
352 Book reviews

functional abstraction, and laziness, that are new to students often find hard on first encounter

but are treated steadily and sympathetically through generally well-conceived, if occasionally

irritating, practical examples to illuminate wider theory.

The book’s main strength is the thorough treatment of I/O, monads, monoids, and stateful

functional programming, where many introductory Haskell texts are covered just enough

to enable basic interaction. The equally substantial coverage of these topics in Real World

Haskell (O’Sullivan et al., 2009) may be better arranged for people who know what they

are looking for, and lacks the distracting asides and cartoons, but the Real World Haskell

examples are dry and have low motivation in comparison to Learn You a Haskell. . ..

Frankly, if I had not been sent this book for review, I would have not bought it. But I will

have no hesitation in lending it to my students.

References

Alcock, D. (1977) Illustrating Basic (A Simple Programming Language). Cambridge, UK:

Cambridge University Press.

Felleisen, M. & Friedman, D. (1998) The Little MLer. Cambridge, MA: MIT.

Friedman, D. (1974) The Little LISPer. Cambridge, MA: MIT.

Friedman, D. & Felleisen, M. (1998) The Little Schemer. Cambridge, MA: MIT.

Kaufman, R. (1977) A FORTRAN Coloring Book. Cambridge, MA: MIT. Available at:

http://www.seas.gwu.edu/~kaufman1/FortranColoringBook/ColoringBkCover.html.

O’Sullivan, B., Goerzen, J. & Stewart, D. (2009) Real World Haskell. Cambridge, MA: O’Reilly.

GREG MICHAELSON

Heriot-Watt University, Scotland

OCaml from the Very Beginning, by John Whitington, Coherent Press, 2013,

£25.99, US $37.99. ISBN-10: 0957671105 (paperback), 204pp.

doi:10.1017/S0956796813000087

The publisher’s blurb for this book says that it “will appeal both to new programmers

and experienced programmers,” and that it is suitable for “an undergraduate or graduate

curriculum, and for the interested amateur.” That is a lot to expect of a book, and the author’s

preface is more modest. He explains that the book arose from his experiences working as a

tutor at Cambridge for the first-year course taught by Larry Paulson using Paulson’s classic

text “ML for the Working Programmer.” It is reasonable to judge this book, then, on how it

might work with first-year undergraduates majoring in a STEM discipline.

Some of these students will have prior programming experience (usually in an imperative

language) and some will not. Both groups will be impatient, which accounts for the brevity

of this book. It has 16 chapters, some as short as two pages. Each chapter is followed by

a half-page of questions and a cumulative summary of the book so far, typeset to fit onto

a single page. Hints and solutions to the questions are at the end of the book. The style is

concise but not terse; the author takes care to write plainly and clearly. The book tries in this

fashion to deal with a reluctant reader, or one who dips into the book in a nonlinear fashion,

or to whom English is a foreign language.

The magnitude of the task is made clear in the single page of “Getting Ready,” preceding

the first chapter, which starts with the expression 1 + 2 entered into the OCaml REPL. How

we are to get to this point is not specified. Of course, a complete description (for each of three

major platforms, one with several variants) of how to locate the software, download it, install

it, navigate to a working directory using a command-line interface, and start the interpreter

would make the book half again as long, and parts of it would be obsolete before the book

https://doi.org/10.1017/S0956796813000087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000087

Book reviews 353

was even printed. It is not the author’s fault that OCaml, like most programming languages,

lacks a beginner-friendly IDE. The course instructor is going to have to supplement, and the

“interested amateur” doing this on their own will need a fair amount of background.

The first chapter continues to discuss entering simple arithmetic expressions, which

immediately requires a discussion of operator precedence. Some precedence relations are

given, but the notions of levels of precedence and associativity are never discussed, and there

is no comprehensive table. The introduction of a second type (Boolean) allows the author

to approach type errors by means of the expression 1+ true, which gives a clear error

message. Further discussion is deferred to the appendix titled “Coping with Errors.” But

there, the same example is given, and the only other advice on type errors provided is “look

at each function and its arguments, and try to find your mistake.” The inadequacy of this

approach can be seen by taking any list-processing function (such as length) and surrounding

the head–tail deconstructing pattern with list-creating square brackets. The resulting error

message is incomprehensible to the beginner. Again, this is not the author’s fault, and it is not

unique to OCaml. I have seen senior CS majors struggle with type errors in SML and Haskell

until they have fully grasped the Hindley–Milner type inference algorithm (not a reasonable

option for a beginner). The word “infer” does not appear in this book, let alone “ascription.”

Once functions are introduced in the second chapter, their types as inferred by the OCaml

REPL appear above them in displayed examples, and this works for correct code because the

result of type inference matches our intuition. However, the student who writes incorrect and

untypable code has nothing to fall back on when intuition fails. Graham Hutton’s otherwise

excellent Programming in Haskell suffers from the same defect. This is not an easy issue to

address, but an effort should be made.

The eight questions at the end of the first chapter are each made up of two or three

short interrogatory sentences, but take the reader through more precedence and associativity

issues, integer limits, edge cases and overloading of arithmetic operators. This is as it should

be. Active learning is an important component of mastery and students should learn new

concepts through exercises as well as the main text. However, the book could do more to

emphasize that future chapters expect this learning to have taken place. The instructor will

probably have to enforce compliance.

Subsequent chapters introduce pattern matching, lists, higher-order functions, exceptions,

tuples, curried functions, algebraic data types, side-effects and sequencing, I/O, references,

arrays, floating-point numbers, and a brief look at the OCaml Standard Library. The choice

of examples is fairly standard: sorting algorithms, association lists and binary search trees,

and batch file processing. After the fifth chapter, there is a page suggesting the use of an

unspecified text editor to enter and save programs which can then be manually loaded into

the REPL with the use command.

Algebraic substitution is used to explain the result of applying recursive functions, starting

in the second chapter, and to sketch ideas of time efficiency without introducing recurrences

or order notation. Its use in discussing space complexity is more problematic (for example,

it does not show sharing). The author tries to motivate tail recursion by showing expanding

intermediate expressions, but omits proper parenthesization at a crucial point: the student

seeing length [5; 5; 5] replaced by 1+1+length[5] is going to wonder why the leftmost

addition cannot be completed. (The words “strict” and “eager” are not used.) The chapters

on I/O and mutation (the latter being the longest in the book at nine pages) focus mostly

on “how” rather than “why,” and do not present a computational model (which would be

difficult given the self-imposed space constraints). They are going to be effective only with

students who have prior experience with imperative programming.

The last chapter takes seven pages to cover the OCaml ocamlc and ocamlopt compiler

commands, modules, interfaces, and standalone programs. Much is left out, here and before;

the other constituencies mentioned in the publisher’s blurb, graduate students and experienced

programmers, are likely to be frustrated by the omissions, and by the pace of the book

overall. Arguably, both groups could benefit from a slow and careful introduction to

https://doi.org/10.1017/S0956796813000087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000087

354 Book reviews

the subject, but they are likely to decamp in favour of tutorials offering more immediate

red meat.

There is much to like about this book. Its economy and reach for elegance form a welcome

contrast to the overstuffed awkwardness of many introductory texts. However, it is perhaps a

trifle too lean. It could have afforded to spend a little more space dealing honestly with the

messy edges, rather than trying to smooth them over or pretend they do not exist. I am not

aware of any other OCaml text trying as hard to be friendly to beginners, and this effort is

to be commended. I hope the author will consider an expanded second edition.

PRABHAKAR RAGDE

University of Waterloo

https://doi.org/10.1017/S0956796813000087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000087

