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Minimal first countable spaces

Jack R. Porter

A topological space is E (resp. E\) provided every point is

the countable intersection of neighborhoods (resp. closed

neighborhoods). For i = 0 and i = 1 , characterizations of

minimal E. spaces [E. spaces with no strictly coarser E.

topology) and E .-closed spaces [E . spaces which are closed inE
Is

every E. space containing them) are given; for example, the

properties of minimal E. and minimal first countable T. .
1s If 'A.

are shown to be equivalent. Minimal E spaces are

characterized as countable spaces with the cofinite topology,

and minimal E\ spaces are characterized as Sj-closed and

semiregular spaces. E -closed spaces are shown to be precisely

the finite discrete spaces.

1. Introduction

In a recent paper [2], AuI I mixed the Hausdorff separation axiom with

the first countable axiom to yield a new separation axiom denoted as ffj ;

a space is E\ provided every point is the countable intersection of

closed neighborhoods. Clearly, an E\ space is Hausdorff, and AuI I

proved the interesting fact that a countably compact ffj space is minimal

Ei (a space with a topological property P is minimal P provided there

are no strictly coarser P-topologies).

In Section 2 of this paper, we derive several characterizations of

minimal ffj spaces. In particular we prove that a space is minimal E\
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exactly when it is first countable Hausdorff and has no strictly coarser

first countable Hausdorff topology; such spaces have been investigated by

Stephenson [72]. Also, in this section we characterize ffj-closed spaces

(a space with a topological property P is P-closed whenever it is

closed in every P space containing it).

Closely associated with E} spaces are spaces in which every point

is Gj ; these spaces have been studied and designated as G.-spaces by

Anderson [73 and as E spaces by AuI I [2]. In Section 3 we prove that a

space is minimal E if and only if it is countable with the cofinite

topology (a space has the cofinite topology provided the nonvoid open sets

are complements of finite sets).

We now list some definitions and facts that will be used throughout

the sequel.

A filter base consisting of open sets is called an open filter base.

A space is said to be feebly compact [73] or lightly compact [3] provided

every locally finite family of nonvoid open sets is finite. A space X

is Hausdorff except for a subset A <̂  x , cf. [7], provided each pair of

distinct points of which one is in X \ A can be separated by disjoint

open sets.

(l.l) The following are equivalent for a space X :

(a) X is feebly compact;

(b) every countable open filter base has at least one adherent

point;

(c) every countable open cover has a finite subfamily whose closures

cover X ;

(d) X is closed in every space Y which contains X as a

subspace, is Hausdorff except for X , and is first countable at

each point of Y \ X .

The equivalence of (a) and (c) is established in [3]. The

equivalence of (b), (c) and (d) is similar to the proof in the Hausdorff

case [7, pp. 11+5-1U6]. We now list two facts by AuI I [2].
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(1.2) A countably compact ffj space is minimal ffj .

(1.3) A first countable Hausdorff space is ffj .

The natural numbers will be denoted by N . The symbol {X, T ) will

denote a topological space whose set is X and whose topology is T .

For a space (X, T ) , the regular-open sets (sets equal to the interior of

their closure) form an open base for a topology denoted by T and called

s

the semiregularization of T , cf. [7, p. 138]. A space iX, r) is

semiregular provided T = T and is semiregular at a point p , or p is
s

a semiregular point of (X, T ) , provided the regular-open sets containing

p form a base at p .

2. Ex spaces

We first characterize i?i-closed spaces and then minimal 2?i spaces.

THEOREM 2.1. For an EY space (X, T ) , the following are

equivalent:

(a) (X, T ) is Ei-closed;

(b) (AT, T ) is feebly compact;

(c) X is a closed set in every Ei space Y which contains

{X, T ) as a subspace and is first countable at each point of

Y \ X ;

(d) {x, T ) is minimal 2?i .

Most of the proof is straightforward; the rest is essentially the

same as the proof in the Hausdorff case [70; 7, pp. llt5-l1*6].

For a topological property P , let P(l) denote the combined

topological properties of first countable and P ; so, a Hausdorff(l)

space is a first countable Hausdorff space. The next corollary extends

Theorem 2.5 of [72].

COROLLARY 2.2. A space is Hausdorff(l)-closed if and only if it is

Ei-closed and first countable.

Let X be the space of real numbers with the topology whose base is

the usual open intervals minus countable subsets. The subspace [0, l]
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of X is an example of an H-closed E\ space that is not first

countable at any point [7, Example 2]. The same type of topology placed

on the "long line" yields an ffj-closed space that is neither //-closed

nor first countable at any point.

DEFINITION. A point p in a space is an E\ point provided p is

a countable intersection of closed neighborhoods.

LEMMA 2.3. A semiregular, E\ point in a feebly compact space has

a countable fundamental system of neighborhoods.

Proof. Let X be a feebly compact space which is semiregular at an

Ei point p . There is a decreasing family B = {B \ n € N} of open

sets of p such that {p} = fl B . To show that 8 is a base at p ,

let V be a regular-open set containing p . X \ V is the closure of an

open set and by Theorem lU in [3] is feebly compact. By (l.l) (b), the

trace of B on X \ V cannot be an open filter base on X \ V ; so,

there is B Z B such that B £ V .

THEOREM 2.4. The following are equivalent for a space X :

(a) X is minimal Sj ;

(b) X is Enclosed and semiregular;

(c) X is feebly compact, E^ , and semiregular;

(d) X is Ei and every countable open filter base with a unique

adherent point and nonvoid intersection converges;

(e) X is minimal Hausdorff(l) .

Proof. By Theorem 2.1, (b) and (c) are equivalent and (b) implies

(a). The proof that (a) implies (b) and (d) is similar to the proof in

the Hausdorff case 110; 7, pp. llt6-lUT]. Since a minimal Hausdorff(l)

space is equivalent to being first countable, Hausdorff, feebly compact,

and semiregular by Theorem 2.k in [72], then by (1.3), (e) implies (c) and

by Lemma 2.3, (c) implies (e) . The proof is completed if we show that (d)

implies (a). Suppose (X, x) satisfies (d) and 0 is a coarser Ex

topology on X . For each p in X , there is a decreasing family

B = {B I n € N} of a-open sets containing p with the property that
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{p} = D Cla(Sn) . Since a £ T , then by (d), 8 converges to p in

(X, T ) . This shows that (X, T ) is minimal E\ .

COROLLARY 2.5. A first countable, minimal Hausdorff space is

minimal Et .

DEFINITION. For a topological property P , a space is said to be

Katetov P provided it has a coarser minimal P topology.

COROLLARY 2.6. A space is Katetov Ex if and only if it is Katetov

Hausdorff(l) .

By (1.2), countably compact Ei spaces are minimal E\ ; the

converse is false as shown by Example 3.2 in [72] of a completely regular,

locally compact, minimal Hausdorff(l) (and hence minimal Ej) space

which is not countably compact. Also, there are first countable,

minimal Hausdorff spaces [4 , Example 1.5] which are not countably compact.

By Theorem 2.k, minimal E\ spaces are 2?i-closed; the converse is

false as shown by the examples following Corollary 2.2. By Theorem 2.1+,

a necessary and sufficient condition for an E\-closed space to be minimal

Ei is semiregularity. We now develop a necessary and sufficient

condition for an ffj-closed space to be countably compact.

A regular space has the property that each pair of disjoint closed

sets of which one is finite can be separated by disjoint open sets. A

space which satisfies this property with finite replaced by countable is

called hyperregular. So, every hyperregular 2^ space is 2"3 . It is

easy to verify the following fact.

(2.7) A countably compact T3 space is hyperregular.

Dugundji [S] has defined a space to be weakly normal precisely when

it is completely regular and hyperregular Tj . There exists a countable

compact T3 space that is not completely regular (modify the space in

Section 3 of [6] by replacing Z^ with {n} x fi' x Q' \ {(n, Q, SJ)}) ;

this example shows there is a hyperregular Tj space which is not weakly

normal.

THEOREM 2.8. For hyperregular spaces, feeble compactness is

equivalent to countable compactness.
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Proof. ii, p. 232]

COROLLARY -2.9. An Ey-closed space is countahly compact if and only

if it is hyperregular.

As a consequence of Theorem k.l in [72] and Theorem 2.k, we have the

next result.

(2.10) A product of nonvoid spaces is minimal E\ if and only if

each coordinate space is minimal Bj and there is at most a countable

number of coordinate spaces with more than one point.

(2.11) A product of nonvoid spaces is fi'i-closed if and only if

each coordinate space is ffj-closed and there is at most a countable

number of coordinate spaces with more than one point.

Proof. The proof follows from (2.10), Theorems 2.1 and 2.k, and the

easily proven fact that if \ [x , T ) | a € A\ is a family of spaces, then

(HT ) = TTTT 1 where KTT denotes the product topology on IT/

By proofs of Theorems 5.7, 5.9, and 5.10 of [72], the next three

facts follow.

(2.12) Any Ei space X can be densely embedded in an ff

space Y which is f irst countable at each point of Y \ X .

(2.13) An E\ space can be densely embedded in a minimal E\ space

if and only if i t is first countable and semiregular.

(2.lit) An Ei space can be embedded in a minimal Ej space if and

only if i t is f irst countable.

We conclude this section by giving a cotopological characterization

of minimal Et spaces. The definitions and notation used are defined in

[5].

LEMMA 2.15. Let {X, T) be an Ex space and F a countable open

filter base with nonvoid intersection and with a unique adherent point p .

Let B = { B t x | p € B or B £ X \ F for some F t F} .

(a) E is a base for x ;

(b) {X \ B\ B d 8} is a base for a topology labeled T ( 8 ) and

T(8) C T ;
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(o) if a is the topology defined on X by U i a if and only if

U € T and p € U implies F £ V for some F € F , then

T ( 8 ) = os s

(d) [X, T ( B ) ) is E1! ;

(e) if F does not converge, then T ( 8 ) # T .

The proofs of parts (a), (b), (d) and (e) are similar to the proof of

Lemma 1 in [74]. The proof of part (a) is straightforward and left to

the reader. Part (a) shows that the cotopological method of obtaining

coarser topologies in this particular case is a combination of the filter

method and semiregularization, cf. [5, Section 2].

THEOREM 2.16. An Bj space is minimal E^ if and only if there

are no strictly coarser E\ cotopologies.

Proof. Necessity follows from the definition of minimal E\ .

Sufficiency follows from Lemma 2.15 and Theorem 2.it.

3. E spaces

Berri [4] and Hewitt [9] proved that a space is minimal T\ if and

only if the space has the cofinite topology. In [5], it is observed that

a space is Ti-closed if and only if it is a finite discrete space.

THEOREM 3.1. A space X is E -closed if and only if X is a

finite discrete space.

Proof. The sufficiency is obvious. For the necessity, it is enough

to observe the following:

(i) the intersection of each countable open filter base in X is

nonvoid and

(ii) each point of X is isolated.

We now proceed to characterize minimal E spaces.

LEMMA 3.2. If {X, T ) is a minimal E space and F is a

countable open filter base with void intersection, then F converges to

each point.
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Proof. Let p £ X . Define a topology 0 on X by U 6 O if and

only if V (. T and p d U implies F £ U for some F i F . (.X, a) is

an E space and a £ x . Since (X, x) is minimal E , then a = x .

This shows that F converges to p .

LEMMA 3.3. If a minimal E spaee X has one nonisolated point,

then every point is nonisolated.

Proof. Let p in X be nonisolated. There is a decreasing

sequence {Un\ n € N} of open sets containing p whose intersection is

p . Now F = {U \ {p}\ n € N} is a countable open filter base with void

intersection. By Lemma 3.2, F converges to each point of X ; this

shows that each point is nonisolated.

LEMMA 3.4. A minimal E space X contains at most a finite

number of isolated points.

Proof. Assume X is a minimal E space with a denumerable number

of isolated points, say {x \ n (. N} such that x = x only if n = m .

Let V = {x I m > n} for each n in N . F = {U I n € N} is a

countable open filter base with void intersection. By Lemma 3-2, F

converges to the point Xi which is a contradiction as x± is an

isolated point.

THEOREM 3.5. A space is minimal E if and only if the space is

countable with the oofinite topology.

Proof. Since a countable space with the cofinite topology is E

and minimal Ti [4, Theorem 2.2], then it is minimal E . Conversely,

suppose X is a minimal E space. Assume X is not countable. By

Lemmata 3.3 and 3.k, X contains no isolated points. Let p i X ; as

in the proof of Lemma 3.3, there is a countable open filter base

F = {F | n € N} with void intersection. We now show that U £ X is a

nonvoid open set if and only if F c U for some F $ F . If U is an

n — n
open se t and q € U , then since F converges t o q by Lemma, 3 . 2 , t h e r e
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is a F in F such that F c_ y . Conversely, suppose U £_ X and

F c U for some F (. F . Let q £ U . There is a decreasing sequence
m — m • ^

{£/ | w € N} of open sets containing q whose intersection is q . By

Lemma 3.2, {f \ {<;}| n ( N} converges to p . There is k € N such

that U. \ {q} c F u {p} and p 4 £/, . Since q i U , then U, c U .

This shows that U is open.

Since X \ {p} = U X \ F , then for some m , X \ F is infinite.

Let {p | n d N} be a subset of X \ F , and for each n i. N , let

V = F u {p,| k i n } . Then G = {W I n d N} is a countable open

filter base with void intersection. By Lemma 3.2, G converges to p .

So, I/, c P u {p} for some k € N . This implies that

{p \ r > k] ^ F u {p} which is a contradiction. This shows that X is

countable.

Since the cofinite topology on a countable set is an E topology

which is coarser than any other E topology on the set, then X must

possess the cofinite topology. This completes the proof of the theorem.

THEOREM 3.6. The following are equivalent for a space X :

(a) X is minimal E ;

(b) X is first countable and minimal T\ ;

(c) X is minimal T i ( l ) .

Proof. The equivalence of (a) and (b) follows from Theorem 3.5.

Clearly, (b) implies (c). The proof that (c) implies (a) is similar to

the proof in the E\ case.
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