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Abstract

We establish a necessary condition (£ ) for a semigroup variety to be closed under the taking of
epimorphisms and a necessary condition (S) for a variety to consist entirely of saturated semigroups.
Condition (S) is shown to be sufficient for heterotypical varieties and a stronger condition (S') is
shown to be sufficient for homotypical varieties.
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1. Preliminaries and introduction

Let U, S be semigroups with U a subsemigroup of S. Following Howie and Isbell
[17] we say that U dominates an element d G S if for every semigroup T and all
pairs of homomorphisms a, fi: S -> T, a\U = f!\U implies that da = dfi. The set
of all elements of S1 dominated by U is called the dominion of U in 5 and is
denoted by Dom(U, S). It is easily verified that Dom(f/, S) is a subsemigroup of
S containing U.

Let a: S -> T be a semigroup homomorphism. Then a is an epimorphism (epi
for short) if for every pair of homomorphisms fi,y: T -> V, a/? = ay implies
/} = y. Every onto homomorphism is an epimorphism although the converse is
false [5]. One can easily show that a homomorphism a: S -» T is epi if and only if
the inclusion /: 5a -» T is epi, which is equivalent to the statement that
Dom(5a, T) = T.
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154 P. M. Higgins [2]

We say U is epimorphically embedded in S if Dom(f/, S) = S while at the other
extreme we say C/is closed in S if Dom(U, S) — U, and that Uis absolutely closed
if U is closed in every containing semigroup S. A semigroup U is saturated if
Dom(£/, S) ¥= S for every properly containing semigroup 5. A class of semi-
groups Q is epimorphically closed if S G Q and a: 5 -» T is epi implies that T G 6.
A class of semigroups is saturated (absolutely closed) if all its members are
saturated (absolutely closed).

It is clear that every absolutely closed class is saturated, but the converse is
false: the variety of normal bands is saturated [13], although the 2 X 2 rectangu-
lar band is not absolutely closed [17, Theorem 2.9].

Now let Q be a morphically closed class of semigroups, that is, a class such that
Sot G & whenever S G Q and a: S -> T is a morphism. (Any variety is in
particular morphically closed.) It is easy to see that if Q is also saturated then it is
epimorphically closed. The converse is, however false: the variety of commutative
semigroups is epimorphically closed [18, Corollary 2.5], but is not saturated, since,
for example, the inclusion of an infinite cycle semigroup into an infinite cyclic
group is epimorphic.

A most useful characterization of semigroup dominions is provided by IsbelFs
Zigzag Theorem.

RESULT 1 [18, Theorem 2.3 or 16, Chapter 7, Theorem 2.13]. Let U be a
subsemigroup of a semigroup S and let d G S. Then d G Dom(t/, S) if and only if
d G U or there is a series of factorizations of d as follows: d = uoyi = xxuxyx =
xxu2y2 = x2u3y2 = • • • = xmulm_xym = xmu2m where m>\, M, G U, xt,y, G 5
with M0 = xxux, M2,_,^, = u2iyi+1, xtu2i = xi+lu2i+l (1 < / < m - 1) and

Such a series of factorizations is called a zigzag in S over U with value d, length
m and spine u0, u,, u2,... ,u2m. If m and n are positive integers and a is a function
f r o m { l , 2 , . . . , n } t o {1,2,...,m] t h e n / ( x , , x2,...,xm) = xa(i)xa(2) • • • xa(n) is a

typical semigroup product in the variables xx, x2,.. .,xm. The length of / will be
denoted by | / | and the number of occurrences of a variable xt in /will be denoted
by \x/\f. Whenever the variables xx, x2,...,xm are introduced it will be under-
stood that they are all distinct.

The notations and conventions of Clifford and Preston [4] and Howie [16] will
be used throughout without explicit reference.

The general question of when are epis onto and what properties are preserved
by epis have been studied in semigroup theory,' ring theory and elsewhere [2]. For
example, in [7] Gardner showed that epis are onto for regular rings. A proof that
the variety of commutative rings is epimorphically closed can be found in [1]
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although Gardner has shown that certain identities weaker than commutativity
are not preserved by epimorphisms of rings [8]. The author has shown [12] that
the absolutely closed varieties of semigroups are those consisting entirely of
Clifford semigroups or entirely of right groups or entirely of left groups. All
saturated varieties of commutative semigroups have been determined jointly by
the author and N. M. Khan ([14] and [19]) while in showing that all varieties of
commutative semigroup are epimorphically closed [19] Khan has generalised the
classic result of Isbell [18, Corollary 2.5] that commutativity is preserved by epis.
However finding a complete determination of all saturated and epimorphically
closed varieties of semigroups remains an open problem.

2. An example

We will construct a semigroup S, which satisfies no non-trivial identity, and
which is dominated by a subsemigroup U, which satisfies an identity </> if and only
if both sides of <f> contain a repeated variable.

Let F be the free semigroup on the countably infinitely many generators
{*,, x2,... ,a,, a2,... ,yx, y2,... }• Let A be the subsemigroup of F generated by
{ax, a2,...}. Let p0 be the relation on F consisting of the pairs (wv,w) and
(vw, w) for all words v of A, and all words w of A contained a repeated letter,
together with the pairs define by the zigzags: xn = a6n_2y2n = x2nabn_xy2n -
x2na6n for all n = 1,2,... and>-n = a6n+iy2n+l = x2n+la6n+2y2n+i = x2n+la6n+3

for all n = 0 ,1 ,2 , . . . , that is, (xn, a6n_2y2n), (a6n_2, x2na6n_x), (a6n_xy2n, a6n)
for all « = 1 , 2 , . . . and (yn,a6n+ly2n+l), (a6n+l, x2n+1a6n+2), (a6n+2y2n+l,
a6 n + 3) for all n = 0 ,1 ,2 , . . . ; we note that y0 is a symbol denoting axyx and is not
a generator of F. Let p be the congruence generated by p0 and put S = F/p and
U = Ap*. By construction Dom(f/, S) = S, and note that all words of A with a
repeated letter are in the same p-class which forms the 0 of U. We next show that
U ¥= Sby showing that j>op £ U.

First we introduce some convenient defintions. For an arbitrary elementary
p0-transition/>M# -»pvq withp, q E F 1 we call u the base and v the replacement of
the transition. Elementary transitions of the type pwvq -* pwq or pvwq -»pwq,
where p,q G F\ and their reversals, will be known as zero transitions. By a
forward transition we will mean one of the type pa6n-2q -> px2na6n_lq,
Pabn-Xylnq -pa6nq, pa6n+lq - px2lt+xa6ll+2q or pa6n+2y2n+1q -»pa6n+3q while
the corresponding reversals will be called backward transitions. Transitions of the
type pxnq -> pa6n_2y2nq and pynq ^ pa6n+xy2n+lq will be called upward transi-
tions and their reversals will be called downward transitions. Collectively, upward
and forward transitions will be called positive transitions while backward and
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downward transitions will be called negative transitions. A sequence of elementary
transitions I will be called positive of it consists entirely of positive transitions. A
set of the form {a3n_2, a3n_x, a^n = 1,2,..., will be called a companion set
and each member of the set is a companion of the other two. The companion sets
correspond to the spines of the above zigzags.

LEMMA 2. Suppose wpaxyx and let I: axyx -* • • • -> w' -» w be a shortest possible
sequence of elementary p0-transitions form axyx to w. Then the following conditions
are satisfied:

(i) w contains no repeated letter;
(ii) w does not contain two members from any one companion set;

(hi) / is positive;
(iv) no two transitions of I have the same base and any base of a transition in I

does not occur in w;
(v) there is a factorization w = wxw2

wi of w in F ' such that
(a) w2 = x m or w2 = a 3 m _ 2 y m , f o r s o m e m > ] ,
( b ) ifw2 = xm for some m> I, then w3 =fc 1,
(c) w3 is a product ofwords a3m, n = 1 ,2 ,3 , . . . , andain_xyn, n = 1 ,2 ,3 , . . . ;
(vi) there is a factorization w = vxv2v3 ofw in Fl such that
(a) v2 = ym or v2 = xma3m, for some m>\,
(b) ifv2 = ym for some m s* 1, then vx =£• 1,
(c) vx is a product of words a3n_2, n= 1 ,2 ,3 , . . . , and xnaJn_x, n = 1,2,3,

REMARK. It follows at once from either conditions (v) or (vi) that C(w) <£A
and so yop £ U as required.

PROOF. We proceed by induction on | / 1 , the number of transitions in /. If
| / | = 0 then conditions (i) to (vi) are evidently satisfied. Consider an arbitrary
shortest sequence / and suppose the lemma holds for the initial subsequence J:
a\y\ ~* • • • -» w' of / with w[, w2, w3 and v'x, v'2, v3 being subwords of w' satisfy-
ing conditions (v) and (vi) respectively.

We shall consider the transition w' -» w which is either (1) a zero transition, (2)
an upward transition based on some xn oxyn, (3a) a forward transition based on
a3n_2 for some n s* 1, (3b) a forward transition based on a3n_xyn for some n > 1
or (4) a negative transition. We shall show that cases (1) and (4) do not arise while
in cases (2), (3a) and (3b) the conditions (i) to (vi) of the lemma continue to hold.

By condition (i) applied to w' the transition w' -> w cannot be a zero transition
thereby eliminating case (1).

Next consider case (2) and suppose w' -> w has the form pxnq -»pabn-2y2nq
(the case where w' -> w is based on some yn is similar). By condition (iv), no
transition based on xn has occurred in / , and since xn is the base of the unique
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positive transition which introduces either of the letters a6n_2 or y2n, it follows
that w has not repeated letters, that is, w satisfies condition (i). Since the unique
positive transition which introduces a6n_i is based on a a6n_2, it follows that
a6«-i> a6n £ C(w) a n d so condition (ii) is satisfied by w, and of course that
condition (iii) is satisfied is clear, while condition (iv) follows from the facts that
the letters a6n_, and y2n have not appeared in J and w' has no repeated letters, so
that xn £ C(w). For condition (v) we note that if w2 is in q then we may take
wi — w!> ' = 2,3, otherwise w[ — p, w2 = xn and w3 = q whence we can take
w, = w[, w2 = abn_2y2n and w3 = w3'.

To prove condition (vi) we note that v3 can act as v2 if v'2 occurs in p, otherwise
v'2 occurs in xnq whence we may put c, = pabn_2, v2 = y2n and v3 — q.

Next we consider case (3a) where w' -» w has the form pa3n_2q -» pxna3n_xq
for some n > I. Since a3n_2 and a3n_! are companions, it follows that a3n_,is not
a repeated letter by condition (ii). If xn were repeated, then since J has no
negative transitions, this would imply that a forward transition based on a3n_2

occurred in / , which contradicts condition (iv), as a3n-2 appears in w'. Hence w
satisfies condition (i), and conditions (ii) and (iii) are clearly satisfied, condition
(ii) also following from the fact that a3n-2 and a 3 n - i aie companions. Condition
(iv) applied to w' shows that no transition based on a3n_2 occurred in / , which
implies condition (iv) holds for / . To show condition (v) holds, we note that if w2

occurs in q then w2 can serve as w2 in w, while w2 cannot occur in p. The
remaining case is wherepa3n_2q = pa3n-2ynq' whereynq' = q and w2 — a3n_2yn.
We then take w, = p, w2 = xn and w3 = a3n_xq. As for condition (vi) v'2 must
occur either inp or q and in either case we may take v2 = v'2.

In case (3b) w' -* w has the form pa3n_{ynq -> pa3nq. Conditions (i) to (iv) then
follow in the same way as for case (3a), while for condition (v) w2 occurs in either
p or q and can serve as w2 in w. As for condition (vi) we note that v'2 occurs either
in p, in which case it may serve as v2, or pa3n_tynq — p'xna3n_xynq where
p = p'xn with v\ = pa3n^{, v'2 = yn and v3 = q whence we may take c, = p',
V2 = XnaJn a n d U3 = ?•

Finally, we consider cases (4) where we suppose w' -> w is a negative transition
of the formpw*7 -* pvq. In this case, a positive transition of the form p'vq' -»p'uq'
for some p', q' S Fx has occurred in J, and by condition (iv) this is the unique
transition of / based on v. Hence no word of / preceding p'uq' contains u.
Observe that / contains no transition based on a subword of «, as this would
contradict condition (iv) since u occurs in w'. This allows us to construct a new
sequence, / ' : a,y{ -» • • • -> p'vq' -» • • • -> w, whose transitions are based on the
corresponding transitions of J, but with the transition p'vq' -»p'uq' deleted. In
detail, / ' is identical to / up to and including the appearance of the word p'vq',
and the words in / ' appearing after p'vq' correspond to the words of/ appearing
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after p'uq', except that in the words of / ' the subword v appears instead of u.
However, | / | = | / | — 2, contradicting our choice of / and so we conclude case (4)
does not arise, thus completing the proof.

LEMMA 3. The semigroup U satisfies an identity 4> if and only if both sides of <t>
contain a repeated variable.

PROOF. An identity <j> in which both sides contain a repeated variable is
satisfied by U, as both sides become 0 upon substitution of the variables of <j> with
any members of U.

Conversely, the subsemigroup of U generated by {a2, as,... , a 3 n _ | , . . . } is a
relatively free semigroup on countably infinitely many generators satisfying all
identities for which both sides contain a repeated variable, for if w is a product of
this set without repeats, there are no non-trivial p0-transitions from w. This
completes the proof.

Since U is properly epimorphically embedded in S it follows that no variety
containing U is saturated. This observation together with Lemma 3, implies that
any variety T which only admits non-trivial identities for which both sides
contain a repeated variable contains U, and so is not saturated. We will now show
that any such T is not epimorphically closed (unless it is the variety of all
semigroups) by showing that S generates the variety of all semigroups. We prove
this by showing that the subsemigroup S' of S generated by j ^ and a2y0 is a free
semigroup on two generators, and so contains a free semigroup on countably
infinitely many generators [6, Theorem 1], which satisfies no non-trivial identity.

LEMMA 4. Let w be a word F, u an arbitrary product ofa2y0 andy0 which we may
write as

where w(l) > 0, m(i) > 1 for all 1 < / < k, n(i) > 1 for all 1 < / < k, n(k) > 0.
Then wpu if and only if there is a factorization w = rlslr2s2 • • • rksk such that

(a) for all 1 *s /' < k each r, admits a factorization r: — a2pia2pii • • • a2pim

where each pi py0 and
(b) for all 1 < / < k each st admits a factorization st = qt(li2- • • qin where each

REMARK. The statement of the lemma says that wpu if and only if w has the
same form as that given for u, with each instance of y0 replaced by some word
p-related to y0.
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PROOF. The 'if part of the statement is immediate. To prove the converse we
let / : u -» • • • -> w' -> w be a sequence of elementary transitions from u to w, and
we assume inductively that w' can be factorized in the manner of the statement of
the lemma. We establish the lemma by showing that the base of the transition
H>' -> w s contained in one of the p 's or q 's occurring in this factorization.

If this were not the case, the base of w' -> w would be one of the following: (1)
a word of A containing a repeated letter; (2) a2t where t is the first letter of some
p; (3) ta2 where t is the last letter of some/? or (4) txt2 where /, is the last letter of
some/>m(;l) or q and t2 is the first letter of the following q.

In general, if vpy0 and t> = v'a where a is a word in A then by Lemma 2(v) we
have C(a) C {a3n, n~ 1,2,3,...} and dually, if i> = av' where a is a word of A
then by Lemma 2(vi) we have C(a) C {a3n_2, n= 1,2,3,.. .}. These sets are
disjoint and a2 is not a member of either. From this, and the fact that any word
p-related to yQ has no repeated letter (Lemma 2(i)), it follows that w' contains no
word of A with a repeated letter, and hence the transition w' -> w is not a zero
transition, and therefore case (1) does not arise.

For case (2) to arise we would have t = yx, but no word p-related to y0 begins
with >>, by Lemma 2(vi) so this is impossible. Similarly, case (3) cannot happen, as
no word p-related to y0 ends with xx by Lemma 2(v). Lastly, case (4) does not
arise as no word p-related to yQ begins with an a3n_1 by Lemma 2(vi), nor ends
with an a3n_] or a3n^2 by Lemma 2(v).

LEMMA 5. The semigroup S satisfies no non-trivial identity.

PROOF. We show that the subsemigroup S' of S generated by {y0, a2y0) is
freely generated by this pair. Let u, v £ S' and suppose upv with u =

K ^ r ^ o 0 ' • • • (a2yo)
m(k)yo

n(k\ v = (a2y0yWy«l) • • • (a2yQ)s('Vo'(/)- By
Lemma 4, u can be factorized in the form given for v with the _yo's replaced by
words p-related to y0. However by Lemma 2(iv), if ppy0 and y0 occurs in p then
p = y0, and since (y0, a2) $. p each p and occurring in this factorization of u
contains Jb, and so equals j>0, which implies u = v as required.

#
An identity / ( * , , x2,... ,xn) = g(xx, x2>.. -,xn) is heterotypical if C(f) ^

C(g); otherwise the identity is homotypical.
We can now give the main result of this section.

THEOREM 6. Suppose T is a variety not equal to the variety of all semigroups.
Then 'Vis epimorphically closed only if

(E) each set of identities which define "{contains a non-trivial identity for which
at least one side contains no repeated variable. Condition (E) is equivalent to the
condition that Tadmits a nontrivial homotypical identity of the form xxx2 • • • xn =
f(xux2,...,xn).
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Furthermore T w saturated only if
(S) each set of identities which define °\f contains a non-trivial identity, not a

permutation identity, for which at least one side contains no repeated variable.
Condition (S) is equivalent to the condition that °Vadmits a homotypical identity of
the form xxx2 • • • xn= f(xx, x2,... ,xn) with \ xt \f > 1 for some variable xt.

PROOF. Suppose T i s an epimorphically closed variety which is defined by a set
of identities / , and suppose further that for each non-trivial member of / both
sides contain a repeated variable. Then by Lemma 3, U £ T, which implies
S £ % and so by Lemma 5 we see that °\Tis the variety of all semigroups.

To show the equivalence of condition ( £ ) and the given condition, we let °Vbe
a variety admitting a non-trivial identity (j> for which at least one side contains no
repeated variable, xxx2 • • • xn = f(xx, x2,• • • ,xm). Replace each variable on the
right, which does not occur on the left by JC,, to get an identity </>': xxx2 • • • xn =
f'{xx, x2,. • . ,xn). Next suppose xt is a variable which occurs on the left of <t>', but
not on the right. It follows that the value of xxx2 • • • xn is independent of the
value assigned to xjy so we get xxx2 • • • xt • • • xn = xxx2 • • • (*,*,+, • • • xnxi)xi+x

• • * „ = / ' ( * i , x2,... ,xn)xtxi+, • • • xn, on replacing x, by x,xi+, • • • xnxf in <*>'.
Therefore <j> implies the identity xxx2 • • • xn= f'(xx, x2,... ,xn)xtxi+, • • • xn, and

repeating this procedure for each such xt eventually yields a homotypical identity
of the required type. Conversely take any variety T admitting a non-trivial
homotypical identity xxx2 • • • xn= f(xx, x2,... ,xn). Then by Lemma 3, U & T
and it follows again by Lemma 3, that any defining set of identities for T must
contain one of the required type.

To prove the next statement, we consider the example in [14] of a non-saturated,
commutative semigroup, which satisfies every identity for which both sides
contain a repeated variable. If T i s any saturated variety, this semigroup is not
included in T, and so each set of defining identities for T must include a
non-trivial identity, not a permutation identity, for which at least one side
contains no repeated variable. The equivalence of condition (S) to the stated
condition can now be proved in rfhe same way as we proved the equivalence of
condition (E) and the other condition.

3. Semigroups admitting a heterorypical identity

The following is a list of definitions of six 'nil' conditions on a semigroup S
with a zero 0.

S is nil if given x G S there exists a positive integer n = n(x) such that
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(NB) S is nil-bounded if there exists a positive integer n such that x" = 0 for all

x G S .

(L71) S is left T-nilpotent if given a list x,, x2, x3>... of elements of S there
exists a positive integer n = (x,, x2, *3>- • •) s u c n t n a t ^I-*^ ' ' *» = 0.

S is rig/if T-nilpotent if given a list x,, x2, x3, . . . of elements of S there
exists a positive integer n — n(xx, x2, *3,. • •) such that xnxn_, • • • x, = 0.

(T) is T-nilpotent if 5 is both left and right T-nilpotent.

(iVP) 5 is nilpotent if there exists a positive integer n such that S" = 0.

For 5 satisfying condition (NB), the least integer « such that JC" = 0 for all
x G S we will call the index of 5.

The implications that exists between these conditions are as follows: (NP)
implies (T), which implies both (LT) and (RT), which each imply (TV), and
(NP) also implies (NB), which implies (Af). For commutative semigroups,
conditions (LT), (RT) and (T) are clearly equivalent, but otherwise the list of
implications is the same. It is routine to construct counter examples to prove there
are no implications except those given above. The only case of some difficulty
involves showing that the conditions (LT) and (RT) are not equivalent. The
semigroup 5 with zero 0 and non-zero elements the ordered pairs of positive
integers (/, j), such that i <j, with multiplication according to the rule that

is the right T-nilpotent but not left T-nilpotent. This example first appears in [21].
The origin of the concept of T-nilpotency is in ring theory; see for example [1] or
[9].

A variety *Yis called heterotypical if it admits a heterotypical identity; otherwise
"Y is homotypical. The structure of the members of a heterotypical variety is
described by the following result due to Chrislock [3].

RESULT 7. For a semigroup S the following are equivalent:
(1)5 satisfies a heterotypical identity;
(2) S satisfies a heterotypical identity of the form (xmymxm)m = xm for some

w > 1;
(3) S is an ideal extension of a completely simple semigroup whose structure group

satisfies xr = 1, (for some r > I), by a nil-bounded semigroup of index r.
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Bulazewska and Krempa [1] have shown that left [right] T-nilpotent rings are
saturated. We now give some similar results for semigroups, which were derived
jointly with T. E. Hall, and which when combined with Result 7 will give a partial
converse to Theorem 6.

THEOREM 8. An ideal extension of a saturated semigroup by a T-nilpotent
semigroup is saturated.

PROOF. Let / be an ideal of a semigroup U, such that / is saturated, U/I is
T-nilpotent and suppose U is properly epimorphically embedded in a semigroup
S. Let d G S\U, and suppose Z is a zigzag with value d, and shortest possible
length m, in S over U. By the zigzag theorem we may successively rewrite u2iyi+i,
i = 0 ,1 , . . . ,m - 1 as u2iy,+ x = M2 I-4/V/+I = «2/4V"^V/+i = • • •. where each
u2

j) G U, y£i\ G S, and by left T-nilpotency we have for some «,, u2iyi+x =
u2i[u(

2}u2
2} • • • M2"')].y/"'l

), where the bracketed term is an element of the ideal / of
U which we rename st, we rename yft$ as y'i+x. Using right T-nilpotency we can
rewrite each x,u2/_,, i= l,2,...,m as x'itiu2i-i where tt G / , and so we can
construct a new zigzag Z ' with value d, whose spine consists entirely of elements
of the ideal / :

= x ' i ( t i u 2 i s i + l ) y [ + l = x ' i + x ( t i + ] u 2 i + l s i + l ) y ; + l = •••

= x'm{tmulm_lsm)y'm = x'm(tmu2m)

w h e r e uosl = x[txuxsx, x'itiu2isi+x = x'i+xti+xii2i+xsi+x f o r a l l l « s / < w - l ,

tiu2i-\siy'i = ',"2/s,+iJ/+i f o r all 1 < / < w - 1 and tmu2m_xsmy'm = tmu2m, and
the bracketed terms form the spine of the zigzag Z'.

Since Z has shortest possible length, clearly xx, x2,...,xm, yx, y2,. ..,ym G
S\U, so the new zigzag Z ' shows that d is in the dominion of / in ( / U (S\U)),
the subsemigroup generated by / U (S\U). Thus / is epimorphically embedded
in ( / U (S\U)), a contradiction. The proof is complete.

It is natural to ask whether or not this theorem is true if the condition of
T-nilpotence is replaced by one of the weaker conditions of left T-nilpotence of
nil-boundedness. The answer in the latter case is 'no', because in [14] the author
has given an example of a commutative semigroup satisfying x2 — 0, which is not
saturated. However the question of whether or an ideal extension of a saturated
semigroup by a left T-nilpotent semigroup is necessarily saturated remains
unanswered.
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THEOREM 9. An ideal extension of (a) a regular saturated semigroup, or (b) a
finite saturated semigroup, by a left T-nilpotent semigroup is saturated. In particu-
lar, left T-nilpotent semigroups are saturated.

PROOF. Case (a). Let U be an ideal extension of a regular saturated semigroup
/, such that U/I is a left T-nilpotent semigroup. Using left T-nilpotency as in the
proof of Theorem 8 we can replace each u2iyi+\ by u2jsi+xy'j+x. This gives a new
zigzag Z' with value d, for which each element of the spine is a member of the
ideal / , except perhaps the final one, u2m. The final pair of lines of Z ' are
d=XmU2m-\S

my'm = XmU2m w i t h M2m-lSm^m = U2m- W e rename K2 m_,Sm aS 5
and since / is regular and s G /, there exists s' G V(s), and so we have u2m = sy'm
= ss'(sy^) = ss'u2m G /. Hence the spine of Z ' does consist entirely of members
of / . In the fashion of the proof of Theorem 8 we can now derive the contradic-
tion that / dominates the subsemigroup of S generated by / U (S\U).

REMARK. Note that the proof of the above result goes through under weaker
conditions than regularity: namely that for each s E I there exists an i £ / such
that ss = s.

PROOF (continued). Case (b). Let U be an ideal extension of a finite saturated
semigroup /, such that U/I is left T-nilpotent. Proceed as in (a), and construct a
zigzag Z' with value d for which each element of the spine is a member of / ,
except perhaps for the final one, u2m. The final two lines of Z ' have the form
xms2m-xym = xmu2m with slm_xym = u2m, s2m_x G /. Using the zigzag theorem
we successively factorize xm to get

— v - 0 ) / — y < 2 ) / / — . . . — Y - ( ' ) / / . . . / — . . .
Xm — Xm M ~~ Xm < 2 M "~ ~ Xm lili-\ M ~

Consider the corresponding sequence in / : txs2m_i,t2txs2m_x,. . . ,titi_x

• • • t\s2m~u" ' • Since / is finite there exist some i, j , i <j such that /y-^_2

• • ' t\s2m-\ = ' , ' ,-1 • • • 'i*2m-i> w h i c h implies that /,?,_, • • • txs2m_x = tptiti_x

• • • txs2m_x, where t = tjtj_x • • • ti+x and p is any positive integer. Since U/I is
nil-bounded (left T-nilpotent in fact) there exists a positive integer p such that
f — s G /. This allows us to construct a new zigzag Z " with value d, which is the
same as Z', except the final two lines of Z " are x£)titi_x • • • txs2m_xym =

* « f y f - l - ' - ' l « 2 m W i t h V / - 1 • • •Mlm- l J 'm = ' , ' , - 1 • • " ' l «2« - T h i s l a S t S P i n e

member has a left identity s in / , and so is itself a member of / . The proof is now
complete as in Case (a).

COROLLARY 10. Any finite semigroup S satisfying a heterotypical identity is
saturated.
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PROOF. By Result 7, S is an ideal extension of a completely simple semigroup
by a nil-bounded semigroup. However, since the six listed nil conditions are
equivalent for finite semigroups [22,Theorem 1.2], we can replace 'nil-bounded'
by 'nilpotent' in the preceding statement. Since completely simple semigroups are
saturated [11, Theorem 1], the result now follows by Theorem 8.

The next result is known for commutative semigroups [17, Corollary 3.4].

COROLLARY II. A semigroup S is saturated if S" is saturated for some n > 1.

PROOF. Since S is a nilpotent extension of the ideal S", the result follows by
Theorem 8.

LEMMA 12. Let S be a semigroup satisfying a homotypical identity <#>: xxx2 • • • xn

= / ( * , , x2,... ,xn) for which / ( * , , x2,. •. ,xn) contains a repeated variable. Then
given a G 5" there exists c, d G S, e G E(S) such that a = ced.

PROOF. Note that | / | > n, and so <f> may be written in the form x^x2 • • • xn = u,w,
where | c , |= n, |M>, |s* 1 (where |w| means the length of the word w). We next
apply <f> to t>, and by repetition of this process we produce a sequence of identities
all implied by </>:

where |«,. |=n for all i = 1,2,... and |w,|> 1 for all / = 1,2,.... Note that
C(t>,) D C(v2) D • • •. Eventually we reach 4>k where k is the least integer such
that C(vk) = C(v,) for all l> k. Next let r > k be the least integer such that
there exists an integer m such that vr = vr+m. Then we have

< k + m : x l X l •••xn = t ) r ( » v r + m H ' r + m _ 1 • • • wr+l)wrwr_l •••wu

b+sm- X\X2 •••Xn = O r ( W r + » W r + » - l " " ' Wr+ 1 Y*>r*>r- 1 ' " " W\ '

for all positive integers s.
Replacing all variables of <j> by the single variable x we see that S satisfies

x>> = x\f\ a n ( j hence there exists an integer t, n < t < | / | , such that a' e E(S) for
all a e S. Now take a G S", so that a = axa2 • • • an say, for some a,, a2,... ,an

G S. Applying the identity <j>r+lm to a}a2 • • • an yields a = cb'd where c, b, d G S.
By the above comment 6' G E(S), thus completing the proof.
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LEMMA 13. The globally idempotent members of a variety of semigroups "(form a
subvariety if and only if they are completely regular.

PROOF. Suppose the globally idempotent members of T form a subvariety "{'.
Then "{' does not include the two element null semigroup, and so admits an
identity of the form x = xl+n for some n > 1, which implies that all members of
°V' are unions of groups.

Conversely let T ' be the class of all globally idempotent members of T and
suppose each such member is completely regular. Take S G T and a £ S. Since
S is completely regular there exists e £ E(S) such that ae = ea = a. The mono-
genic semigroup generated by a, {a) cannot be infinite for if it were T would
contain the subsemigroup Toi S,T= {e, a, a2,...} which is globally idempotent
but not completely regular. Now let U be a subsemigroup of S and take u £ U.
Since S is a union of groups, (u > is a periodic subsemigroup of a group and so
itself a group. Therefore U is completely regular. Since morphic images and direct
products of completely regular semigroups are completely regular, it follows that
the class of completely regular semigroups in T, namely T ' , is a subvariety, as
required.

COROLLARY 14. ̂ 4 semigroup variety "{consists entirely of nilpotent extensions of
completely regular semigroups if and only if T admits an identity of the form
xixi '" xn = (X\X2 '" • xny

+m for some m, n > 1.

PROOF. Suppose T consists entirely of nilpotent extensions of completely
regular semigroups but that there is no bound on the indices of the nilpotent
members of T. Then there exists a sequence of nilpotent semigroups in %
$^$2, ... such that index of 5, < index of Si+, for / = 1,2,.... Let T = 5, X S2

X • • •. No power of T is globally idempotent, but T £ T, a contradiction. Hence
there exists an n such that 5" is completely regular for all S £ T. It follows from
Lemma 13 that 'Vsatisfies x,x2 • • • xn — (xix2 • • • xM)1+m for some m > 1. The
converse is immediate.

THEOREM 15. Let "{be a variety of semigroups. The following are equivalent:
(i) T/s a saturated heterotypical variety;

(ii) "{is heterotypical and admits a homotypical identity of the form xxx2 •
= /"(JC,, x2, • • • ,xn) with | xi,\j > 1 for some variable xt\

(iii) "{is heterotypical and admits an identity of the form x^x2 • • • xn = (.
• ' ' xn)

l+m for some m, n> \;
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(iv) there exists a positive integer n such that S" is a completely simple semigroup
for all S G Y;

(v) Yconsists entirely of nilpotent extensions of completely simple semigroups.

PROOF. By the proof of Corollary 14 we have that conditions (iv) and (v) are
equivalent. We prove (iii) and (iv) are equivalent.

If Y i s heterotypical and admits the identity xxx2 • • • xn = (xxx2 • • • xn)
i+m,

then for any S G Ywe have S" is a union of groups, and so is a semilattice of
completely simple semigroups [16, Chapter IV, Theorem 17]. Since S" G Y" it
follows that S" satisfies a heterotypical identity, and so this semilattice is trivial.
Therefore 5" is a completely simple semigroup for all S G Y. Conversely, if S" is
completely simple for all 5 G Y, it follows by Lemma 13 that Y"' = {Sn: S E T }
is a subvariety of Y. Moreover, Y ' is heterotypical as it includes only trivial
semilattices, and Y ' satisfies x — xx+m for some m^\ as it excludes null
semigroups. Therefore Y i s heterotypical and admits the identity xxx2 • • • xn —

( X , x 2 - - - x n y + m .
We now show that (i) implies (ii), (ii) implies (iv) and (iv) implies (i).
(i) implies (ii). This follows immediately from Theorem 6.
(ii) implies (iv). Suppose Y i s heterotypical and admits the identity $: xxx2

• • • xn = f(xx, x2,...,xn) with |JC, |^> 1 for some variable xt. Given any 5 G Y,
then by Result 7, S is an ideal extension of a completely simple semigroup T, by a
nilbounded semigroup U. It suffices to show that U satisfies the identity xlx2

• • • xn = 0 .

Now <j> is an identity of the type described in Lemma 12. As in the proof of
Lemma 12, we construct the sequence {<>,},eN. In particular, (/> implies the
i d e n t i t y 4>r+sm: x x x 2 • • • * „ = vr(wr+mwr+m_] • • • wr+])

swrwr_l • • • w, w h e r e s is
the index of U, from which it follows that U satisfies the identity xxx2 • • • xn = 0
as required.

(iv) implies (i). It follows from Corollary 11 that Y i s saturated. If Ywere
homotypical it would contain the variety of semilattices, but for any non-trivial
semilattice S we have S = S" (for all n G Z + ) and S is not completely simple.
Therefore we conclude that Yis a saturated heterotypical variety, thus completing
the proof.

REMARK. N. M. Khan has independently proved that if a variety Y admits a
heterotypical identity for which one side has no repeated variable, then Y is
saturated.

The saturated commutative varieties form a sublattice of the lattice of all
commutative varieties [14, Theorem 5]. The characterizations given in Result 7 (2)
and Theorem 15 (iii) allow the method of [14] to be used to prove that the
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saturated heterotypical varieties form a sublattice of the lattice of all heterotypical
varieties.

4. Saturated homotypical varieties

In general it is not true that condition (5) of Theorem 6 is sufficient to ensure
that a homotypical variety °\ is saturated as the author has found an example of a
band which re not saturated [15]. In our next theorem we consider a condition
(T), more restrictive than (S), which does ensure that a homotypical variety is
saturated. The proof leads us to characterise several types of varieties which
consist of nilpotent extensions of semigroups from a particular saturated class of
semigroups Q. By Theorem 8, these varieties are saturated.

Finally we show that a condition (5"), less restrictive than (T), ensures that a
homotypical variety T i s saturated. However the approach here is manipulative
and does not reveal the structural information of the previous theorems of this
section.

THEOREM 16. A sufficient condition for a homotypical variety °V to be saturated is
(T) Tadmits an identity <f>: xxx2 • • • xn = / ( * , , x2,.. • ,xn) for which \xt\y> 1 for
some 1 < / ' < / ! , and such that f neither begins with x{ nor ends with xn.

PROOF. Suppose °V is a homotypical variety satisfying condition (T). By
Corollary 11, it suffices to show that S" is saturated. We will in fact show that S"
is a semilattice of groups and so is certainly saturated [16, Chapter VII, Theorem
2.14].

Take any a G S", by Lemma 12 there exist c, d G S, e G E(S) such that
a = ced. We show that a — ea — ae. Since « > 2 w e may write a = ce"~2(ed).
Then f(c, e, e,.. .,ed) begins with e, since / does not begin with xx, and hence
a = ea. Dually a = (ce)e"~ld and f(ce, e, e,.. .,d) ends in e, so a = ae as

claimed.
Now let x, be a variable which appears at least twice, say k times, in

/ (* , , x2,... ,xn). Then a = f(e, e,...,a,e,... ,e), where a occurs in the /th posi-
tion, and this in turn yields a = ak for all a E S". Hence S" is a union of groups,
and so is a semilattice completely simple semigroups [16, Chapter 4, Theorem 1.7].
It remains only to show that if T is a completely simple semigroup satisfying <j>,
then T is a group. Suppose e, / G E(T) and hat etf, so that e = ef - e/"~' .
Then e = f(e, f, f,...,f), which is a product in e and/beginning with/, and so
equals / . Hence e = / , and dually, if e<3lf, e, f G E(T), then e = f. Therefore T
has a unique idempotent, and so is a group.
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In view of this result it is natural to ask what varieties consist entirely of
nilpotent extensions of semilattices of groups. Of course, by Theorem 8, all such
varieties are saturated.

LEMMA 17. Let "(be a saturated variety. If S G T u an inverse semigroup then S
is a semilattice of groups.

PROOF. If S were not a semilattice of groups then it would follow that the five
element combinatorial Brandt semigroup, B2 is a member of T [10, Result 5].
However, B2 has a properly epimorphically embedded subsemigroup, U [18,
Example 3.1], and since U G T w e have a contradiction.

REMARK. The above proof was told to the author by T. E. Hall. We denote the
product of n distinct variables xix2 • • • xn by Xn.

THEOREM 18. For any semigroup variety 'V the following are equivalent.
(i) ^admits identities of the form Xn = Xx

n
+m, X™Yn

m = Yn
mX™.

(ii) There exists a positive integer n such that S" is a semilattice of groups for all
SET.

(iii) Tconsists entirely of nilpotent extensions of inverse semigroups.

PROOF. Clearly we have (ii) implies (iii) while the reverse implication follows
from Theorem 8, Lemma 17 and the argument used in Corollary 14 to show that
the indices of the nilpotent extensions are bounded by some integer n.

Observe that a semigroup variety consists entirely of semilattice of groups if
and only if it admits identities of the form x = xx+m and xmym - ymxm. From
this it is clear that (i) implies (ii) while the reverse implication also follows from
this observation together with Lemma 13.

A special case of the above result allows us interesting characterization.

THEOREM 19. For any semigroup variety °V the following are equivalent.

(i) T a d m i t s identities of the form Xn = X*+m and \p: x , x 2 • • • xk — xx^x2^

• • • xk7r, where k > 1 and TI is a permutation on {1 ,2 , . . .,k), such that lw ^ 1,

kn^k.
(ii) "Ysatisfies condition (S) and admits a permutation identity as in (i).

(iii) There exists an integer n such that S" is a commutative semilattice of the
groups.

(iv) T consists entirely of nilpotent extensions of commutative semilattices of
groups.
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PROOF, (i) implies (ii). This is immediate.
(ii) implies (iii). By Lemma 12, if a G S" there exist c, d G S, e G E(S) such

that a — ced = cek~xd. By applying \p to cek~l and ek~xd in turn we conclude
that a = ea = ae. As in the proof of Theorem 16, we conclude that S" is a
semilattice of completely simple semigroups and that these completely simple
semigroups are groups. These groups also satisfy ^, and so are abelian. Hence S"
is a semilattice of abelian groups and hence is commutative as it is a strong
semilattice of abelian groups [16, IV, Theorem 2.1].

(iii) is equivalent to (iv). This follows as in Theorem 18.
(iii) implies (i). From (ii) implies (i) in Theorem 18, we have that °V admits an

identity Xn = Xx+m for some m, n> 1. Further, since S" is commutative for all
S G % we have Tadmits the identity x |x 2 • • • x2n = xn+xxn+2 • • • x2nxxx2 • • • xn,
which is of the form required.

A corollary of the result, via Theorem 8, is that if a variety T satisfies condition
(S) and admits a permutation identity of the form in Theorem 18, then T is
saturated. N. M. Khan has shown [20, Theorem 3.1] that this remains true for an
arbitrary, non-trivial permutation identity.

Finally we characterize a class of saturated varieties which include all those of
Theorems 18 and 19.

THEOREM 20. For any semigroup variety 'V the following are equivalent.
(i) "Vadmits identities of the form Xn - X*+m, X™Yn

mZ™Wn
m = X™Z™Yn

mWn
m.

(ii) There exists an integer n such that S" is a semilattice of rectangular groups
with normal subband. *

(iii) "{consists entirely of nilpotent extensions of generalised inverse semigroups.

REMARK. A generalised inverse semigroup is a regular semigroup whose
idempotents form a normal band. Generalised inverse semigroups are saturated
[13, Theorem 4].

PROOF, (i) implies (ii). By the proof of Corollary 14 there exists an integer n
such that S" is completely regular for all S e T. The second identity implies that
the idempotents of S" form a normal subband and that each completely simple
subsemigroup of S is orthodox, and so is a rectangular group [4, Section 3.2,
Exercise 2(b)].

(ii) implies (i). Since S" is completely regular for each S G "V, we have by
Corollary 14 that Tadmits the identity Xn = Xx

n
+m for some m> I. That the

second identity is admitted by T follows from the fact that the idempotents of
each S G Tsatisfy the identity xyzw = xzyw.
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(ii) implies (iii) is immediate.
(iii) implies (ii). Once more, by the argument of Corollary 14, there exists an

integer n such that 5" is a generalised inverse semigroup for all S E T . Moreover,
the maximum inverse semigroup image of S" is completely regular by Lemma 17.
It follows from the Hall-Yamada characterization of orthodox semigroups
[16, Chapter VI, Theorem 4.6] that S" is also completely regular and so S" is a
semilattice of rectangular groups.

We next prove a technical lemma which is based on an argument due to N. M.
Khan [19, Theorem 3.1], but our hypotheses are much more general than those of
the original.

LEMMA 21. Let U be a proper subsemigroup of a semigroup S. Let x, y G S such
that for any integer m there exist a,, a2,... ,am, bx, b2,...,bmG U and x', y' E S
such that x = x'axa2 • • • am, y = bxb2 • • • bmy'. Suppose that for all x, y G S as
above, and all u,vGU the following conditions are satisfied:

(i) xuy = xuwuy for some w (E U1,
(ii) xuvy = xvs(u)y = xs'(v)uy where s(u) [s'(v)] is a product of members of U

containing u[v].
Then U is not epimorphically embedded in S.

PROOF. We repeatedly use the fact that if x and y are members of S satisfying
the above factorization condition then so are xa and by for all a, b G U. This will
be done without comment.

Suppose to the contrary that Dom(f/, S) = S. Let d G S\U and take a zigzag
in S over U with value d of minimum length m as in Result 1 (the minimality of m
implies that x,, yt G S\U for all i• = 1,2,.. . ,m). Then

as JC,, yx G S\U and so satisfy the factorization condition by Result 1 and the
assumption that Dom(U, S) — S, whence the second line follows by hypothesis
(i) for some H>, G Ul. Hence we have

d = xiu]wlu2y2 (by the zigzag equations)

= x}u2sl(u1)y2,

by hypothesis (ii) applied to xl(uiwl)u2y2. (Strictly, we might write 5,(1/,^,) but it
is enough to have that «, occurs in the product sl(ulwi) so we abbreviate to
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Hence we have

d = x2u3si(u] )y2 (by the zigzag equations)

= x2u3w2u3si(u1)y2 (by applying (i) to x2u3(s](u1)y2))

— x2u3w2s'2{sx{u\))u3y2 (by applying the second part of (ii)

to (x2u3w2)u3sl(ui)y2).

We amalgamate the product w2s'2(sl(ul)) notationally by writing simply s2(ut).
We continue working down the zigzag,

d = x2u3s2{ux)uAy3

— x2u4s3(ul, u3)y3 for somes3(uu u3) G U

such that both «, and u3 occur in a factorization of the product s3(uu u3). Again
(ii) is used to establish this. Eventually we reach

d = xmu2m_\Sm{uuu3,u<,,...,u2m^3)u2m_xym

ending the first stage of the argument.
Now going up the zigzag we get

d = xm-lU2m-2Sm(ul> U3> U5 ' • • • > M 2m-3 )U2m~ 1 Jm

= *m-l"2m-3'm-l(«l>M3>"5,---,M2m-5)"2m-1.>;m

where tm_, £ U which allows a factorization in which each of u,, «3, u5,..., u2m_5

occur. To obtain this line we again have employed the commutativity hypothesis.
Continuing we get

d = Xm-2U2m-4tm-lU2m-\ym

= xm-2u2m^.5tm_2{uu u3, us,... ,u2m^1)u2m^lym

= xiuit]a2m_{ym where/, G 1/
= uottu2m e ^> a contradiction as required.

LEMMA 22. Let 'Ybe a variety satisfying condition (S). Then there exists k s* 1
such that for any UE% u G U and e e E(U), eue = (eue)l+rk for all r =
0,1,2, . . . .

PROOF. The semigroup U satisfies an identity of the form xxx2 • • • xn =
/ ( * , , x2,...,xn) with | J C ^ > 1 for some /. Substituting eue for xt and e for all
other variables in the identity gives eue = (eue)l+k where k=\xt\f— 1, from
which the result follows.
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LEMMA 23. Suppose that U is a subsemigroup of a semigroup S and that U
satisfies the identity

xix2---xm=fi(xi,x2,...,x()f2(xi+l,xi+2,...,xm) whereO^i<m- 1,

and that f2 does not begin with xi+i. Then for all x G S satisfying the factorization
condition of Lemma 21, and all c G U, e G E(U), xce = xece.

PROOF. We assume i: > 1, since the / = 0 case is similar. Factorize x over U as
x — x'u{u2 • • •« , = x'u' say. Then

xce = x'u'ce = x'fl(ul,u2,...,ui)f2(c, e,e,...,e)

= x'f](uuu2,...,ui)f2(ec, e,e,...,e)

(because f2 does not begin with xi+,)

= x[u'ece = xece as required.

LEMMA 24. Supose °V~ is a variety satisfying condition (S) and admitting an
identity of the form

X\X2 • • • Xm— fy\Xx, X2,. . . ,Xj)f2{xi+],. . . ,Xm)

= g1(xi,x2,...,xj)g2(xJ+l •••xm)

with 0 < i < m — 1, 1 <j «£ m, such that f2 does not begin with x,+ 1 and gx does
not end in Xj. (Note gxg2 is a factorization of fxf2 and not a different word.) Let
U G 'Vand U be epimorphically embedded in a semigroup S. Then for allx, y G S \U
and u G U" there exists e G E{U) such that xuy = xu(eue)k~luy for some k > 1.

PROOF. By Lemma 12 there exist c, d G U, e G E(U) such that u = ced. Hence

xuy = xcedy = xecedy (by Lemma 23)

= xecedey (by the dual of 23)

= xeuey = x(eue) y (for some k > 1, by Lemma 22)

/ \*-l I \k-\

= xeu(eue) uey = xu(eue) uy
(by the reverse of 23 and its dual).

LEMMA 25. Let % S and U be as in 24. Let x, y G S\U and u,vE U", Then
xuvy = xvs(u)y = xs'(v)uy for some s(u), s'(v) G U" such that u occurs in some
factorization of s(u) over U, and v occurs in some factorization of s'(v) over U.
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PROOF. By Lemma 12 there exist c, d G U, e G E(U) such that v = ced,
whence

xuvy = xwceafy = xewra/y (by 23)

= xeucedey (by the dual of 23)

= xeuecedey (by 23)

Now, for the identity xlx2---xm = fx(xu x2,... , x , ) / 2 ( x , + , , . . . , xm) we have,
by hypothesis, that the first variable of the word f2 is xk say where k ¥= i + 1.
Now we have

+ i = ew, x^ = et>, */ = e for all / ^ / + 1, A:)

where s(eH) G U affords a factorization in which eu occurs at least once. Hence
xuvy = xeuevey = xevs(eu)y = xvs(eu)y (using the reverse of 23 to absorb the
idempotent e into s(eu)). Therefore xuvy = xvs(u)y, where s(u) = s(eu), as
required. The second part of the lemma follows by the dual argument.

Collecting these lemmas together gives us our main result of this section.

THEOREM 26. A sufficient condition for a variety 'Yto be saturated is
(5') °Hsatisfies condition (S)of Theorem 26 and admits an identity of the form

= g\{xi,x2,...,Xj)g2(xJ+l,...,xm)

with 0 =s ; < m — 1, 1 <j *£ m, such that f2 does not begin with xi+, and g, does
not end with Xj.

PROOF. Let U G "V and suppose U is properly epimorphically embedded in a
semigroup S. Then, as in the proof of Theorem 8, we have that U" is properly
epimorphically embedded in the subsemigroup of S generated by S\U U U".
However Lemmas 24 and 25 allow us to invoke Lemma 21, and hence derive a
contradiction.

COROLLARY. 27. A variety T admitting a non-trivial permutation identity is
saturated if and only if it satisfies condition (S).

PROOF. Any non-trivial permutation identity is of the kin<| described in
Theorem 26 whence the result follows.
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REMARK. N. M. Khan first proved that permutative varieties satisfying condi-
tion (5) are saturated in [20, Theorem 31].

The following corollary is also a particular case of the Theorem 26, but does
provide a clear generalisation of Theorem 16 which is the case where i - OJ — n.

COROLLARY 28. Let "Ybe a variety admitting an identity of the form

xiX2---xn=fl(xl,x2,...,xi)f2(xi+l,...,xJ)f3(xJ+i,...,xn)

where 0 < /', / + 1 <j < n, such that the right hand side contains a repeated
variable and f2 does not begin with xi+] nor end in Xj. Then "(is saturated.
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