A GENERALIZATION OF WYTHOFF'S GAME*

Ian G. Connell
(received June 2, 1959)

1. Wythoff's game. W.A. Wythoff [1] in 1907 defined a modification of the game of Nim by the following rules:
(i) there are two players who play alternately;
(ii) initially there are two piles of matches, an arbitrary number in each pile;
(iii) a player may take an arbitrary number of matches from one pile or an equal number from both piles but he must take at least one match;
(iv) the player who takes the last match wins the game.

If, after his move, a player leaves one match in one pile and two in the other he can force a win; for if his opponent takes one match from the pile containing two he can take both remaining matches; and similarly for the other possibilities. Thus $(1,2)$ is called a winning pair and in Table I each pair (u_{n}, v_{n}) is a winning pair in the following sense:
(a) in a single move a player can change a non-winning pair into a winning pair;
(b) any move will change a winning pair into a nonwinning pair. (These statements are special cases of Theorem 2 below).

[^0]Can. Math. Bull., vol. 2, no.3, Sept. 1959

If a player's move results in a winning pair (u_{n}, v_{n}) his opponent's move will result in a non-winning pair which he can transform into a winning pair ($u_{n}{ }^{\prime}, v_{n}{ }^{\prime}$) on his next move. Thus he can force a win, for ultimately his move will result in the pair $(0,0)$ which means he took the last match.

n	u_{n}	v_{n}
0	0	0
1	1	2
2	3	5
3	4	7
4	6	10
5	8	13
6	9	15
7	11	18
8	12	20
9	14	23
10	16	26

Table I

The table was constructed by the rules:
(1) $u_{0}=0$;
(2) $v_{n}=u_{n}+n$;
(3) u_{n} is the least positive integer distinct from the $2 n$ integers $u_{0}, u_{1}, \ldots, u_{n-1}, v_{0}, v_{1}, \ldots, v_{n-1}$. Thus each positive integer occurs just once in the sequences

$$
\left\{u_{n}\right\},\left\{v_{n}\right\}, n=1,2,3, \ldots,
$$

and for this reason $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are called complementary sequences.

Explicit formulas for u_{n} and v_{n} are

$$
\begin{align*}
& u_{n}=\left[\frac{1}{2} n(1+\sqrt{ } 5)\right], \tag{1}\\
& v_{n}=\left[\frac{1}{2} n(3+\sqrt{ } 5)\right], \tag{2}
\end{align*}
$$

where square brackets denote the integral part function. (These formulas are special cases of Theorem 1.)
2. The generalized game. Define the $k-W y t h o f f$ game by the rules:
(i) there are two players who play alternately;
(ii) initially there are two piles of matches, an arbitrary number in each pile;
(iii) a player may take an equal number of matches from both piles or a multiple of k matches from one pile but he must take at least one match;
(iv) the player who cannot make a legitimate move loses the game.

The original Wythoff game corresponds to $\mathrm{k}=1$.
The set of all winning pairs is characterized by the following three properties:
(a) an arbitrary pair is in the set or can be reduced to a pair in the set in just one move;
(b) a move on a pair in the set produces a pair not in the set;
(c) all pairs on which no legitimate move can be made are in the set.

As we saw in the case $k=1$, if a player's move creates a winning pair his opponent's move will create a losing pair which he in turn can reduce to a winning pair. By repeated application of this strategy he will ultimately win.

Define the following k pairs of sequences:

$$
\begin{equation*}
u_{i, n}=[(n+i / k)(1+l / A)], \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
v_{i, n}=[(n+i / k)(1+A)], \tag{4}
\end{equation*}
$$

for $i=0,1,2, \ldots, k-1$, and $n=0,1,2,3, \ldots$, where

$$
\begin{equation*}
A=\frac{1}{2}\left(k+\sqrt{k^{2}+4}\right) \tag{5}
\end{equation*}
$$

For $k=1,2,3, \ldots A$ is irrational since the continued fraction expansion is infinite:

$$
A=k+\frac{1}{k+} \frac{1}{k+} \cdots
$$

However we can show this directly. For suppose $k^{2}+4=a^{2}$. If k is odd then $\mathrm{k}^{2} \equiv 1 \bmod 8$ and $\mathrm{a}^{2} \equiv 5 \bmod 8$, which is impossible. If $k=2 \mathrm{k}_{1}$ then $\mathrm{a}=2 \mathrm{a}_{1}$ and $\mathrm{k}_{1}{ }^{2}+1=\mathrm{a}_{1}{ }^{2}$, which is also impossible. Hence $k^{2}+4$ cannot be a perfect square and A is irrational.

Now $u_{i, o}=0$ since

$$
u_{i, o} \leqslant[(1+1 / A)(k-1) / k]
$$

and we must show that

$$
(1+1 / A)(k-1) / k<1
$$

i.e., $(k-1)(1+A)<k A$, or $k-1<A$, and squaring, this is $k^{2}-2 k+1<k^{2}+4$, which is true for $k=1,2,3, \ldots$.

Since

$$
\begin{gathered}
1+A=1+A-1+k \\
v_{i, n}=u_{i, n}+n k+i
\end{gathered}
$$

Thus $v_{i, o}=i$.
Defining $\mathrm{v}_{\mathrm{k}, \mathrm{n}-\mathrm{l}}=\mathrm{v}_{\mathrm{o}, \mathrm{n}}$ we have,
THEOREM 1. The sequences $\left\{u_{i}, n\right\}$ and $\left\{v_{k-i, n-1}\right\}$ for $\mathrm{n}=1,2,3, \ldots$ and for each value of $\mathrm{i}=0,1,2, \ldots, \mathrm{k}-1$, are complementary.

Proof. By (4)

$$
\begin{equation*}
v_{k-i, n-1}=[(n-i / k)(1+A)] . \tag{7}
\end{equation*}
$$

Now $u_{i, n} \geqslant 1$ for $n \geqslant 1$ and $i=0,1, \ldots, k-1$. By (6) $v_{k-i, n-1} \geqslant 1$ for $n \geqslant 1$ and $i=1,2, \ldots, k-1$. Also $v_{k, n-1}=v_{o, n} \geqslant 1$ for $n \geqslant 1$. Thus for a given i the two sequences consist of positive integers.

Suppose the first N positive integers contain r members of $\left\{u_{i}, n\right\}$ and s members of $\left\{v_{k-i}, n-1\right\}$. Then by (3) and (7),

$$
(\mathrm{r}+\mathrm{i} / \mathrm{k})(1+1 / \mathrm{A})<\mathrm{N}+1<(\mathrm{r}+1+\mathrm{i} / \mathrm{k})(1+\mathrm{l} / \mathrm{A})
$$

or

$$
(r+i / k)(1+A)<(N+1) A<(r+1+i / k)(l+A),
$$

and

$$
(s-i / k)(1+A)<N+1<(s+1-i / k)(1+A) .
$$

(Strict inequalities since A is irrational.) Adding the last two lines and dividing the result by $1+A>0$ we get

$$
\mathrm{r}+\mathrm{s}<\mathrm{N}+1<\mathrm{r}+\mathrm{s}+2
$$

or, since all these quantities are integers,

$$
\mathbf{r}+\mathbf{s}=\mathrm{N}
$$

Thus the first N integers contain N members of the two sequences. Hence the first $N+l$ integers contain $N+1$ members and this ($\mathrm{N}+1$) st member must be the integer $\mathrm{N}+\mathrm{l}$. Therefore each integer occurs precisely once and the sequences are complementary.

THEOREM 2. The set of winning pairs for the $k-W y t h o f f$ game comprises the k sets

$$
\begin{equation*}
\left\{\left(u_{i}, n, v_{i}, n\right)\right\} \quad, n=0,1,2,3, \ldots, \tag{8}
\end{equation*}
$$

for $i=0,1,2, \ldots, k-1$.
Proof. We deal separately with the three properties which characterize the set of winning pairs.

Proof of property (a): If (x, y) is not a pair of type (8) we must show that it can be reduced to such a pair by a single move. Clearly the order of the piles is immaterial and we can assume $\mathrm{x} \leqslant \mathrm{y}$. Let $\mathrm{y}-\mathrm{x} \equiv \mathrm{i} \bmod \mathrm{k}$ so that

$$
\begin{equation*}
y=x+i+r k \tag{9}
\end{equation*}
$$

where $r \geqslant 0$ and $0 \leqslant i \leqslant k-1$.
By Theorem 1 either:

$$
\text { (i) } x=0 \text {; }
$$

(ii) $x=u_{i}, n, n \geqslant 1$; or
(iii) $x=v_{k-i}, n-1, n \geqslant 1$.
(i) In this case

$$
x=u_{i, o}=0, y=i+r k
$$

If $r=0$ the pair (x, y) is the pair ($u_{i}, 0, v_{i}, 0$) which is of type (8). If $r>0$ the pile y can be reduced by rk matches to give this pair.
(ii) We distinguish three cases:

$$
\begin{aligned}
& (\alpha) y>v_{i, n} ; \\
& (\beta) y=v_{i, n} ; \\
& (\gamma) y<v_{i, n} .
\end{aligned}
$$

$(\alpha) y=x+i+r k=u_{i, n}+i+r k=v_{i, n}+(r-n) k$. Thus the pile y can be reduced by $r-n>0$ multiples of k to yield the pair $\left(u_{i, n}, v_{i, n}\right)$.
(β) The pair (x, y) is already of type (8).
(γ) In this case $r<n$. Take s matches from each pile so that $x-s=u_{i, n}-s=u_{i}, r$. Then $y-s=x+i+r k-s=u_{i}, r+i+r k=v_{i, r}$, and the pair (x, y) has been reduced to ($u_{i, r}, v_{i}, r$) where $r \geqslant 0$.
(iii) Now

$$
y \geqslant x=v_{k-i, n-1}>u_{k-i, n-1},
$$

so that

$$
\begin{aligned}
y & =x+i+r k=v_{k-i, n-1}+i+r k \\
& =u_{k-i, n-1}+k-i+(n-1) k+i+r k \\
& =u_{k-i, n-1}+(n+r) k
\end{aligned}
$$

and the move is obvious.
Proof of property (b): We must show that a move on a pair of type (8) produces a pair not in the set. Now

$$
\mathrm{v}_{\mathrm{i}, \mathrm{n}} \equiv \mathrm{u}_{\mathrm{i}, \mathrm{n}}+\mathrm{i} \bmod \mathrm{k}
$$

and this congruence is preserved by any move, since

$$
\begin{aligned}
v_{i, n}-s & \equiv u_{i, n}+i-s \bmod k \\
v_{i, n}-r k & \equiv u_{i, n}+i \bmod k
\end{aligned}
$$

and

$$
v_{i, n} \equiv u_{i, n}+i-r k \bmod k
$$

The only pairs in the set (8) which satisfy this congruence are pairs of the types ($u_{i}, n^{\prime}, v_{i}, n^{\prime}$) and ($u_{k-i}, n^{\prime}, v_{k-i, n^{\prime}}$), the latter because
i.e., $\quad u_{k-i, n^{\prime}} \equiv v_{k-i, n^{\prime}+i \bmod k}$.

Suppose a move on the pair ($u_{i, n}, v_{i, n}$) gives the pair ($u_{i}, n^{\prime}, v_{i}, n^{\prime}$). Then $n^{\prime}<n, u_{i}, n^{\prime}<u_{i, n}$ and $v_{i, n^{\prime}}<v_{i, n}$ so that the move must have removed s matches from each pile. By (6)

$$
\begin{array}{lrl}
& v_{i, n}-s=u_{i, n}-s+n k+i, \\
\text { i.e., } & v_{i, n^{\prime}}=u_{i, n^{\prime}}+n k+i,
\end{array}
$$

which is impossible by (6).
On the other hand suppose the move yields the pair $\left(u_{k-i, n^{\prime}}, v_{k-i, n^{\prime}}\right)$. Since $u_{i, n}<v_{i, n}$ for all i and n (except $u_{0,0}=v_{0,0}=0$), the move must have removed a multiple of k matches from the pile $v_{i, n}$ so that

$$
u_{i, n}=v_{k-i, n^{\prime}}
$$

and

$$
v_{i, n}-r k=u_{k-i, n^{\prime}}
$$

But the former equation violates the complementarity property of the sequences $\left\{u_{i}, n\right\}$ and $\left\{v_{k-i, n^{\prime}}\right\}$.

Thus no move on a pair ($\mathrm{u}_{\mathrm{i}, \mathrm{n}}, \mathrm{v}_{\mathrm{i}, \mathrm{n}}$) will produce a pair in the set (8).

Proof of property (c): All the winning pairs on which no legitimate move can be made are clearly

$$
(0,0),(0,1), \ldots,(0, k-1) ;
$$

that is, $\left(u_{0,0}, v_{0}, 0\right),\left(u_{1,0}, v_{1,0}\right), \ldots,\left(u_{k-1,0}, v_{k-1,0}\right)$, and these are included in the set (8).

This completes the proof of Theorem 2.
Following are short tables of winning pairs for the first few k-Wythoff games. They were constructed with the use of Theorem 1 , thus obviating the direct evaluation of (3) and (4).
$k=2:$

n	$u_{o, n}$	$v_{o, n}$	$u_{1, n}$	$v_{1, n}$
0	0	0	0	1
1	1	3	2	5
2	2	6	3	8
3	4	10	4	11
4	5	13	6	15
5	7	17	7	18
6	8	20	9	22
7	9	23	10	25
8	11	27	12	29
9	12	30	13	32
10	14	34	14	35
11	15	37	16	39
12	16	40	17	42

$\mathrm{k}=3:$

n	$u_{0, n}$	$v_{0, n}$	$u_{1, n}$	$v_{1, n}$	$u_{2, n}$	$v_{2, n}$
0	0	0	0	1	0	2
1	1	4	1	5	2	7
2	2	8	3	10	3	11
3	3	12	4	14	4	15
4	5	17	5	18	6	20
5	6	21	6	22	7	24
6	7	25	8	27	8	28
7	9	30	9	31	9	32
8	10	34	10	35	11	37
9	11	38	12	40	12	41
10	13	43	13	44	13	45
11	14	47	14	48	15	50
12	15	51	16	53	16	54

$\mathrm{k}=$ 4:

n	$\mathrm{u}_{0, n}$	$\mathrm{v}_{0, n}$	$\mathrm{u}_{1, n}$	$\mathrm{v}_{1, n}$	$\mathrm{u}_{2, \mathrm{n}}$	$\mathrm{v}_{2, n}$	$\mathrm{u}_{3, n}$	$\mathrm{v}_{3, n}$
0	0	0	0	1	0	2	0	3
1	1	5	1	6	1	7	2	9
2	2	10	2	11	3	13	3	14
3	3	15	4	17	4	18	4	19
4	4	20	5	22	5	23	5	24
5	6	26	6	27	6	28	7	30
6	7	31	7	32	8	34	8	35
7	8	36	8	37	9	39	9	40
8	9	41	10	43	10	44	10	45
9	11	47	11	48	11	49	12	51
10	12	52	12	53	12	54	13	56
11	13	57	13	58	14	60	14	61
12	14	62	15	64	15	65	15	66

It will be observed from the remarks in part (b) of the previous proof that once i has been determined by the initial piles a player need only know two sequences of winning pairs, corresponding to i and $\mathrm{k}-\mathrm{i}$. (He need only know one sequence if $\mathrm{i}=0$ or $\mathrm{i}=\mathrm{k} / 2$ and k is even). For example, if $\mathrm{k}=3$ and subscripts W and L denote winning and losing pairs, possible sequences of moves are:

$$
\begin{aligned}
& (14,48)_{\mathrm{W}} \rightarrow(11,48)_{\mathrm{L}} \rightarrow(11,3)_{\mathrm{W}}, \text { i.e., }(3,11)_{\mathrm{W}} ; \\
& (14,48)_{\mathrm{W}} \rightarrow(14,27)_{\mathrm{L}} \rightarrow(8,27)_{\mathrm{W}} .
\end{aligned}
$$

3. Concluding remarks. Setting $\mathrm{i}=0$ in Theorem l , $\left\{\mathrm{u}_{\mathrm{o}, \mathrm{n}}\right\}$ and $\left\{\mathrm{v}_{\mathrm{k}, \mathrm{n}-1}\right\}$ are complementary. That is

$$
[n(1+1 / A)] \text { and }[n(1+A)]
$$

are complementary for $n=1,2,3, \ldots$. This is true for any irrational A >0, as was first observed by S. Beatty [2], and the proof of Theorem 1 may be used without modification.

A theorem similar to Theorem 1 has been proved by T. Skolem [3] .

Denoting the general complementary sequences of Beatty by

$$
u_{n}=[n(1+1 / \alpha)] \text { and } v_{n}=[n(1+\alpha)] \text {, }
$$

the values (5) of α belong to a certain class of quadratic surds for which

$$
u_{v_{n}}=u_{n}+v_{n} .
$$

We hope to publish elsewhere an account of this and other results connected with Beatty sequences.

The author would like to thank Dr. N.S. Mendelsohn for his advice and encouragement.

REFERENCES

1. W.A. Wythoff, A modification of the game of Nim, Nieuw. Archief. voor Viskunde (2), 7 (1907), 199-202.
2. S. Beatty, Amer. Math. Monthly 33 (1926), 159.
(problem); solutions, ibid. 34 (1927), 159.

- T. Skolem, Mathematica Scandinavica, 5(1957), 57.

4. H.S.M. Coxeter, The golden section, phyllotaxis and Wythoff's game, Scripta Mathematica 19 (1953), 135-143.

SOME PROPERTIES OF BEATTY SEQUENCES I*

Ian G. Connell

(received June 2, 1959)

1. Introduction. Two sequences of natural numbers are said to be complementary if they contain all the positive integers without repetition or omission. S. Beatty [1] observed that the sequences

$$
\begin{align*}
& u_{n}=[n(1+1 / \alpha)], n=1,2,3, \ldots, \tag{1}\\
& v_{n}=[n(1+\alpha)], n=1,2,3, \ldots, \tag{2}
\end{align*}
$$

(where square brackets denote the integral part function) are complementary if and only if $\alpha>0$ and α is irrational. We call the pair (1),(2) Beatty sequences of argument α.

[^1]
[^0]: * Excerpt from Master of Science thesis, University of Manitoba, 1959.

[^1]: *Excerpt from Master of Science Thesis, University of Manitoba, 1959.

