Fokker–Planck equation

∂P
∂t

= − ∂

∂A
(FAP) − ∂

∂χ

(
FχP

)+ ∂2

∂A2

(
ΓξP
4ω2

0

)
+ ∂2

∂χ2

(
ΓχP
2τ 2

)
, (5.10)

which describes the time evolution of the joint p.d.f. P(A, χ; t). This Fokker–Planck
equation is solved in the domain bounded by A ∈ [0, 250] and χ ∈ [−200, 200] by using
finite differences for the partial derivatives with respect to A and χ , and explicit Euler
integration for the time derivative. A Dirichlet boundary condition P(A, χ; t) = 0 is
imposed for A = 0, while the other boundaries are Neumann boundaries with no flux.
The initial conditions P(A, χ; 0) = Pinit(A, χ) are arbitrarily set for ν̄τ = 0.1 to the
theoretical joint p.d.f. of the bivariate problem when the two random processes A and
χ are assumed independent, i.e. when χ is removed from (5.8)

Pinit(A, χ) ∝ exp
(

−4ω0

Γξ

[
ν̄A2

2
− κA4

32

])
exp

(
− χ2

Γχ/τ

)
. (5.11)

The converged steady solutions of this Fokker–Planck equation for ν̄τ = 0.1 and
ν̄τ = 1 are presented in figures 16(i) and 16( j) respectively. Note that for ν̄τ = 1, the
initial condition is not defined by (5.11), but it is set as the converged solution of the
case ν̄τ = 0.1 in order to avoid numerical instabilities. Note also that these two cases
correspond to the same set of parameters as the one used to generate the p.d.f.s presented
in the second last column of figure 15(c). In this figure, for the sake of clarity, we show
P(A, ν), which is identical to P(A, χ) in the coordinate system (A, ν = ν̄ + χ). From
now on, we refer to stationary p.d.f.s when the time variable t is not indicated as the
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Figure 16. Time-domain simulations of the van der Pol oscillator (5.3) subject to additive and multiplicative
stochastic forcing and stationary solutions of the Fokker–Planck equation (5.10) for τ ν̄ = 0.1 (a, b, c, d, i, k)
and for τ ν̄ = 1 (e, f, g, h, j, l). (a,e) Time traces of ν which are governed by (5.2). (b, f ) The p.d.f.s of ν deduced
from the time-domain simulations of (5.2). (c,g) Time traces of η and their envelope. (d,h) The p.d.f.s of η and
the envelope of η, which are deduced from the time-domain simulations of (5.3). (i,j) Stationary solutions
P(A, ν) of the Fokker–Planck equation (5.10) for τ ν̄ = 0.1 and for τ ν̄ = 1 respectively. The deterministic
bifurcation diagram is superimposed as a dashed line, with A = (8ν/κ)1/2 for ν > 0. The marginal p.d.f.s
P(A) = ∫∞

−∞ P(A, ν) dν and P(ν) = ∫∞
0 P(A, ν) dA are also shown as solid lines on the top and the side of

the contour plot of P(A, ν). (k,l) Comparison of P(η) obtained from the time-domain simulations of (5.2) and
(5.3), and from the time-domain simulations of (5.10), respectively shown as dashed and solid lines.

argument of P . The marginal p.d.f.s for A and ν are also presented on the side and on
the top of the joint distribution in figures 16(i) and 16( j). One can note that, instead of
computing

∫∞
0 P(A, ν) dA to find P(ν), this marginal distribution could be directly found

analytically: it is given by the Gaussian solution of the Fokker–Planck equation associated
with the univariate Ornstein–Uhlenbeck process (5.9), which is proportional to the second
exponential term in (5.11). One can clearly see that, when the correlation time τ of the
parametric noise is increased from 12.5 ms to 125 ms while the mean and the standard
deviation of the growth rate are kept constant (ν̄ = σν = 8 rad s−1), the peak of the joint
p.d.f. contracts and adopts a more elongated shape that follows the bifurcation diagram of
the deterministic system. This behaviour is due to an increased intermittency which is well
captured by this Fokker–Planck formalism.

Moreover, these p.d.f.s are compared to the ones deduced from time-domain simulations
of the stochastically forced van der Pol oscillator governed by (5.3), and of its coloured
multiplicative noise obeying equation (5.2). The simulated time traces of ν and η are
presented in figures 16(a), 16(c), 16(e) and 16(g) for ν̄τ = 0.1 and ν̄τ = 1. One can
clearly see that the correlation time of the instantaneous growth rate is larger for the
case of ν̄τ = 1. From these time traces, the histograms of ν, η and their envelope are
computed to get the p.d.f.s shown in figures 16(b), 16(d), 16( f ) and 16(h). One can see
that for ν̄τ = 1, at t ≈ 8 s, the instantaneous growth rate makes a sufficiently deep and
sufficiently long excursion into R

− to induce a noticeable decrease of the oscillation
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amplitude in figure 16(g). This is an example of a sporadic quiet period, which is typical
of intermittently stable dynamics, and which leads to an increased probability density
function P(A) at low amplitude compared to the case ν̄τ = 0.1.

Finally, it is interesting to compare the p.d.f.s of η obtained from the time-domain
simulations of the van der Pol oscillator (5.3) and the ones deduced from the
Fokker–Planck equations describing the slow-flow dynamics of this stochastically forced
van der Pol oscillator. To that end, one has to deduce P(η) from the numerical solution
of the Fokker–Planck equation (5.10), which requires a few steps. First, one assumes
that the joint p.d.f. of the multivariate process (A, ϕ, χ) is separable and can be written
P(A, ϕ, χ) = P(A, χ)P(ϕ) in order to deduce the univariate stationary p.d.f. for ϕ. By
injecting this ansatz into the Fokker–Planck equation of the trivariate process, considering
the stationary solution and the fact that P(A, χ) satisfies (5.10), we can deduce that
d2P(ϕ)/dϕ2 = 0, which implies that P(ϕ) = c1ϕ + c2 with c1 and c2 the integration
constants. Considering that P(ϕ) must be periodic, one can deduce that c1 = 0, which
means that ϕ is uniformly distributed between 0 and 2π. Second, we consider the
projection of the oscillatory dynamics onto the slowly varying amplitude and phase that are
used to derive the above analytical expressions. With the mapping (A, ϕ) → (η, η̇) given
in (5.4a,b), one can write that P(η, η̇) ∝ J−1P(A, ϕ), where J = Aω0 is the absolute value
of the determinant of the Jacobian matrix associated with this mapping. Then, considering
that P(ϕ) = 1/2π, one can write that P(A, ϕ) ∝ ∫∞

−∞ P(A, χ) dχ , and therefore, that
P(η, η̇) ∝ A−1 ∫∞

−∞ P(A, χ) dχ . Finally, the univariate p.d.f. for η can be obtained from
the marginal p.d.f. for A that is deduced from the numerical solution of (5.10) by using
P(η) = ∫∞

−∞ P(η, η̇) dη̇. The p.d.f.s obtained in this way for ν̄τ = 0.1 and ν̄τ = 1 are
shown in figures 16(k) and 16(l) as solid lines. As expected, there is an excellent overlap
between these p.d.f.s and the ones from the histograms of the time-domain simulations
of (5.3) shown as dashed lines. For the case shown in figure 16(l), the two necessary
conditions for intermittency presented in § 5.2 are fulfilled. Indeed, one has |ν̄/σν | � O(1)

and |ν̄τ | � O(1), which leads to a significant change of the shape of P(η) compared to
the case where |ν̄τ | = 0.1, and this change can be predicted using the Fokker–Planck
description of the slow-flow dynamics.

6. Conclusions

This paper deals with the classic problem of whistling of deep cavities subject to low-Mach
turbulent grazing flow, which arises from the constructive interaction between the shear
layer at the cavity opening and the acoustic modes of the cavity. It occurs for certain ranges
of cavity depth and grazing flow velocity. Acoustic measurements and particle image
velocimetry are performed to systematically characterize the instability of the present
experimental set-up. Then, the specific acoustic admittance of the cavity (respectively the
specific acoustic impedance of its opening) is measured for a range of depths (respectively
bulk flow velocities) by using the multi-microphone method, and subsequently fitted using
second-order transfer functions. The latter are used to construct a model of two coupled
oscillators that allows us to perform a linear stability analysis of the system, which is in
very close agreement with the experimental measurements of the whistling conditions.

The specific impedance of the cavity opening subject to grazing flow is also measured
for higher acoustic forcing amplitudes. From these measurements, it is possible to establish
scaling laws for all the parameters of the model, which are non-dimensionalized using the
grazing flow velocity, the cavity width and the cavity depth. With this information, the
amplitude of the aeroacoustic limit cycle is first estimated by performing a describing
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function analysis, and then by using the amplitude and phase equations derived from the
model of nonlinear oscillators with resistive and reactive coupling. These estimates are
in good agreement with the experimental measurements. It should be noted that a single
set of model parameters allows us to predict the bifurcation diagram for any combination
of grazing flow velocity and cavity depth. Furthermore, this deterministic analysis of the
problem allows us (i) to demonstrate that, for such aeroacoustic instability problems, the
root loci topology differs from the one of flow-induced vibration problems with frequency
lock-in, and that the instability arises from the resistive and reactive coupling of the two
linearly stable oscillators, and (ii) to identify the nonlinearities at play in the system and to
demonstrate that our system features Hopf bifurcations that are always supercritical.

In the last part of this paper, we identify the origin of the intermittency observed in
the vicinity of these supercritical Hopf bifurcations. We show that the system can be
intermittently stable or intermittently unstable for certain combinations of grazing flow
velocity and cavity depth, as a result of the parametric stochastic forcing induced by the
turbulent fluctuations of the flow. We successfully reproduce the corresponding acoustic
time traces and their probability density functions by incorporating an additive white
noise and a multiplicative coloured noise into the model of coupled oscillators. Then,
considering the fact that in the vicinity of the Hopf bifurcation the system of coupled
nonlinear oscillators can be boiled down to a randomly forced van der Pol oscillator, we
identify two necessary conditions for intermittency in this type of system: the correlation
time of the fluctuations of the linear growth rate must be of the order or longer than the
inverse of the mean growth rate, and the standard deviation of these fluctuations must be
of the order or larger than the mean linear growth rate. This intermittency manifests itself
by sporadic intervals of low-amplitude oscillations, which lead to a marked central peak in
the probability density function of the acoustic pressure, or by intermittent bursts of high
amplitude, which lead to heavy tails. Lastly, we present a complementary analysis based
on the Fokker–Planck equation for the slow-flow dynamics, which offers an alternative
treatment of such problem of weakly nonlinear self-oscillator. As a final remark, it is
worth mentioning that these findings are also relevant for the problem of thermoacoustic
instabilities in turbulent combustors.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.984.

Acknowledgements. This project is partially funded by the European Union’s Horizon 2020 Research and
Innovation Programme under Grant Agreement No. 765998.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Nicolas Noiray http://orcid.org/0000-0003-3362-9721.

REFERENCES

BALANOV, A., JANSON, N., POSTNOV, D. & SOSNOVTSEVA, O. 2009 Synchronization: From Simple to
Complex. Springer.

BASLEY, J., PASTUR, L.R., LUSSEYRAN, F., SORIA, J. & DELPRAT, N. 2014 On the modulating effect of
three-dimensional instabilities in open cavity flows. J. Fluid Mech. 759, 546–578.

BONCIOLINI, G., EBI, D., BOUJO, E. & NOIRAY, N. 2018 Experiments and modelling of rate-dependent
transition delay in a stochastic subcritical bifurcation. R. Soc. Open Sci. 5 (3), 172078.

BOUJO, E., BAUERHEIM, M. & NOIRAY, N. 2018 Saturation of a turbulent mixing layer over a cavity:
response to harmonic forcing around mean flows. J. Fluid Mech. 853, 386–418.

BOUJO, E., BOURQUARD, C., XIONG, Y. & NOIRAY, N. 2020 Processing time-series of randomly forced
self-oscillators: the example of beer bottle whistling. J. Sound Vib. 464, 114981.

909 A19-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

98
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.984
http://orcid.org/0000-0003-3362-9721
http://orcid.org/0000-0003-3362-9721
https://doi.org/10.1017/jfm.2020.984


C. Bourquard, A. Faure-Beaulieu and N. Noiray

BOUJO, E. & NOIRAY, N. 2017 Robust identification of harmonic oscillator parameters using the adjoint
Fokker–Planck equation. Proc. R. Soc. Lond. A 473, 20160894.

BOURQUARD, C. & NOIRAY, N. 2019 Stabilization of acoustic modes using Helmholtz and quarter-wave
resonators tuned at exceptional points. J. Sound Vib. 445, 288–307.

BRUGGEMAN, J.C., HIRSCHBERG, A., VAN DONGEN, M.E.H., WIJNANDS, A.P.J. & GORTER, J. 1991
Self-sustained aero-acoustic pulsations in gas transport systems: experimental study of the influence of
closed side branches. J. Sound Vib. 150 (3), 371–393.

CLAVIN, P., KIM, J.S. & WILLIAMS, F.A. 1994 Turbulence-induced noise effects on high-frequency
combustion instabilities. Combust. Sci. Technol. 96 (1–3), 61–84.

DAI, X. 2020 Flow-acoustic resonance in a cavity covered by a perforated plate. J. Fluid Mech. 884, A4.
DAI, X. & AURÉGAN, Y. 2018 A cavity-by-cavity description of the aeroacoustic instability over a liner with

a grazing flow. J. Fluid Mech. 852, 126–145.
DE LANGRE, E. 2006 Frequency lock-in is caused by coupled-mode flutter. J. Fluids Struct. 22 (6–7), 783–791.
DEQUAND, S., HULSHOFF, S.J. & HIRSCHBERG, A. 2003 Self-sustained oscillations in a closed side branch

system. J. Sound Vib. 265 (2), 359–386.
DOLCI, D.I. & CARMO, B.S. 2019 Bifurcation analysis of the primary instability in the flow around a flexibly

mounted circular cylinder. J. Fluid Mech. 880, R5.
ELDER, S.A. 1978 Self-excited depth-mode resonance for a wall-mounted cavity in turbulent flow. J. Acoust.

Soc. Am. 64 (3), 877–890.
FABRE, B., GILBERT, J., HIRSCHBERG, A. & PELORSON, X. 2011 Aeroacoustics of musical instruments.

Annu. Rev. Fluid Mech. 44, 1–25.
GIKADI, J., FÖLLER, S. & SATTELMAYER, T. 2014 Impact of turbulence on the prediction of linear

aeroacoustic interactions: acoustic response of a turbulent shear layer. J. Sound Vib. 333 (24), 6548–6559.
GLOERFELT, X., BAILLY, C. & JUVÉ, D. 2003 Direct computation of the noise radiated by a subsonic cavity

flow and application of integral methods. J. Sound Vib. 266 (1), 119–146.
GRAF, H.R. & ZIADA, S. 2010 Excitation source of a side-branch shear layer. J. Sound Vib. 329 (14),

2825–2842.
HONG, Z., DAI, X., ZHOU, N., SUN, X. & JING, X. 2014 Suppression of Helmholtz resonance using inside

acoustic liner. J. Sound Vib. 333 (16), 3585–3597.
HOWE, M.S. 1980 The dissipation of sound at an edge. J. Sound Vib. 70 (3), 407–411.
HOWE, M.S. 1997 Low strouhal number instabilities of flow over apertures and wall cavities. J. Acoust. Soc.

Am. 102 (2), 772–780.
ILLINGWORTH, S.J., MORGANS, A.S. & ROWLEY, C.W. 2012 Feedback control of cavity flow oscillations

using simple linear models. J. Fluid Mech. 709, 223–248.
ISHIKAWA, K., TANIGAWA, R., YATABE, K., OIKAWA, Y., ONUMA, T. & NIWA, H. 2018 Simultaneous

imaging of flow and sound using high-speed parallel phase-shifting interferometry. Opt. Lett. 43 (5),
991–994.

KARLSSON, M. & ÅBOM, M. 2010 Aeroacoustics of T-junctions—an experimental investigation. J. Sound
Vib. 329 (10), 1793–1808.

KOOK, H. & MONGEAU, L. 2002 Analysis of the periodic pressure fluctuations induced by flow over a cavity.
J. Sound Vib. 251 (5), 823–846.

KRYLOV, N. & BOGOLIUBOV, M.M. 1936 Introduction to Non-linear Mechanics. Izd. Akad. Nauk Ukr. SSR,
Kyïv (English translation: Princeton University Press, Princeton, 1947).

MA, R., SLABOCH, P.E. & MORRIS, S.C. 2009 Fluid mechanics of the flow-excited Helmholtz resonator.
J. Fluid Mech. 623, 1–26.

MARSDEN, O., BAILLY, C., BOGEY, C. & JONDEAU, E. 2012 Investigation of flow features and acoustic
radiation of a round cavity. J. Sound Vib. 331 (15), 3521–3543.

MARTÍNEZ-LERA, P., SCHRAM, C., FÖLLER, S., KAESS, R. & POLIFKE, W. 2009 Identification of the
aeroacoustic response of a low mach number flow through a T-joint. J. Acoust. Soc. Am. 126 (2), 582–586.

MAST, T.D. & PIERCE, A.D. 1995 Describing-function theory for flow excitation of resonators. J. Acoust.
Soc. Am. 97 (1), 163–172.

MATSUURA, K. & NAKANO, M. 2014 Disorganization of a hole tone feedback loop by an axisymmetric
obstacle on a downstream end plate. J. Fluid Mech. 757, 908–942.

MOHAMAD, M.A. & SAPSIS, T.P. 2015 Probabilistic description of extreme events in intermittently unstable
dynamical systems excited by correlated stochastic processes. SIAM/ASA J. Uncertainty Quantif. 3 (1),
709–736.

MOHANY, A., ARTHURS, D., BOLDUC, M., HASSAN, M. & ZIADA, S. 2014 Numerical and experimental
investigation of flow-acoustic resonance of side-by-side cylinders in a duct. J. Fluids Struct. 48, 316–331.

909 A19-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

98
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.984


Whistling of deep cavities subject to turbulent grazing flow

MORRIS, S.C. 2011 Shear-layer instabilities: particle image velocimetry measurements and implications for
acoustics. Annu. Rev. Fluid Mech. 43, 529–550.

NAIR, V., THAMPI, G. & SUJITH, R.I. 2014 Intermittency route to thermoacoustic instability in turbulent
combustors. . Fluid Mech. 756, 470–487.

NELSON, P.A., HALLIWELL, N.A. & DOAK, P.E. 1983 Fluid dynamics of a flow excited resonance. Part II:
flow acoustic interaction. J. Sound Vib. 91 (3), 375–402.

NOIRAY, N. 2017 Linear growth rate estimation from dynamics and statistics of acoustic signal envelope in
turbulent combustors. Trans. ASME: J. Engng Gas Turbines Power 139, 041503.

NOIRAY, N., DUROX, D., SCHULLER, T. & CANDEL, S. 2008 A unified framework for nonlinear combustion
instability analysis based on the flame describing function. J. Fluid Mech. 615, 139–167.

PETERS, M.C.A.M. & HOEIJEMAKERS, H.W.M. 1995 A vortex sheet method applied to unsteady flow
separation from sharp edges. J. Comput. Phys. 120 (1), 88–104.

RIENSTRA, S.W. & HIRSCHBERG, A. 2012 An introduction to acoustics. Report IWDE 99-02. Instituut
Wiskundige Dienstverlening, TU Eindhoven.

ROCKWELL, D. & NAUDASCHER, E. 1978 Review-self-sustaining oscillations of flow past cavities. Trans.
ASME: J. Fluids Engng 100 (2), 152–165.

ROSSITER, J.E. 1964 Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic
speeds. Tech. Rep. 3438. Royal Aircraft Establishment, Aeronautical Research Council Reports and
Memoranda No.

ROWLEY, C.W., COLONIUS, T. & BASU, A.J. 2002 On self-sustained oscillations in two-dimensional
compressible flow over rectangular cavities. J. Fluid Mech. 455, 315–346.

ROWLEY, C.W. & WILLIAMS, D.R. 2006 Dynamics and control of high-Reynolds-number flow over open
cavities. Annu. Rev. Fluid Mech. 38 (1), 251–276.

SCHUERMANS, B., BELLUCCI, V., GUETHE, F., MEILI, F., FLOHR, P. & PASCHEREIT, C.O. 2004 A
detailed analysis of thermoacoustic interaction mechanisms in a turbulent premixed flame. In Proceedings
of the ASME Turbo Expo 2004, vol. 1, pp. 539–551. ASME.

SHOSHANI, O. 2018 Deterministic and stochastic analyses of the lock-in phenomenon in vortex-induced
vibrations. J. Sound Vib. 434, 17–27.

STRATONOVICH, R.L. 1967 Topics in the Theory of Random Noise, vol. 2. CRC Press.
SUN, Y., TAIRA, K., CATTAFESTA, L.N. & UKEILEY, L.S. 2017 Biglobal instabilities of compressible

open-cavity flows. J. Fluid Mech. 826, 270–301.
TERRIEN, S., VERGEZ, C. & FABRE, B. 2013 Flute-like musical instruments: a toy model investigated through

numerical continuation. J. Sound Vib. 332 (15), 3833–3848.
TONON, D., HIRSCHBERG, A., GOLLIARD, J. & ZIADA, S. 2011a Aeroacoustics of pipe systems with closed

branches. Intl J. Aeroacoust. 10 (2–3), 201–275.
TONON, D., WILLEMS, J.F.H. & HIRSCHBERG, A. 2011b Self-sustained oscillations in pipe systems with

multiple deep side branches: prediction and reduction by detuning. J. Sound Vib. 330 (24), 5894–5912.
VERGE, M.P., HIRSCHBERG, A. & CAUSSÉ, R. 1997 Sound production in recorderlike instruments. II. A

simulation model. J. Acoust. Soc. Am. 101 (5I), 2925–2939.
WANG, P., HE, L. & LIU, Y. 2020 Acoustics-driven vortex dynamics in channel branches with round

intersections: flow mode transition and three-dimensionality. Phys. Fluids 32 (2), 025101.
YAMOUNI, S., SIPP, D. & JACQUIN, L. 2013 Interaction between feedback aeroacoustic and acoustic

resonance mechanisms in a cavity flow: a global stability analysis. J. Fluid Mech. 717, 134–165.
YOKOYAMA, H. & KATO, C. 2009 Fluid-acoustic interactions in self-sustained oscillations in turbulent cavity

flows. I. Fluid-dynamic oscillations. Phys. Fluids 21 (10), 105103.
ZIADA, S. & LAFON, P. 2014 Flow-excited acoustic resonance excitation mechanism, design guidelines, and

counter measures. Appl. Mech. Rev. 66, 010802.

909 A19-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

98
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.984

	1 Introduction
	2 Experimental set-up and aeroacoustic instability
	3 Linear model of coupled oscillators
	3.1 Impedance measurements and model derivation
	3.2 Linear stability analysis

	4 Nonlinear deterministic model
	4.1 Describing function analysis
	4.2 Time-domain model of coupled oscillators
	4.3 Amplitude and phase equations

	5 Intermittently unstable aeroacoustic feedback
	5.1 Intermittency modelled with randomly forced coupled oscillators
	5.2 Intermittency modelled with a randomly forced van der Pol oscillator
	5.3 Amplitude dynamics: Langevin and Fokker--Planck equations

	6 Conclusions
	References

