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Abstract

We propose and study a number of layer methods for Navier–Stokes equations
(NSEs) with spatial periodic boundary conditions. The methods are constructed using
probabilistic representations of solutions to NSEs and exploiting ideas of the weak sense
numerical integration of stochastic differential equations. Despite their probabilistic
nature, the layer methods are nevertheless deterministic.
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1. Introduction

The importance of Navier–Stokes equations (NSEs) for various applications is undisputed
and there is a significant need for efficient direct numerical simulation of NSEs. The theory
and applications of NSEs can be found, in e.g. [3], [4], [11], [13], [30], [31]. The commonly
used numerical methods for NSEs include finite element methods (see, e.g. [6], [7], and [8]),
finite difference schemes (see, e.g. [6], [7], and [32]), spectral methods (see, e.g. [2], [6], [7],
and [26]), multilevel methods [4] and [32].

We consider the system of NSEs for velocity v and pressure p in a viscous incompressible
flow:

∂v

∂s
+ (v, ∇)v + ∇p − σ 2

2
�v = f, (1.1)

div v = 0. (1.2)

In (1.1)–(1.2) we have −T ≤ s ≤ 0, x ∈ R
n, v ∈ R

n, f ∈ R
n, and p is a scalar. The velocity

vector v = (v1, . . . , vn)� satisfies the initial conditions

v(−T , x) = ϕ(x) (1.3)

and the spatial periodic conditions

v(s, x + Lei) = v(s, x), i = 1, . . . , n, −T ≤ s ≤ 0. (1.4)

Received 17 May 2011; revision received 18 May 2012.
∗ Postal address: Ural Federal University, Lenin Str. 51, 620083 Ekaterinburg, Russia.
Email address: grigori.milstein@usu.ru
∗∗ Postal address: School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
Email address: michael.tretyakov@nottingham.ac.uk

742

https://doi.org/10.1239/aap/1377868537 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1377868537


Probabilistic methods for Navier–Stokes equations 743

Here {ei} is the canonical basis in R
n and L > 0 is the period. For simplicity in writing,

the periods in all the directions are taken the same. The function f = f (s, x) and pressure
p = p(s, x) are supposed to be spatially periodic as well. The system of NSEs (1.1) is
autonomous and, consequently, its solution does not depend on a time shift. The choice of
the interval [−T , 0] is convenient for probabilistic representations of the solution to problem
(1.1)–(1.4) after a simple change of variables.

We deal with NSEs in the primitive variable formulation. In this respect we recall [13],
[32] that making use of other unknowns, such as the vorticity and stream function, can be
advantageous in some special cases, e.g. in two dimensions or when vortices play a key role.

In this paper we propose and study layer methods, which exploit probabilistic representations
of solutions to NSEs. We introduce function spaces required, recall the Helmholtz–Hodge
decomposition, and give the probabilistic representations in Section 2. Layer methods for
semilinear and quasilinear partial differential equations (PDEs) of parabolic type were proposed
in [14], [19], and [20] (see also [18]). A layer method for NSEs was first proposed in [1];
specifically, a first-order method which we briefly revise in Section 3.1.

Here we extend application of the probabilistic approach to NSEs in various directions. In
Section 3.2 we deal with the approximation of the pressure, which was not considered in [1].
In Sections 3.3 and 3.4 we exploit different probabilistic representations to that used in [1]
and propose new layer methods for NSEs. We also establish a relation between layer methods
and finite difference schemes. In Section 4 we exploit geometric integration of stochastic
differential equations developed in [17], [22], and [23] (see also [18]) in order to construct the
corresponding new layer method. We propose and study a second-order method for NSEs in
Section 5. In Section 6 we use the results of [15] and [16] to construct a new first-order layer
method specifically adapted to the case of small viscosity σ 2. We discuss implementation of
the proposed layer methods in Section 7. Results of some numerical experiments on a simple
test model of laminar flow from [29] are presented in Section 8.

In this paper we deal with NSEs with periodic boundary conditions (1.1)–(1.4). NSEs with
no-slip boundary conditions are treated in [21].

2. Preliminaries

In this section we recall the required function spaces [3], [4], [11], [30], [31], [32] and write
probabilistic representations of solutions to NSEs.

2.1. Function spaces and the Helmholtz–Hodge decomposition

Let {ei} be the canonical basis in R
n. We shall consider spatial periodic n-vector functions

u(x) = (u1(x), . . . , un(x))� in R
n: u(x + Lei) = u(x), i = 1, . . . , n, where L > 0 is the

period in the ith direction. Denote by Q = (0, L)n the cube of the period. Of course, one
may consider different periods L1, . . . , Ln in the different directions. We denote by L

2(Q) the
Hilbert space of functions on Q with the scalar product and the norm

(u, v) =
∫

Q

n∑
i=1

ui(x)vi(x) dx, ‖u‖ = (u, u)1/2.

We keep the notation |·| for the absolute value of numbers and for the length of n-dimensional
vectors, for example,

|u(x)| = [(u1(x))2 + · · · + (un(x))2]1/2.
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We denote by H
m
p (Q), m = 0, 1, . . . , the Sobolev space of functions which are in L

2(Q),
together with all their derivatives of order less than or equal to m, and which are periodic
functions with the period Q. The space H

m
p (Q) is a Hilbert space with the scalar product and

the norm

(u, v)m =
∫

Q

n∑
i=1

∑
[αi ]≤m

Dαi

ui(x)Dαi

vi(x) dx, ‖u‖m = [(u, u)m]1/2,

where αi = (αi
1, . . . , α

i
n), αi

j ∈ {0, . . . , m}, [αi] = αi
1 + · · · + αi

n, and

Dαi = D
αi

1
1 · · · Dαi

n
n = ∂ [αi ]

∂(x1)α
i
1 · · · ∂(xn)α

i
n

, i = 1, . . . , n.

Note that H
0
p(Q) = L

2(Q).
Introduce the Hilbert subspaces of H

m
p (Q):

V
m
p = {v : v ∈ H

m
p (Q), div v = 0}, m > 0,

V
0
p = the closure of V

m
p , m > 0 in L

2(Q).

Clearly,
V

m1
p = the closure of V

m2
p in H

m1
p (Q) for any m2 ≥ m1.

Denote by P the orthogonal projection in H
m
p (Q) onto V

m
p (we omit m in the notation P

here). The operator P is often called the Leray projection. Due to the Helmholtz–Hodge
decomposition, any function u ∈ H

m
p (Q) can be represented as

u = Pu + ∇g, div Pu = 0,

where g = g(x) is a scalar Q-periodic function such that ∇g ∈ H
m
p (Q). It is natural to introduce

the notation P ⊥u := ∇g and, hence, write

u = Pu + P ⊥u

with
P ⊥u ∈ (Vm

p )⊥ = {v : v ∈ H
m
p (Q), v = ∇g}.

Let

u(x) =
∑
n∈Zn

unei(2π/L)(n,x), g(x) =
∑
n∈Zn

gnei(2π/L)(n,x), g0 = 0,

Pu(x) =
∑
n∈Zn

(Pu)nei(2π/L)(n,x), P ⊥u(x) = ∇g(x) =
∑
n∈Zn

(P ⊥u)nei(2π/L)(n,x)
(2.1)

be the Fourier expansions of u, g, Pu, and P ⊥u = ∇g. Here un, (Pu)n, and (P ⊥u)n = (∇g)n
are n-dimensional vectors and the gn are scalars. We note that g0 can be any real number,
but for definiteness we set g0 = 0. The coefficients (Pu)n, (P ⊥u)n, and gn can be easily
expressed in terms of un:

(Pu)n = un − u�
n n

|n|2 n, (P ⊥u)n = i
2π

L
gnn = u�

n n

|n|2 n,

gn = −i
L

2π

u�
n n

|n|2 , n 	= 0, g0 = 0.

(2.2)
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We have

∇ei(2π/L)(n,x) = nei(2π/L)(n,x) i
2π

L
;

hence, unei(2π/L)(n,x) ∈ V
m
p if and only if (un, n) = 0. It follows from here that the orthogonal

basis of the subspace (Vm
p )⊥ consists of nei(2π/L)(n,x), n ∈ Z

n, n 	= 0; and an orthogonal basis

of V
m
p consists of kunei(2π/L)(n,x), k = 1, . . . , n− 1, n ∈ Z

n, where, under n 	= 0, the vectors
kun are orthogonal to n, i.e. (kun, n) = 0, k = 1, . . . , n − 1, and they are orthogonal among
themselves, i.e. (kun, mun) = 0, k, m = 1, . . . , n − 1, m 	= k, and, finally, for n = 0, the
vectors ku0, k = 1, . . . , n, are orthogonal. In particular, in the two-dimensional case (n = 2),
these bases are correspondingly[

n1
n2

]
ei(2π/L)(n,x) and

[−n2
n1

]
ei(2π/L)(n,x), n = (n1, n2)

�. (2.3)

2.2. Probabilistic representations

Introducing in (1.1)–(1.2) the new time t = −s and the new function u(t, x) = v(−t, x),

0 ≤ t ≤ T , we obtain
∂u

∂t
+ σ 2

2
�u − (u, ∇)u − ∇p + f = 0, (2.4)

div u = 0, (2.5)

u(T , x) = ϕ(x), (2.6)

u(t, x + Lei) = u(t, x), i = 1, . . . , n, 0 ≤ t ≤ T . (2.7)

In what follows we assume that this problem has a unique, sufficiently smooth classical solution
(see the corresponding theoretical results in, e.g. [4], [11], [30], and [31]).

Assumption 2.1. We assume that the solution of problem (2.4)–(2.7), (u(t, x), p(t, x)) has
continuous derivatives with respect to t and x up to some order for x ∈ R

n, 0 ≤ t ≤ T .

Now we consider some probabilistic representations of the solution to (2.4)–(2.7).
Let (u(t, x), p(t, x)) be a solution of problem (2.4)–(2.7). For the function u(t, x), one can

use the following probabilistic representation of solutions to the Cauchy problem for equations
of parabolic type (see, e.g. [5] and [18]):

u(t, x) = E[ϕ(T , Xt,x(T ))Qt,x,1(T ) + Zt,x,1,0(T )]. (2.8)

Here Xt,x(s), Qt,x,q(s), and Zt,x,y,z(s), s ≥ t , solve the system of Itô stochastic differential
equations

dX = (−u(s, X) − σµ(s, X)) ds + σ dW(s), X(t) = x, (2.9)

dQ = µ�(s, X)Q dW(s), Q(t) = q, (2.10)

dZ = (−∇p(s, X) + f (s, X))Q ds + F(s, X)Q dW(s), Z(t) = z. (2.11)

In (2.8)–(2.11), W(s) is a standard n-dimensional Wiener process, Q is a scalar, and Z is
an n-dimensional column vector; µ(s, x) is an arbitrary n-dimensional spatial periodic vector
function and F(s, x) is an arbitrary (n × n)-dimensional spatial periodic matrix function,
which are sufficiently smooth. Probabilistic representations (A) and (B) given below and used
for constructing layer methods in the next sections are particular cases of representation (2.8)–
(2.11).
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(A) For µ(s, x) = 0 and F(s, x) = 0, (2.8) gives the standard probabilistic representation

u(t, x) = E

[
ϕ(Xt,x(T )) −

∫ T

t

∇p(s, Xt,x(s)) ds +
∫ T

t

f (s, Xt,x(s)) ds

]
, (2.12)

where Xt,x(s), s ≥ t , solves the system of stochastic differential equations

dX = −u(s, X) ds + σ dW(s), X(t) = x. (2.13)

Let 0 = t0 < t1 < · · · < tN = T be a uniform partition of the interval [0, T ], and
let h = T/N (we restrict ourselves to the uniform partition for simplicity only). Clearly,
analogously to (2.12), we can write the following local probabilistic representation of the
solution to (2.4)–(2.7):

u(tk, x) = E

[
u(tk+1, Xtk,x(tk+1)) −

∫ tk+1

tk

∇p(s, Xtk,x(s)) ds

+
∫ tk+1

tk

f (s, Xtk,x(s)) ds

]
. (2.14)

Representation (2.12)–(2.13) is used in a number of works (see, e.g. [1], [13], [25], and the
references therein).

(B) For µ(s, x) 	= 0 and F(s, x) = 0, representation (2.8) follows from Girsanov’s theorem.
In particular, for µ(s, x) = −u(s, x)/σ , we have

u(t, x) = E[ϕ(Xt,x(T ))Qt,x,1(T )]

+ E

[
−

∫ T

t

∇p(s, Xt,x(s))Qt,x,1(s) ds +
∫ T

t

f (s, Xt,x(s))Qt,x,1(s) ds

]
, (2.15)

where Xt,x(s) and Qt,x,1(s), s ≥ t (Qt,x,1(s) is a scalar), solve the system of stochastic
differential equations

dX = σ dW(s), X(t) = x, (2.16)

dQ = − 1

σ
Qu�(s, X) dW(s), Q(t) = 1. (2.17)

The corresponding local probabilistic representation has the form

u(tk, x) = E[u(tk+1, Xtk,x(tk+1))Qtk,x,1(tk+1)]
+ E

[
−

∫ tk+1

tk

∇p(s, Xtk,x(s))Qtk,x,1(s) ds +
∫ tk+1

tk

f (s, Xtk,x(s))Qtk,x,1(s) ds

]
.

(2.18)

(C) We can also write the following probabilistic representation of the solution to (2.4)–(2.7):

u(t, x) = Eϕ(Xt,x(T ))

− E

[∫ T

t

(u(s, Xt,x(s)), ∇)u(s, Xt,x(s)) ds +
∫ T

t

∇p(s, Xt,x(s)) ds

]

+ E

∫ T

t

f (s, Xt,x(s)) ds. (2.19)

Here Xt,x(s), s ≥ t , solves the system of stochastic differential equations

dX = σ dW(s), X(t) = x. (2.20)
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The corresponding local probabilistic representation has the form

u(tk, x) = Eu(tk+1, Xtk,x(tk+1))

− E

[∫ tk+1

tk

(u(s, Xt,x(s)), ∇)u(s, Xt,x(s)) ds +
∫ tk+1

tk

∇p(s, Xtk,x(s)) ds

]

+ E

∫ tk+1

tk

f (s, Xtk,x(s)) ds. (2.21)

This representation is analogous to that used in [20] for constructing layer methods for quasi-
linear PDEs.

(D) Introduce the system of forward–backward stochastic differential equations (FBSDEs)
[12], [24]:

dX = −Y ds + σ dW(s), X(t) = x,

dY = (∇p(s, X) − f (s, X)) ds + Z dW(s), Y (T ) = ϕ(Xt,x(T )).
(2.22)

Here X, Y , W , f , and ∇p are column vectors of dimension n and Z is an n × n matrix (we
note that we use the same letter Z in (2.11) and (2.22) for two different processes, but this does
not lead to any confusion). Let u(t, x) be a solution of (2.4) and (2.6). It is straightforward to
prove that

X(s) = Xt,x(s), Y (s) = u(s, Xt,x(s)), Zkj (s) = σ
∂uk

∂xj
(s, Xt,x(s)) (2.23)

is a solution of (2.22). Conversely, if (X(s), Y (s), Z(s)) is a solution of (2.22) then

u(t, x) = Y (t) (2.24)

is a solution of (2.4), (2.6). Condition (2.5) is satisfied by choosing an appropriate pressure p.
In addition,

∂uk

∂xj
(t, x) = 1

σ
Zkj (t). (2.25)

One can use not only the FBSDEs (2.22) but also many others, among which is, e.g. the
FBSDEs

dX = σ dW(s), X(t) = x,

dY =
(

∇p(s, X) − f (s, X) + 1

σ
YZ

)
ds + Z dW(s), Y (T ) = ϕ(Xt,x(T )).

(2.26)

The relations between the solutions of (2.4), (2.6), and (2.26) are again given by the equalities
(2.23)–(2.25).

Connections between nonlinear PDEs and FBSDEs turned out to be mutually beneficial for
their numerics (see, e.g. [19], [20], and the references therein). An additional advantage of such
a numerical approach is the possibility of computing derivatives due to (2.25). Let us note that
in [9] regression methods for numerical analysis of BSDEs are invoked.

Below we construct a number of numerical methods based on the probabilistic representa-
tions (2.12)–(2.13), (2.15)–(2.17), and (2.19)–(2.20). Applications of the approach based on
FBSDEs will appear elsewhere.
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3. First-order methods

In this section we first revisit the first-order layer method for NSEs derived in [1]. Then
in Section 3.2 we consider approximation of the pressure, which was not addressed in [1]. In
Section 3.3 we obtain new first-order methods based on the local probabilistic representation
(2.16)–(2.18), and establish a relation between layer methods and finite difference schemes.
Section 3.4 deals with a new layer method based on the local probabilistic representation
(2.20)–(2.21).

3.1. A revisited first-order method

A probabilistic approach to constructing layer methods for solving nonlinear PDEs is
proposed in [14] (see also [18]). It is based on local probabilistic representations and on
the ideas of the weak sense numerical integration of stochastic differential equations. In spite
of the probabilistic nature the methods are nevertheless deterministic. Let us recall the first-
order layer method (see [1]) for constructing approximations of u(tk, x) based on the results
of [14].

For clarity of the exposition, we consider here the three-dimensional case although everything
in this section is true for any dimension.

Let us fix k for a while and assume that the function u(tk+1, x), as a function of x, is known,
i.e. we assume that the solution on the layer t = tk+1 is known. A slightly modified explicit
Euler scheme with the simplest noise simulation applied to (2.13) gives

Xtk,x(tk+1) 
 X̄tk,x(tk+1) = x − u(tk+1, x)h + σ
√

hξ, (3.1)

where ξ = (ξ1, ξ2, ξ3)� and ξ1, ξ2, ξ3 are independent and identically distributed (i.i.d.)
random variables with the law P(ξ i = ±1) = 1

2 , i = 1, 2, 3. We substitute X̄tk,x(tk+1) from
(3.1) into (2.14) instead of Xtk,x(tk+1), evaluate the expectation exactly, and thus obtain

u(tk, x) = v(tk, x) − ∇p(tk, x)h + f (tk, x)h + O(h2)

= Pv(tk, x) + Pf (tk, x)h + P ⊥v(tk, x) + P ⊥f (tk, x)h

− ∇p(tk, x)h + O(h2), (3.2)

where

v(tk, x) = Eu(tk+1, X̄k+1) = 1

8

8∑
q=1

u(tk+1, x − u(tk+1, x)h + σ
√

hξq) (3.3)

and ξ1 = (1, 1, 1)�, . . . , ξ8 = (−1, −1, −1)�. Taking into account the fact that u(tk, x) in
(3.2) is divergence free, we obtain

u(tk, x) = Pv(tk, x) + Pf (tk, x)h + O(h2). (3.4)

The remainders O(h2) in (3.2) and in (3.4) are functions of k, x, and h and they are of the second
order of smallness in h in the sense of the space L

2(Q), i.e. ‖O(h2)‖ ≤ Kh2, where K > 0
does not depend on k and h (see a deterministic proof of this one-step error estimate within
Proposition 3.1 on the global error below). Neglecting the remainders, we get the one-step
approximations for u(tk, x) and ∇p(tk, x)h. The corresponding layer method proposed in [1]
(we note that f = 0 in [1]) has the form

ū(tN , x) = ϕ(x), ū(tk, x) = P v̄(tk, x) + Pf (tk, x)h, (3.5)

∇p̄(tk, x)h = P ⊥v̄(tk, x) + P ⊥f (tk, x)h, k = N − 1, . . . , 0, (3.6)
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where

v̄(tk, x) = 1

8

8∑
q=1

ū(tk+1, x − ū(tk+1, x)h + σ
√

hξq). (3.7)

Knowing the expansions

v̄(tk, x) =
∑
n∈Z3

v̄nei(2π/L)(n,x), f (tk, x) =
∑
n∈Z3

fnei(2π/L)(n,x),

it is not difficult to find ū(tk, x) and p̄(tk, x). Indeed, using (2.1) and (2.2), we obtain, from
(3.5)–(3.6),

ū(tk, x) =
∑
n∈Z3

ūnei(2π/L)(n,x), ūn = v̄n + fnh − v̄�
n n

|n|2 n − h
f �

n n

|n|2 n, (3.8a)

p̄(tk, x)h = h
∑
n∈Z3

p̄nei(2π/L)(n,x), (3.8b)

p̄nh = −i
L

2π

(
v̄�
n n

|n|2 + h
f �

n n

|n|2
)

, n 	= 0, p̄0 = 0. (3.8c)

For the sake of simplicity, the dependences on k are omitted in the notation for the coefficients
in (3.8).

It follows from (3.2)–(3.3) that the one-step approximation for u(tk, x) of method (3.5)–
(3.7) is of second order. Then, heuristically, the method converges and it is of first order. In [1]
the following proposition is proved (for completeness of the exposition, we present that proof
here).

Proposition 3.1. Let Assumption 2.1 hold. Let

|ū(tk, x)| ≤ K,

∣∣∣∣∂ū(tk, x)

∂xi

∣∣∣∣ ≤ K, (3.9)

where K > 0 is independent of x, h, and k. Then method (3.5), (3.7) is of first order with
respect to the velocity u, i.e.

‖ū(tk, ·) − u(tk, ·)‖ ≤ Ch, (3.10)

where the constant C does not depend on h and k.

Proof. We start with estimating the one-step error of method (3.5). This error on the kth
layer (on the (N − k)th step) is equal to Pv(tk, x) + Pf (tk, x)h − u(tk, x) provided that
ū(tk+1, x) = u(tk+1, x):

Pv(tk, x) + Pf (tk, x)h − u(tk, x)

= v(tk, x) − P ⊥v(tk, x) + Pf (tk, x)h − u(tk, x)

= 1

8

8∑
q=1

u(tk+1, x − u(tk+1, x)h + σ
√

hξq) − P ⊥v(tk, x) + f (tk, x)h

− P ⊥f (tk, x)h − u(tk, x). (3.11)
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Using Assumption 2.1, we expand the function u(tk+1, x − u(tk+1, x)h + σ
√

hξq) at (tk, x) in
powers of h and −uj (tk+1, x)h + σ

√
hξ

j
q , j = 1, 2, 3, and we find that the terms with

√
h and

h
√

h in the sum
∑8

q=1 u(tk+1, x − u(tk+1, x)h + σ
√

hξq) are annihilated. We obtain

1

8

8∑
q=1

u(tk+1, x − u(tk+1, x)h + σ
√

hξq)

= u(tk, x) + ∂u

∂t
(tk, x)h − (u, ∇)u(tk, x)h + 1

2
σ 2�u(tk, x)h + r(x, h; k), (3.12)

where
|r(x, h; k)| ≤ Ch2 (3.13)

with C being independent of x, h, and k. Since u(t, x) solves (2.4), we get, from (3.11) and
(3.12),

Pv(tk, x) + Pf (tk, x)h − u(tk, x)

= ∇p(tk, x)h − P ⊥v(tk, x) − P ⊥f (tk, x)h + r(x, h; k). (3.14)

Using the orthogonality of Pv(tk, x) + Pf (tk, x)h − u(tk, x) and ∇p(tk, x)h − P ⊥v(tk, x) −
P ⊥f (tk, x)h in H

0
p(Q) (we recall that div(P v(tk, x) + Pf (tk, x)h − u(tk, x)) = 0), we arrive

at the estimate for the one-step error:

‖Pv(tk, ·) + Pf (tk, ·)h − u(tk, ·)‖ ≤ Ch2.

Here the constant C does not depend on h and k.
Now we will prove the global error estimate (3.10). Denote the error of method (3.5), (3.7)

on the kth layer as ε(tk, x) := ū(tk, x) − u(tk, x). Thus, we have

ū(tk, x) = u(tk, x) + ε(tk, x), ū(tk+1, x) = u(tk+1, x) + ε(tk+1, x).

Due to (3.5) and (3.7), we obtain

u(tk, x) + ε(tk, x) = ū(tk, x)

= P v̄(tk, x) + Pf (tk, x)h

= 1

8

8∑
q=1

P [ū(tk+1, x − ū(tk+1, x)h + σ
√

hξq)] + Pf (tk, x)h

= 1

8

8∑
q=1

P [u(tk+1, x − ū(tk+1, x)h + σ
√

hξq)] + Pf (tk, x)h

+ 1

8

8∑
q=1

P [ε(tk+1, x − ū(tk+1, x)h + σ
√

hξq)]. (3.15)

Using Assumption 2.1, we obtain

u(tk+1, x − ū(tk+1, x)h + σ
√

hξq) = u(tk+1, x − u(tk+1, x)h + σ
√

hξq) + rkq(x), (3.16)

where

|rkq(x)| = |u(tk+1, x − ū(tk+1, x)h + σ
√

hξq) − u(tk+1, x − u(tk+1, x)h + σ
√

hξq)|
≤ K|ε(tk+1, x)|h. (3.17)
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It follows from (3.15) and (3.16) that

u(tk, x) + ε(tk, x) = 1

8

8∑
q=1

P [u(tk+1, x − u(tk+1, x)h + σ
√

hξq)] + 1

8

8∑
q=1

Prkq(x)

+ Pf (tk, x)h + 1

8

8∑
q=1

P [ε(tk+1, x − ū(tk+1, x)h + σ
√

hξq)]. (3.18)

Due to (3.3) and (3.14), we obtain

1

8

8∑
q=1

P [u(tk+1, x − u(tk+1, x)h + σ
√

hξq)] + Pf (tk, x)h

= Pv(tk, x) + Pf (tk, x)h

= u(tk, x) + ∇p(tk, x)h − P ⊥v(tk, x) − P ⊥f (tk, x)h + r(x, h; k). (3.19)

Application of the operator P to the left-hand side of (3.19) does not change it, while its
application to the right-hand side results in the terms from (V0

p)⊥ being canceled. Consequently,
we arrive at

1

8

8∑
q=1

P [u(tk+1, x − u(tk+1, x)h + σ
√

hξq)] + Pf (tk, x)h = u(tk, x) + Pr(x, h; k), (3.20)

where ‖Pr(x, h; k)‖ ≤ ‖r(x, h; k)‖ ≤ Ch2 due to (3.13). We obtain, from (3.18) and (3.20),

ε(tk, x) = 1

8

8∑
q=1

P [ε(tk+1, x − ū(tk+1, x)h + σ
√

hξq)] + 1

8

8∑
q=1

Prkq(x) + O(h2), (3.21)

where ‖O(h2)‖ ≤ Ch2.
Now introduce

εk := ‖ε(tk, ·)‖.
Let us evaluate the norm ‖ · ‖ of the function δ(x) := ε(tk+1, x − ū(tk+1, x)h + σ

√
hξq). We

have

‖δ‖2 =
∫

Q

3∑
i=1

[εi(tk+1, x − ū(tk+1, x)h + σ
√

hξq)]2 dx

=
∫

Q

3∑
i=1

[εi(tk+1, y)]2 D(x1, x2, x3)

D(y1, y2, y3)
dy,

where
yj = xj − ūj (tk+1, x)h + σ

√
hξ

j
q , j = 1, 2, 3.

Due to condition (3.9) on the uniform boundedness of ∂ūi/∂xj and the fact that div ū = 0, we
obtain

D(y1, y2, y3)

D(x1, x2, x3)
=

∣∣∣∣∣∣∣∣∣∣∣∣

1 − h∂ū1

∂x1 −h∂ū1

∂x2 −h∂ū1

∂x3

−h∂ū2

∂x1 1 − h∂ū2

∂x2 −h∂ū2

∂x3

−h∂ū3

∂x1 −h∂ū3

∂x2 1 − h∂ū3

∂x3

∣∣∣∣∣∣∣∣∣∣∣∣
= 1 + O(h2).
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Therefore,
‖δ‖ ≤ εk+1(1 + Ch2). (3.22)

Since ‖P ‖ ≤ 1, we obtain, from (3.17) and (3.21) (in addition we recall that ε(tN , x) = 0),

εN = 0, εk ≤ εk+1 + Kεk+1h + Ch2, k = N − 1, . . . , 1, 0.

Consequently,

εk ≤ C

K
(eKT − 1)h, k = N, . . . , 0.

This completes the proof.

Remark 3.1. We have not succeeded in deriving the inequalities in (3.9) for the approximate
solution. At the same time, verifying (3.9) in numerical experiments is straightforward. We
also note that in the case of the Oseen–Stokes equations

∂v

∂s
+ (a, ∇)v + ∇p − σ 2

2
�v = f

with conditions (1.2)–(1.4), where a = a(t, x) is an n-dimensional vector, we succeeded in
deriving such inequalities.

3.2. Approximating pressure

Approximation of the pressure p was not considered in [1]. Let us proceed to this problem.
It follows from (3.2) that the one-step error of ∇p(tk, x)h by (3.6) is O(h2); hence, the one-step
error of ∇p(tk, x) is O(h). That is why a proof of the convergence of method (3.6) requires
additional arguments. To this end, let us make use of the well-known equation

�p(tk, x) = div f (tk, x) −
3∑

i,j=1

∂uj

∂xi
(tk, x)

∂ui

∂xj
(tk, x). (3.23)

In [19] we constructed, in particular, first-order approximate solutions ū to semilinear
parabolic equations by layer methods using a probabilistic approach. We proved there that
the derivatives ∂ū/∂xi approximate ∂u/∂xi with the order 1 as well. In all probability such a
fact is correct here. If it is so, we can easily solve (see, e.g. [30, p. 10]) the equation

�p̃(tk, x) = div f (tk, x) −
3∑

i,j=1

∂ūj

∂xi
(tk, x)

∂ūi

∂xj
(tk, x). (3.24)

Indeed,

p̃(tk, x) =
∑
n∈Z3

p̃nei(2π/L)(n,x),

p̃n = −i
L

2π

f �
n n

|n|2 − 1

|n|2
∑

m,l∈Z3, m+l=n

ū�
ml · ū�

l m, n 	= 0, p̃0 = 0.

(3.25)

As a result, we obtain p̃(tk, x) which approximates p(tk, x) with order 1. It is also possible
to prove in this case (i.e. assuming that the derivatives ∂ū/∂xi approximate ∂u/∂xi with the
order 1) that p̄(tk, x) from (3.6) (see in addition (3.8)) approximates p(tk, x) with order 1 as
well.
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The following result (of a less order of accuracy however) is rigorously proved, without
assuming that the derivatives ∂ū/∂xi approximate ∂u/∂xi with the order 1.

Proposition 3.2. Let Assumption 2.1 hold. Let

|ū(tk, x)| ≤ K,

∣∣∣∣∂ū(tk, x)

∂xi

∣∣∣∣ ≤ K,

∣∣∣∣∂
2ū(tk, x)

∂xi∂xj

∣∣∣∣ ≤ K, (3.26)

where K > 0 is independent of x, h, and k. Then p̄(tk, x) from (3.6) satisfies the inequality

‖p̄(tk, ·) − p(tk, ·)‖ ≤ Ch2/3, (3.27)

where the constant C does not depend on h and k.

Proof. Using (3.26), the error estimate (3.10) from Proposition 3.1, and Assumption 2.1,
we obtain

∂ūi

∂xj
(tk, x) = ūi (tk, x + γ h1/3ej ) − ūi (tk, x − γ h1/3ej )

2γ h1/3 + O(h2/3)

= ui(tk, x + γ h1/3ej ) − ui(tk, x − γ h1/3ej ) + O(h)

2γ h1/3 + O(h2/3)

= ∂ui

∂xj
(tk, x) + O(h2/3), (3.28)

where γ is a positive number. It follows from (3.28) that∥∥∥∥ ∂ūi

∂xj
(tk, ·) − ∂ui

∂xj
(tk, ·)

∥∥∥∥ ≤ Ch2/3. (3.29)

We have, from (3.2) (since div u(tk, x) = 0, i.e. P ⊥u(tk, x) = 0),

∇p(tk, x)h = P ⊥∇p(tk, x)h = P ⊥v(tk, x) + P ⊥f (tk, x)h + O(h2),

and, from (3.6),

∇p̄(tk, x)h = P ⊥∇p̄(tk, x)h = P ⊥v̄(tk, x) + P ⊥f (tk, x)h.

Hence,
∇(p(tk, x) − p̄(tk, x))h = P ⊥(v(tk, x) − v̄(tk, x)) + O(h2). (3.30)

Furthermore, using (3.3), (3.7), Assumption 2.1, (3.26), and

div u(tk+1, x + σ
√

hξq) = 0, div ū(tk+1, x + σ
√

hξq) = 0,

we obtain

P ⊥(v(tk, x) − v̄(tk, x))

= 1

8

8∑
q=1

P ⊥[u(tk+1, x − u(tk+1, x)h + σ
√

hξq) − ū(tk+1, x − ū(tk+1, x)h + σ
√

hξq)]

= −h

8

8∑
q=1

∑
j

P ⊥
[
uj (tk+1, x)

∂

∂xj
u(tk+1, x + σ

√
hξq)

− ūj (tk+1, x)
∂

∂xj
ū(tk+1, x + σ

√
hξq)

]
+ O(h2), (3.31)
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where ‖O(h2)‖ ≤ Kh2. From (3.30), (3.31), (3.10), and (3.29), we obtain

‖∇(p(tk, x) − p̄(tk, x))‖ ≤ Kh2/3,

whence (3.27) follows.

We observe that we have two ways of finding the pressure: either as a result of projection
(3.8) or via solution (3.25) of problem (3.24). Computationally, the second way is slightly more
expensive, but one can expect that it results in a more accurate approximation of the pressure,
though both approximations are of the same order of accuracy in h.

3.3. New first-order methods based on the probabilistic representation (2.16)–(2.18)

Using the probabilistic representation (2.16)–(2.18), we consider three new first-order
methods. It is interesting that two of them are closely related to standard finite difference
schemes.

The first of these layer methods is based on a slightly modified explicit Euler scheme with
the simplest noise simulation applied to (2.16)–(2.17), i.e.

X̄tk,x(tk+1) = x + σ
√

hξ, Q̄tk,x,1(tk+1) = 1 − 1

σ
u�(tk+1, x)

√
hξ, (3.32)

where ξ is the same as in (3.1). Approximating Xtk,x(tk+1) and Qtk,x,1(tk+1) in (2.18) by
X̄tk,x(tk+1) and Q̄tk,x,1(tk+1) from (3.32), we obtain

u(tk, x) = E

[
u(tk+1, x + σ

√
hξ)

(
1 − 1

σ
u�(tk+1, x)

√
hξ

)]
− ∇p(tk, x)h

+ f (tk, x)h + O(h2)

= 1

8

8∑
q=1

u(tk+1, x + σ
√

hξq) −
√

h

σ
v(tk, x) − ∇p(tk, x)h + f (tk, x)h + O(h2),

(3.33)

where

v(tk, x) = E[u(tk+1, x + σ
√

hξ)ξ�]u(tk+1, x) = 1

8

8∑
q=1

u(tk+1, x + σ
√

hξq)ξ�
q u(tk+1, x).

(3.34)

It is useful to bear in mind that v(tk, x) = σ
√

h(u(tk+1, x), ∇)u(tk+1, x) + O(h3/2).

Using the Helmholtz–Hodge decomposition and taking into account the fact that div u(tk+1,

x + σ
√

hξq) = 0, we obtain, from (3.33)–(3.34),

u(tk, x) = 1

8

8∑
q=1

u(tk+1, x + σ
√

hξq) −
√

h

σ
Pv(tk, x) + Pf (tk, x)h

−
√

h

σ
P ⊥v(tk, x) + P ⊥f (tk, x)h − ∇p(tk, x)h + O(h2),

whence

u(tk, x) = 1

8

8∑
q=1

u(tk+1, x + σ
√

hξq) −
√

h

σ
Pv(tk, x) + Pf (tk, x)h + O(h2), (3.35)

∇p(tk, x)h = −
√

h

σ
P ⊥v(tk, x) + P ⊥f (tk, x)h + O(h2). (3.36)
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Based on (3.35)–(3.36), we propose the following method:

ū(tN , x) = ϕ(x), (3.37)

ū(tk, x) = 1

8

8∑
q=1

ū(tk+1, x + σ
√

hξq) −
√

h

σ
P v̄(tk, x) + Pf (tk, x)h, (3.38)

∇p̄(tk, x)h = −
√

h

σ
P ⊥v̄(tk, x) + P ⊥f (tk, x)h, k = N − 1, . . . , 0. (3.39)

Here

v̄(tk, x) = 1

8

8∑
q=1

ū(tk+1, x + σ
√

hξq)ξ�
q ū(tk+1, x). (3.40)

Due to (3.35), method (3.37)–(3.38), (3.40) has the one-step error of order 2. Analogously to
Proposition 3.1, it can be proved that this method converges and is of first order. As to the
pressure, it can be evaluated according to (3.39), and, under the corresponding assumptions,
inequality (3.27) holds and the discussion before Proposition 3.2 is also valid here.

We note that the practical realization of method (3.37)–(3.40) is simpler than that of (3.5)–
(3.6). Implementation of layer methods in the considered periodic case relies on the Fourier
expansions (3.8). The realization of (3.5)–(3.6) requires substituting one Fourier expansion into
another to compute (3.7), while evaluating (3.40) in the layer method (3.37)–(3.40) requires
only multiplication of two Fourier series (see the further discussion in Section 7).

Let us discuss a relationship between layer methods and finite difference methods. For
simplicity in writing, we give this illustration in the two-dimensional case. It is not difficult to
note that the two-dimensional analog of the layer approximation (3.38) can be rewritten as the
following finite difference scheme for the NSEs:

ū(tk, x) − ū(tk+1, x)

h

= ū(tk+1, x
1 + σ

√
h, x2 + σ

√
h) + ū(tk+1, x

1 − σ
√

h, x2 + σ
√

h) − 4ū(tk+1, x
1, x2)

4h

+ ū(tk+1, x
1 + σ

√
h, x2 − σ

√
h) + ū(tk+1, x

1 − σ
√

h, x2 − σ
√

h)

4h

− 1

σ
√

h
P v̄(tk, x) + Pf (tk, x) (3.41)

with

v̄(tk, x)

σ
√

h
= ū1(tk+1, x)

ū(tk+1, x
1 + σ

√
h, x2 + σ

√
h) − ū(tk+1, x

1 − σ
√

h, x2 + σ
√

h)

4σ
√

h

+ ū1(tk+1, x)
ū(tk+1, x

1 + σ
√

h, x2 − σ
√

h) − ū(tk+1, x
1 − σ

√
h, x2 − σ

√
h)

4σ
√

h

+ ū2(tk+1, x)
ū(tk+1, x

1 + σ
√

h, x2 + σ
√

h) − ū(tk+1, x
1 + σ

√
h, x2 − σ

√
h)

4σ
√

h

+ ū2(tk+1, x)
ū(tk+1, x

1 − σ
√

h, x2 + σ
√

h) − ū(tk+1, x
1 − σ

√
h, x2 − σ

√
h)

4σ
√

h
.

https://doi.org/10.1239/aap/1377868537 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1377868537


756 G. N. MILSTEIN AND M. V. TRETYAKOV

As one can see, ū(tk+1, x) on the right-hand side of (3.41) is evaluated at the nodes
(x1, x2) and (x1 ± σ

√
h, x2 ± σ

√
h), which is typical for a standard first-order explicit finite

difference scheme with the space discretization step hx taken equal to σ
√

h and h being the
time discretization step.

If in the weak approximation (3.32) we choose a different random vector ξ taking the values

ξ1 = (
√

2, 0)�, ξ2 = (−√
2, 0)�, ξ3 = (0,

√
2)�, ξ4 = (0, −√

2)�,

with equal probabilities, then we obtain another first-order layer method which can be rewritten
as the finite difference scheme

ū(tk, x) − ū(tk+1, x)

h

= ū(tk+1, x
1 + σ

√
2h, x2) + ū(tk+1, x

1 − σ
√

2h, x2) − 4ū(tk+1, x
1, x2)

4h

+ ū(tk+1, x
1, x2 + σ

√
2h) + ū(tk+1, x

1, x2 − σ
√

2h)

4h

− 1

σ
√

h
P v̄(tk, x) + Pf (tk, x) (3.42)

with

v̄(tk, x)

σ
√

h
= ū1(tk+1, x)

ū(tk+1, x
1 + σ

√
2h, x2) − ū(tk+1, x

1 − σ
√

2h, x2)

2σ
√

2h

+ ū2(tk+1, x)
ū(tk+1, x

1, x2 + σ
√

2h) − ū(tk+1, x
1, x2 − σ

√
2h)

2σ
√

2h
.

As one can see, ū(tk+1, x) on the right-hand side of (3.42) is evaluated at the nodes (x1, x2),
(x1 ± σ

√
2h, x2), and (x1, x2 ± σ

√
2h), i.e. the space discretization step in (3.41) is equal

to σ
√

2h.
We recall [14], [18] that convergence theorems for layer methods (in comparison with the

theory of finite difference methods) do not contain any conditions on the stability of their
approximations. Using the layer methods, we do not need to a priori prescribe space nodes:
they are obtained automatically depending on the choice of a probabilistic representation and
a numerical scheme. We note that our results on convergence of the considered layer methods
with order 1 immediately imply first-order convergence of the corresponding finite difference
schemes (3.41) and (3.42).

To propose the third layer method based on the probabilistic representation (2.16)–(2.18),
we observe that

Q(s) = exp

(
− 1

2σ 2

∫ s

t

u�u ds′ − 1

σ

∫ s

t

u� dW(s′)
)

. (3.43)

Approximating the exponent in (3.43) by an Euler-type scheme, we obtain

Q̄k+1 = exp

(
− h

2σ 2 u�(tk+1, x)u(tk+1, x) −
√

h

σ
u�(tk+1, x)ξ

)
, (3.44)
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where ξ is the same as in (3.1). The resulting layer method has the form

ū(tN , x) = ϕ(x), (3.45)

ū(tk, x) = P v̄(tk, x) + Pf (tk, x)h, (3.46)

∇p̄(tk, x)h = P ⊥v̄(tk, x) + P ⊥f (tk, x)h, k = N − 1, . . . , 0,

where

v̄(tk, x) = 1

8

8∑
q=1

ū(tk+1, x + σ
√

hξq)

× exp

(
− h

2σ 2 ū�(tk+1, x)ū(tk+1, x) −
√

h

σ
ū�(tk+1, x)ξq

)
(3.47)

and ξ1 = (1, 1, 1)�, . . . , ξ8 = (−1, −1, −1)�. We note that the layer method (3.45)–(3.47)
can have some computational advantages in comparison with method (3.37)–(3.40) since the
approximation of Q by (3.44) preserves positivity for all h. Analogously to Proposition 3.1,
we can prove that the layer method (3.45)–(3.47) is of first order.

We note that the layer method (3.45)–(3.47) as well as the layer method (3.5)–(3.7) cannot
be rewritten as a finite difference scheme.

3.4. First-order methods based on the probabilistic representation (2.20)–(2.21)

Using the probabilistic representation (2.20)–(2.21), we consider another first-order method
for NSEs. We apply the explicit Euler scheme with the simplest noise simulation applied to
(2.20):

X̄tk,x(tk+1) = x + σ
√

hξ. (3.48)

Here ξ is the same as in (3.1). Approximating Xtk,x(tk+1) in (2.21) by X̄tk,x(tk+1) from (3.48),
we obtain

u(tk, x) = Eu(tk+1, x + σ
√

hξ) − (u(tk+1, x), ∇)u(tk+1, x)h − ∇p(tk, x)h

+ f (tk, x)h + O(h2)

= 1

8

8∑
q=1

u(tk+1, x + σ
√

hξq) − (u(tk+1, x), ∇)u(tk+1, x)h − ∇p(tk, x)h

+ f (tk, x)h + O(h2). (3.49)

Using the Helmholtz–Hodge decomposition and taking into account the fact that div u(tk+1, x+
σ
√

hξq) = 0, we obtain, from (3.49),

u(tk, x) = 1

8

8∑
q=1

u(tk+1, x + σ
√

hξq) − P(u(tk+1, x), ∇)u(tk+1, x)h + Pf (tk, x)h

− P ⊥(u(tk+1, x), ∇)u(tk+1, x)h + P ⊥f (tk, x)h − ∇p(tk, x)h + O(h2),

whence

u(tk, x) = 1

8

8∑
q=1

u(tk+1, x + σ
√

hξq) − P(u(tk+1, x), ∇)u(tk+1, x)h

+ Pf (tk, x)h + O(h2),

(3.50)

∇p(tk, x)h = −P ⊥(u(tk+1, x), ∇)u(tk+1, x)h + P ⊥f (tk, x)h + O(h2). (3.51)
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Based on (3.50)–(3.51), we propose the following method:

ū(tN , x) = ϕ(x), (3.52)

ū(tk, x) = 1

8

8∑
q=1

ū(tk+1, x + σ
√

hξq) − P(ū(tk+1, x), ∇)ū(tk+1, x)h + Pf (tk, x)h, (3.53)

∇p̄(tk, x)h = −P ⊥(ū(tk+1, x), ∇)ū(tk+1, x)h + P ⊥f (tk, x)h, k = N − 1, . . . , 0.

(3.54)

Due to (3.50), the one-step error of method (3.52)–(3.53) is of second order:

∥∥∥∥1

8

8∑
q=1

u(tk+1, x + σ
√

hξq) − P(u(tk+1, x), ∇)u(tk+1, x)h + Pf (tk, x)h − u(tk, x)

∥∥∥∥
≤ Ch2. (3.55)

Analogously to Proposition 3.1, we prove that this method is of first order.

Proposition 3.3. Let Assumption 2.1 hold. We also assume that ū(tk, x) has derivatives with
respect to x up to some order for x ∈ R

n, k = N − 1, . . . , 0, uniformly bounded with respect
to all sufficiently small time steps h. Then method (3.52)–(3.53) is of first order with respect to
the velocity u, i.e.

‖ū(tk, ·) − u(tk, ·)‖ ≤ Ch, (3.56)

where the constant C does not depend on h and k.

Proof. Denote the error of method (3.52)–(3.53) on the kth layer as ε(tk, x) := ū(tk, x) −
u(tk, x). Then (3.53) can be rewritten in the form

u(tk, x) + ε(tk, x) = 1

8

8∑
q=1

u(tk+1, x + σ
√

hξq) − P(u(tk+1, x), ∇)u(tk+1, x)h

+ Pf (tk, x)h + 1

8

8∑
q=1

ε(tk+1, x + σ
√

hξq)

− P(ε(tk+1, x), ∇)ū(tk+1, x)h − P(u(tk+1, x), ∇)ε(tk+1, x)h. (3.57)

We obtain, from (3.55) and (3.57),

ε(tk, x) = 1

8

8∑
q=1

ε(tk+1, x + σ
√

hξq) − P(ε(tk+1, x), ∇)ū(tk+1, x)h

− P(u(tk+1, x), ∇)ε(tk+1, x)h + O(h2), (3.58)

where ‖O(h2)‖ ≤ Ch2.
Introduce

εk := ‖ε(tk, ·)‖.
Thanks to the assumption on the spatial derivatives of ū(tk, x), we obtain

‖P(ε(tk+1, ·), ∇)ū(tk+1, ·)‖ ≤ Kεk+1. (3.59)
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Using Assumption 2.1 and the assumption on the spatial derivatives of ū(tk, x), it is not difficult
to show that

1

8

8∑
q=1

ε(tk+1, x + σ
√

hξq) − P(u(tk+1, x), ∇)ε(tk+1, x)h

= 1

8

8∑
q=1

P [ε(tk+1, x + σ
√

hξq − u(tk+1, x)h)] + O(h2), (3.60)

where |O(h2)| ≤ Ch2. Analogously to (3.22) from the proof of Proposition 3.1, we obtain

‖P [ε(tk+1, x + σ
√

hξq − u(tk+1, x)h)]‖ ≤ εk+1(1 + Ch2). (3.61)

The error estimate (3.56) follows from (3.58), (3.59), (3.60), and (3.61). This completes the
proof.

As to the pressure, it can be evaluated according to (3.54), and, under the corresponding
assumptions, inequality (3.27) holds and the discussion before Proposition 3.2 is also valid here.

It is interesting to note the relationship between methods (3.37)–(3.40) and (3.52)–(3.54):
v̄(tk, x) from (3.40) is a finite difference approximation of the term (ū(tk+1, x), ∇)ū(tk+1, x)h

in (3.52)–(3.53).

4. Liouvillian methods

Denote by Xt,x(s) the phase flow of the stochastic differential equations (2.13). Let Dt ∈ R
n

be a domain with finite volume. The transformation Xt,x(s) maps Dt into the domain Ds . The
volume Vs of the domain Ds is equal to

Vs =
∫

Ds

dX1 · · · dXn =
∫

Dt

∣∣∣∣D(X1, . . . , Xn)

D(x1, . . . , xn)

∣∣∣∣ dx1 · · · dxn.

Then, the volume-preserving condition consists of the equality

J (s) :=
∣∣∣∣D(X1(s), . . . , Xn(s))

D(x1, . . . , xn)

∣∣∣∣ = 1.

In the case of (2.13) (see [10], [18], and [23]) we have

J (s) = exp

(
−

∫ s

t

div u(s′, X(s′)) ds′
)

.

Then, recalling that div u = 0, we conclude that the stochastic system (2.13) is phase volume
preserving (or in other words Liouvillian). Let Xk, k = 0, . . . , N , tk+1−tk = hk+1, tN = t0+T

be a numerical method for (2.13) based on the one-step approximation X̄t,x(t + h), so that

X0 = X(t), Xk+1 = X̄tk,Xk
(tk+1).

It is clear that a method preserves phase volume (such methods are called Liouvillian [18], [22],
[28]) if its one-step approximation satisfies the equality∣∣∣∣D(X̄1, . . . , X̄n)

D(x1, . . . , xn)

∣∣∣∣ = 1.

Taking into account the fact that there are no constructive Liouvillian methods for (2.13) of
dimension 3, we limit our consideration in this section to the two-dimensional NSEs (2.4)–(2.7).
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We apply an implicit phase area-preserving method of weak order 1 from [17] and [18] to
the two-dimensional system (2.13) and obtain the one-step approximation

Xt,x(t +h) ≈ X̄t,x(t +h) = x−hu(t +h, αX̄1+(1−α)x1, (1−α)X̄2 +αx2)+σ
√

hξ, (4.1)

where X̄ = (X̄1, X̄2)� := X̄t,x(t + h), the parameter α ∈ [0, 1], ξ = (ξ1, ξ2)�, and ξ1, ξ2

are i.i.d. random variables with law P(ξ i = ±1) = 1
2 . It is known (see, e.g. [17], [18],

and the references therein) that area-preserving integrators have computational advantages
in comparison with usual numerical methods in long-time simulations. Then one can expect
that a layer method based on an area-preserving approximation of the associated stochastic
system has some benefits in comparison, e.g. with the layer method based on the Euler scheme
in Section 3.1.

Following the probabilistic approach, the area-preserving one-step approximation (4.1) leads
to a layer method for the NSEs (2.4)–(2.7) of the form

ū(tN , x) = ϕ(x), (4.2)

v(tk, x) = 1

4

4∑
q=1

ū(tk+1, X̄q) (4.3)

with

X̄q = x − hū(tk+1, αX̄1
q + (1 − α)x1, (1 − α)X̄2

q + αx2) + σ
√

hξq, (4.4)

ū(tk, x) = P v̄(tk, x) + Pf (tk, x)h, (4.5)

∇p̄(tk, x)h = P ⊥v̄(tk, x) + P ⊥f (tk, x)h, k = N − 1, . . . , 0, (4.6)

where ξ1 = (1, 1)�, . . . , ξ4 = (−1, −1)�. The approximation requires the solution of the
nonlinear equation (4.4) to determine the nodes at which the right-hand side of (4.3) is evaluated.

Analogously to Proposition 3.1, we can prove that the layer method (4.2)–(4.6) is of first
order.

5. Second-order method

Let us return to the spatial periodic NSEs (2.4)–(2.7) and to the local probabilistic represen-
tation (2.13)–(2.14) of its solution which we now write in the form

dX = −u(s, X) ds + σ dW(s), X(tk) = x,

dZ = −∇p(s, X) ds + f (s, X) ds, Z(tk) = 0,
(5.1)

u(tk, x) = E[u(tk+1, Xtk,x(tk+1)) + Z(tk+1)]. (5.2)

System (5.1) is a system of equations with additive noise of the form

dY = a(s, Y ) ds +
l∑

r=1

γr dwr(s), (5.3)

where Y is a d-dimensional vector, the wr(s), r = 1, . . . , l, are independent standard Wiener
processes, and the γr , r = 1, . . . , l, are constant d-dimensional vectors. For (5.3), let us write
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the weak Runge–Kutta method of order 2 (the one-step approximation of this method is of third
order):

Yk+1 = Yk +
l∑

r=1

γrηrkh
1/2 + h

2

[
a(tk, Yk) + a

(
tk+1, Yk +

l∑
r=1

γrηrkh
1/2 + ha(tk+1, Yk)

)]
.

(5.4)

Here the ηrk, r = 1, . . . , l, are independent random variables satisfying

Eηrk = Eη3
rk = Eη5

rk = 0, Eη2
rk = 1, Eη4

rk = 3,

e.g. they can be modeled by the law

P(η = 0) = 2
3 , P(η = ±√

3) = 1
6 . (5.5)

Method (5.4) slightly differs from that given in [18, p. 113].
Applying (5.4) to (5.1), we obtain

Xk+1 = x +
n∑

r=1

σrηrkh
1/2 − h

2

[
u(tk, x) + u

(
tk+1, x +

n∑
r=1

σrηrkh
1/2 − hu(tk+1, x)

)]

:= X∗
k+1 − h

2
u(tk, x), (5.6)

Zk+1 = −h

2

[
∇p(tk, x) + ∇p

(
tk+1, x +

n∑
r=1

σrηrkh
1/2 − hu(tk+1, x)

)]

+ h

2

[
f (tk, x) + f

(
tk+1, x +

n∑
r=1

σrηrkh
1/2 − hu(tk+1, x)

)]

:= Z∗
k+1 − h

2
∇p(tk, x). (5.7)

In (5.6)–(5.7) n = 2 in the case of two-dimensional NSEs or n = 3 in the case of three-
dimensional NSEs, the ηrk are distributed due to the law (5.5), and σ1 = (σ, 0)�, σ2 = (0, σ )�
if n = 2 and σ1 = (σ, 0, 0)�, σ2 = (0, σ, 0)�, σ3 = (0, 0, σ )� if n = 3.

From (5.2) and due to the fact that the one-step error of method (5.6)–(5.7) is O(h3), we
have

u(tk, x) = E[u(tk+1, Xk+1) + Zk+1] + O(h3)

= E

[
u(tk+1, X

∗
k+1 − h

2
u(tk, x)) + Z∗

k+1 − h

2
∇p(tk, x)

]
+ O(h3). (5.8)

For simplicity in writing, we limit ourselves to the case n = 2 here. Introduce the vectors
�1, . . . , �9 corresponding to the sums

∑2
r=1 σrηrk under the different values of the random

variables η1k , η2k so that

�1 =
[

0
0

]
, �2 =

[
0√
3

]
, �3 =

[
0

−√
3

]
,

�4 =
[√

3
0

]
, �5 =

[−√
3

0

]
, �6 =

[√
3√
3

]
,

�7 =
[ √

3
−√

3

]
, �8 =

[−√
3√

3

]
, �9 =

[−√
3

−√
3

]
.
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Denote the corresponding X∗
k+1 and Z∗

k+1 by X∗
k+1,q and Z∗

k+1,q , q = 1, . . . , 9:

X∗
k+1,q = x + σ�qh1/2 − h

2
u(tk+1, x + σ�qh1/2 − hu(tk+1, x)),

Z∗
k+1,q = −h

2
[∇p(tk+1, x + σ�qh1/2 − hu(tk+1, x))]

+ h

2
[f (tk, x) + f (tk+1, x + σ�qh1/2 − hu(tk+1, x))].

Their probabilities are

p1 = 4
9 , p2 = p3 = p4 = p5 = 1

9 , p6 = p7 = p8 = p9 = 1
36 .

Hence, we obtain, from (5.8),

u(tk, x) = 4

9

[
u

(
tk+1, X

∗
k+1,1 − h

2
u(tk, x)

)
+ Z∗

k+1,1

]

+ 1

9

5∑
q=2

[
u

(
tk+1, X

∗
k+1,q − h

2
u(tk, x)

)
+ Z∗

k+1,q

]

+ 1

36

9∑
q=6

[
u

(
tk+1, X

∗
k+1,q − h

2
u(tk, x)

)
+ Z∗

k+1,q

]

− h

2
∇p(tk, x) + O(h3). (5.9)

In (5.9), u(tk, x) and ∇p(tk, x) are unknowns and (5.9) is implicit with respect to u(tk, x).
The idea of resolving the implicitness consists in using the one-step approximation ũ(tk, x)

of the first-order method instead of the unknown u(tk, x) in (5.9). So, we introduce (see (3.3))

v(tk, x) = 1

4

4∑
q=1

u(tk+1, x − u(tk+1, x)h + σ
√

hξq),

where ξ1 = (1, 1)�, ξ2 = (1, −1)�, ξ3 = (−1, 1)�, and ξ4 = (−1, −1)�, and then (see (3.4))

ũ(tk, x) = Pv(tk, x) + Pf (tk, x)h.

The error of ũ(tk, x) is of O(h2). Therefore, substituting ũ(tk, x) instead of u(tk, x) into the
right-hand side of (5.9), we obtain the one-step approximation of third order:

u(tk, x) = 4

9

[
u

(
tk+1, X

∗
k+1,1 − h

2
ũ(tk, x)

)
+ Z∗

k+1,1

]

+ 1

9

5∑
q=2

[
u

(
tk+1, X

∗
k+1,q − h

2
ũ(tk, x)

)
+ Z∗

k+1,q

]

+ 1

36

9∑
q=6

[
u

(
tk+1, X

∗
k+1,q − h

2
ũ(tk, x)

)
+ Z∗

k+1,q

]

− h

2
∇p(tk, x) + O(h3). (5.10)
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Based on the one-step approximation (5.10), we obtain the following method of second
order. Let ū(tN , x) and ∇p̄(tN , x) be determined by the initial data (2.6), i.e.

ū(tN , x) = ϕ(x), ∇p̄(tN , x) = ∇pϕ(tN , x), (5.11)

where pϕ(tN , x) is found exactly using, e.g. the equation of the form (3.23) with ϕ instead of u.
Let ū(tk+1, x) and ∇p̄(tk+1, x) for some 0 < k < N be known. We proceed to the first-order
method (3.7) and then (3.5) to first obtain

ṽ(tk, x) = 1

4

4∑
q=1

ū(tk+1, x − ū(tk+1, x)h + σ
√

hξq) (5.12)

and then obtain
ŭ(tk, x) = P ṽ(tk, x) + Pf (tk, x)h. (5.13)

Following (5.10), we introduce

v̆(tk, x) = 4

9

[
ū

(
tk+1, X̄

∗
k+1,1 − h

2
ŭ(tk, x)

)
+ Z̄∗

k+1,1

]

+ 1

9

5∑
q=2

[
ū

(
tk+1, X̄

∗
k+1,q − h

2
ŭ(tk, x)

)
+ Z̄∗

k+1,q

]

+ 1

36

9∑
q=6

[
ū

(
tk+1, X̄

∗
k+1,q − h

2
ŭ(tk, x)

)
+ Z̄∗

k+1,q

]
, (5.14)

where

X̄∗
k+1,q = x + σ�qh1/2 − h

2
ū(tk+1, x + σ�qh1/2 − hū(tk+1, x)),

Z̄∗
k+1,q = −h

2
[∇p̄(tk+1, x + σ�qh1/2 − hū(tk+1, x))]

+ h

2
[f (tk, x) + f (tk+1, x + σ�qh1/2 − hū(tk+1, x))].

Now it is natural (see (5.9)) to put

ū(tk, x) = v̆(tk, x) − h

2
∇p̄(tk, x), (5.15)

whence

ū(tk, x) = P v̆(tk, x),
h

2
∇p̄(tk, x) = P ⊥v̆(tk, x), k = N − 1, . . . , 0. (5.16)

Thus, heuristically, we have obtained the method of second order. Let us formulate this in the
following statement without providing a rigorous proof.

Proposition 5.1. Let Assumption 2.1 hold. We also assume that ū(tk, x) has derivatives with
respect to x up to some order for x ∈ R

n, k = N − 1, . . . , 0, uniformly bounded with respect
to all sufficiently small time steps h. Then in the two-dimensional case method (5.11)–(5.16) is
of second order for the velocity u and it is of first order for the pressure p.

It is not difficult to also derive the second-order method in the three-dimensional (n = 3)

case.
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6. Small viscosity case

The main difficulty for computational practice of NSEs is that in practical problems the
viscosity σ 2 is very small (i.e. the Reynolds number Re ∼ 1/σ 2 is very large) with the
implication that a computational grid should have a very small spatial mesh size and a very small
time step. In the small viscosity case the Itô system (2.13) is with small additive noise. For
stochastic systems of this type, special weak approximations were proposed in [15]. Applying
these special approximations, layer methods for the Cauchy problem for semilinear PDEs were
proposed in [16]. If the solution of the Cauchy problem is regular (i.e. the solution and its
derivatives are bounded uniformly in σ 2; see, e.g. [27] and also [18, p. 443] for situations when
such an assumption holds) then it turns out that errors of these proposed methods have the
form of O(hp + σ lhq), where p > q, l > 0, and h is a step of time discretization. Owing
to the fact that the accuracy order of such methods is equal to a comparatively small q, they
are not too complicated, while due to the large p and the small factor σ l at hq , their errors are
fairly low and, therefore, these methods are highly efficient. In [16] we tested these methods
on the Burgers equation with small viscosity and on the generalized KPP equation with a small
parameter. The tests gave quite good results not only in regular cases but also in singular cases.
In this section we exploit the results of [15] and [16] in order to construct a specific layer method
for NSEs with small viscosity.

Let us use the probabilistic representation (2.13)–(2.14). Applying the Runge–Kutta weak
scheme with the one-step error O(h3 + σ 2h2) (see [18, p. 196]) to system (2.13), we obtain

Xtk,x(tk+1) 
 X̄tk,x(tk+1) = x − h

2
u(tk, x) − h

2
u(tk+1, x − hu(tk+1, x)) + σ

√
hξ, (6.1)

where ξ = (ξ1, ξ2, ξ3)�, ξ1, ξ2, ξ3 are i.i.d. random variables with the law P(ξ i = ±1) = 1
2 ,

i = 1, 2, 3. Besides, the equalities

E

∫ tk+1

tk

∇p(s, Xtk,x(s)) ds 
 h

2
(∇p(tk, x) + ∇p(tk+1, x − hu(tk+1, x))), (6.2)

E

∫ tk+1

tk

f (s, Xtk,x(s)) ds 
 h

2
(f (tk, x) + f (tk+1, x − hu(tk+1, x))) (6.3)

hold with the same error O(h3 + σ 2h2).
Substituting X̄tk,x(tk+1) from (6.1) into (2.14) instead of Xtk,x(tk+1), using (6.2) and (6.3),

and evaluating the expectation exactly, we obtain

u(tk, x) = 1

8

8∑
q=1

u

(
tk+1, x − h

2
u(tk, x) − h

2
u(tk+1, x − hu(tk+1, x)) + σ

√
hξq

)

− h

2
(∇p(tk, x) + ∇p(tk+1, x − hu(tk+1, x)))

+ h

2
(f (tk, x) + f (tk+1, x − hu(tk+1, x))) + O(h3 + σ 2h2). (6.4)

Equality (6.4) is implicit with respect to u = u(tk, x). Let us assume (for a while) that
u(tk+1, x), ∇p(tk, x), and ∇p(tk+1, x) are known and rewrite (6.4) in the form

u = (u; x, h, tk) + O(h3 + σ 2h2),

where  is a known function determined by (6.4).
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Consider the equality
v = (v; x, h, tk). (6.5)

One can use the method of simple iteration for solving (6.5) and show that

v − u = O(h3 + σ 2h2).

If we take u(tk+1, x) as a null iteration v(0), the first iteration v(1) = (v(0); x, h, tk) provides
the one-step error O(h2) only. One can show that by applying the second iteration v(2) =
(v(1); x, h, tk) we obtain

v − v(2) = O(h3), u − v(2) = O(h3 + σ 2h2).

The first iteration has a comparatively complicated form. It is not difficult to prove that if one
takes the simpler expression

ṽ(1)(tk, x) = u(tk+1, x − hu(tk+1, x)) − h∇p(tk+1, x) + hf (tk+1, x)

instead of the first iteration v(1) (note that to achieve the overall one-step accuracy O(h3+σ 2h2),
it is sufficient to have ṽ(1) with accuracy O(h2 + σ 2h)), then the iteration

ṽ(2)(tk, x) = 1

8

8∑
q=1

u

(
tk+1, x − h

2
ṽ(1)(tk, x) − h

2
u(tk+1, x − hu(tk+1, x)) + σ

√
hξq

)

− h

2
(∇p(tk, x) + ∇p(tk+1, x − hu(tk+1, x)))

+ h

2
(f (tk, x) + f (tk+1, x − hu(tk+1, x)))

satisfies
ṽ(tk, x) − u(tk, x) = O(h3 + σ 2h2),

i.e.

u(tk, x) = 1

8

8∑
q=1

u

(
tk+1, x − h

2
ṽ(1)(tk, x) − h

2
u(tk+1, x − hu(tk+1, x)) + σ

√
hξq

)

− h

2
(∇p(tk, x) + ∇p(tk+1, x − hu(tk+1, x)))

+ h

2
(f (tk, x) + f (tk+1, x − hu(tk+1, x))) + O(h3 + σ 2h2).

It is natural that a method based on this one-step approximation is of order O(h2 +σ 2h). Also,
note that

ṽ(1)(tk, x) = u(tk+1, x − hu(tk+1, x)) − h∇p(tk+1, x) + hf (tk+1, x)

= Pu(tk+1, x − hu(tk+1, x)) + hPf (tk+1, x).

Let ū(tN , x) and ∇p̄(tN , x) be determined by the initial data (2.6), i.e.

ū(tN , x) = ϕ(x), ∇p̄(tN , x) = ∇pϕ(tN , x), (6.6)

where pϕ(tN , x) is found exactly using, e.g. the equation of the form (3.23) with ϕ instead of u.
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At the next time layers we have

ū(tk, x) = P v̆(tk, x),
h

2
∇p̄(tk, x) = P ⊥v̄(tk, x), k = N − 1, . . . , 0, (6.7)

where

v̆(tk, x) = 1

8

8∑
q=1

ū

(
tk+1, x − h

2
ŭ(tk, x) − h

2
ū(tk+1, x − hū(tk+1, x)) + σ

√
hξq

)

− h

2
∇p̄(tk+1, x − hū(tk+1, x)) + h

2
(f (tk, x) + f (tk+1, x − hū(tk+1, x)))

and
ŭ(tk, x) = P ū(tk+1, x − hū(tk+1, x)) + hPf (tk+1, x).

We showed that the one-step error in approximating the velocity by method (6.6)–(6.7) is
O(h3 + σ 2h2), which, analogously to convergence results in previous sections, leads to the
global error of order O(h2 + σ 2h). We formulate the corresponding statement below without
providing a rigorous proof.

Proposition 6.1. Let Assumption 2.1 hold, and let ū(tk, x) and its spatial derivatives up to a
sufficiently high order be uniformly bounded. Then method (6.6)–(6.7) has the global error for
the velocity u estimated as

‖ū(tk, ·) − u(tk, ·)‖ ≤ C · (h2 + σ 2h),

where the constant C does not depend on h, σ 2, and k. For the pressure, inequality (3.27)
holds.

We note that the method (6.6)–(6.7) is of first order for the velocity u and, naturally, it is
simpler than the second-order method (5.11)–(5.16). At the same time, for sufficiently small
viscosity σ 2 the accuracy of method (6.6)–(6.7) can be comparable with the accuracy of (5.11)–
(5.16).

7. Numerical algorithms

Practical implementation of the layer methods (3.37)–(3.40) and (3.52)–(3.54) is straight-
forward and efficient. As an example, below we give such an algorithm in the case of method
(3.37)–(3.40). The other layer methods proposed in this paper require a more sophisticated
implementation. For this purpose, let us discuss, for instance, the first-order method (3.5)–(3.7)
proposed in [1]. One can introduce the space discretization xi

j = jL/K, j = 0, 1, . . . , K − 1,
i = 1, 2, 3, and complement the layer method with an interpolation (e.g. trigonometric
interpolation or linear interpolation) to get the values v̄(tk, xj ) at each time layer, as has been
done in the implementation of layer methods for semilinear PDEs [14], [18]. Then one can
accurately compute Fourier coefficients corresponding to v̄(tk, xj ) (preferably for the sake of
efficiency, making use of the fast Fourier transform) and project this approximate v̄ on the
divergence free space. To maintain a sufficient accuracy, this implementation apparently has
comparatively large computational costs. The other possibility of implementing (3.5)–(3.7)
is to expand ū(tk+1, x − ū(tk+1, x)h + σ

√
hξq) from (3.7) in h around x + σ

√
hξq . The

resulting approximation will coincide with (3.52)–(3.54), whose practical realization is simple
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and efficient. At the same time, we note that further development of numerical algorithms for
layer methods like (3.5)–(3.7) together with their numerical testing is needed.

The layer method (3.37)–(3.40) can be practically realized by the following algorithm which,
for simplicity, we write here in the two-dimensional (n = 2) and zero force (f = 0) case. We
choose a positive integer M as a cutoff frequency and write the approximation solution at the
time tk as the partial sum

ū(tk, x) =
M−1∑

n1=−M

M−1∑
n2=−M

ūn(tk)e
i(2π/L)(n,x), (7.1)

where n = (n1, n2)
�. Furthermore, we have

1

4

4∑
q=1

ū(tk+1, x + σ
√

hξq) =
M−1∑

n1=−M

M−1∑
n2=−M

ūn(tk+1)e
i(2π/L)(n,x) 1

4

4∑
q=1

ei(2πσ
√

h/L)(n,ξq ).

Then

v̄(tk, x) = 1

4

4∑
q=1

ū(tk+1, x + σ
√

hξq)ξ�
q ū(tk+1, x)

=
M−1∑

n1=−N

M−1∑
n2=−N

ūn(tk+1)e
i(2π/L)(n,x) 1

4

4∑
q=1

ei(2πσ
√

h/L)(n,ξq )ξ�
q ū(tk+1, x)

=
M−1∑

n1=−M

M−1∑
n2=−M

ǔn(tk)e
i(2π/L)(n,x)ū(tk+1, x),

where

ǔn(tk) := ūn(tk+1)
1

4

4∑
q=1

ei(2πσ
√

h/L)(n,ξq )ξ�
q .

Note that ǔn is a 2 × 2 matrix. Let

ǔ(tk, x) :=
M−1∑

n1=−M

M−1∑
n2=−M

ǔn(tk)e
i(2π/L)(n,x). (7.2)

Then
v̄(tk, x) = ǔ(tk, x)ū(tk+1, x).

We obtain the algorithm

ūn(tM) = ϕn, ūn(tk) = ǔn(tk) −
√

h

σ
(P v̄(tk, x))n, (7.3)

where

(P v̄(tk, x))n = v̄n − v̄�
n (tk)n

|n|2 n

and

v̄n(tk) = (ǔ(tk, x)ū(tk+1, x))n; p̄n(tk) = v̄�
n (tk)n

|n|2 n, n 	= 0.
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To find v̄n(tk), one can either multiply two partial sums of the form (7.1) and (7.2) or exploit
the fast Fourier transform in the usual fashion (see, e.g. [2]) to speed up the algorithm.
Algorithm (7.3) can be viewed as analogous to spectral methods [2], [26]. It is interesting
that the layer method (3.37)–(3.38), (3.40) is related, on the one hand, to a finite difference
scheme (see the discussion in Section 3.3) and, on the other hand, to spectral methods.

We note that it is straightforward to practically realize the layer method (3.52)–(3.54) by an
algorithm analogous to algorithm (7.3). The realization of (3.52)–(3.54) requires evaluating
derivatives of the approximate solution ū(tk+1, x), which is not difficult to do in the considered
periodic case.

We remark that the error introduced by the cutoff of frequencies in (7.1) is, in general, a
major problem for any direct simulation method of NSEs (see, e.g. [2], [4], and [32]). We do
not consider this problem here.

8. Numerical experiments

Consider the two-dimensional system of NSEs (2.4)–(2.7) with (see, e.g. [29])

f (t, x) = 0, ϕ(x) =
(

A sin
2πκ x1

L
cos

2πκ x2

L
, −A cos

2πκ x1

L
sin

2πκ x2

L

)�
(8.1)

for κ ∈ Z and A ∈ R. It is easy to check that problem (2.4)–(2.7), (8.1) has the exact solution

u1(t, x) = A sin
2πκ x1

L
cos

2πκ x2

L
exp

(
−σ 2

(
2πκ

L

)2

(T − t)

)
, (8.2a)

u2(t, x) = −A cos
2πκ x1

L
sin

2πκ x2

L
exp

(
−σ 2

(
2πκ

L

)2

(T − t)

)
, (8.2b)

p(t, x) = A2

4

(
cos

4πκ x1

L
+ cos

4πκ x2

L

)
exp

(
−2σ 2

(
2πκ

L

)2

(T − t)

)
. (8.2c)

As one can see, initial condition (8.1) and the zero-force result in solution (8.2) which has
only those modes which are present in the initial condition. It is interesting that the new layer
method (3.37)–(3.38), (3.40) also possesses this property: the approximate solution obtained
by algorithm (7.3) has only those modes which are present in ϕ(x).

Proposition 8.1. The approximate solution of the problem (2.4)–(2.7), (8.1) obtained by
algorithm (7.3) contains only those modes which are present in the initial condition ϕ(x).

Proof. For convenience, we first rewrite solution (8.2) in exponential form. To this end, let
us consider the solution of (2.4)–(2.7) which can be written as the sum of four modes, i.e.

u(t, x) = un1(t)ei(2π/L)(n1,x) + u∗
n1(t)e

−i(2π/L)(n1,x) + un2(t)ei(2π/L)(n2,x)

+ u∗
n2(t)e

−i(2π/L)(n2,x), (8.3)

where the asterisk denotes the complex conjugate and

n1 = κe1, n2 = κe2, un1(t) = αr(t)e2, un2(t) = βr(t)e1,

r(t) = A exp

(
−σ 2

(
2πκ

L

)2

(T − t)

)
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with

e1 =
[

1
1

]
, e2 =

[
1

−1

]
.

We note that the orthogonality of un1(t) and n1 and of un2(t) and n2 implies that u(t, x) from
(8.3) is divergence free (see (2.3)). Furthermore, it is easy to check that u(t, x) from (8.3)
together with the corresponding pressure p(t, x) is a solution of (2.4)–(2.7) with f = 0 and
the initial condition equal to u(T , x) from (8.3). One can see that ϕ(x) from (8.1) coincides
with u(T , x) from (8.3) when

α = β = 1

4i
. (8.4)

Suppose that the approximate velocity from algorithm (7.3) can be written in the form (8.3)–
(8.4), i.e.

ū(tk+1, x) = λ1e2ei(2π/L)(n1,x) + λ∗
1e2e−i(2π/L)(n1,x) + λ2e1ei(2π/L)(n2,x)

+ λ∗
2e1e−i(2π/L)(n2,x) (8.5)

with some complex λ1 and λ2. Note that the initial condition in (8.1) guarantees that ū(tN , x)

is of the form (8.5) with the appropriate λ1 and λ2. Recall that

v̄(tk, x) = 1

4

4∑
q=1

ū(tk+1, x + σ
√

hξq)ξ�
q ū(tk+1, x)

with ξ1 = −ξ2 = e1 and ξ3 = −ξ4 = e2. Introduce aq := ξ�
q ū(tk+1, x). We have

a1 = −a2 = 2λ2ei(2π/L)(n2,x) + 2λ∗
2e−i(2π/L)(n2,x),

a3 = −a4 = 2λ1ei(2π/L)(n1,x) + 2λ∗
1e−i(2π/L)(n1,x).

Furthermore,

ū(tk+1, x + σ
√

hξ1) = λ1e2ei(2π/L)(n1,x)ei4πσ
√

hκ/L + λ∗
1e2e−i(2π/L)(n1,x)e−i4πσ

√
hκ/L

+ λ2e1ei(2π/L)(n2,x) + λ∗
2e1e−i(2π/L)(n2,x),

ū(tk+1, x + σ
√

hξ2) = λ1e2ei(2π/L)(n1,x)e−i4πσ
√

hκ/L + λ∗
1e2e−i(2π/L)(n1,x)ei4πσ

√
hκ/L

+ λ2e1ei(2π/L)(n2,x) + λ∗
2e1e−i(2π/L)(n2,x),

and we obtain
2∑

q=1

ū(tk+1, x + σ
√

hξq)ξ�
q ū(tk+1, x)

= a1e2(e
i4πσ

√
hκ/L − e−i4πσ

√
hκ/L)(λ1ei(2π/L)(n1,x) − λ∗

1e−i(2π/L)(n1,x)).

Calculating
∑4

q=3 ū(tk+1, x + σ
√

hξq)ξ�
q ū(tk+1, x) analogously, we arrive at

v̄(tk, x) = (ei4πσ
√

hκ/L − e−i4πσ
√

hκ/L)

×
{[

1
0

]
(λ1λ2ei(4π/L)κx1 − λ∗

1λ
∗
2e−i(4π/L)κx1

)

+
[

0
1

]
(λ∗

1λ2e−i(4π/L)κx2 − λ1λ
∗
2ei(4π/L)κx2

)

}
.
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Clearly, P v̄(tk, x) = 0 (see (2.3)), and, therefore,

ū(tk, x) = 1

4

4∑
q=1

ū(tk+1, x + σ
√

hξq) −
√

h

σ
P v̄(tk, x)

= 1

4

4∑
q=1

ū(tk+1, x + σ
√

hξq).

Then

ū(tk, x) = 1

4

4∑
q=1

ū(tk+1, x + σ
√

hξq)

= µ(λ1e2ei(2π/L)(n1,x) + λ∗
1e2e−i(2π/L)(n1,x) + λ2e1ei(2π/L)(n2,x)

+ λ∗
2e1e−i(2π/L)(n2,x)),

µ = 1
4 (ei4πσ

√
hκ/L + e−i4πσ

√
hκ/L),

i.e. ū(tk, x) is of the form (8.5). Hence, the required property is proved.

Here we test algorithm (7.3) on example (2.4)–(2.7), (8.1). We consider the following
relative errors in Fourier space for the velocity and pressure, respectively:

erru(tk) :=
∑

n |ūn(tk) − un(tk)|∑
n |un(tk)| (8.6)

and

errp(tk) :=
∑

n |p̄n(tk) − pn(tk)|∑
n |pn(tk)| . (8.7)

The results of the tests are presented in Tables 1 and 2. We observe the first order of
convergence both in the velocity and pressure. The experiment confirms the theoretically
proved first order of convergence for the velocity. In the case of the pressure we conjectured
first-order convergence but rigorously proved the order 2/3. In the experiment we observe
first order of convergence for the pressure as well. We also see that the relative errors of this
algorithm are very small, even for large frequencies κ .

Table 1: Relative errors at t = 0 in simulation of problem (2.4)–(2.7), (8.1) with σ = 0.1, κ = 1, L = 1,
and T = 3 by algorithm (7.3) with N = 4 and various time steps h. The corresponding exact solution is

found due to (8.2).

h Velocity Pressure

0.20 0.016 0.078
0.10 0.0078 0.038
0.05 0.0039 0.019
0.02 0.0016 0.0074
0.01 0.0008 0.004
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Table 2: Relative errors at t = 0 in simulation of problem (2.4)–(2.7), (8.1) with σ = 0.01, κ = 10,
L = 1, and T = 2 by algorithm (7.3) with N = 20 and various time steps h. The corresponding exact

solution is found due to (8.2).

h Velocity Pressure

0.20 0.0106 0.089
0.10 0.0052 0.043
0.05 0.0026 0.021
0.02 0.0010 0.008
0.01 0.0005 0.004

9. Conclusions

In this paper we have constructed a number of new layer methods for NSEs with spatial
periodic boundary conditions. We obtained new first-order layer methods, among them those
which are based on different probabilistic representations than those used in [1], methods
preserving the phase volume, and methods specifically designed for small viscosity. A second-
order method was also proposed. Layer methods can be viewed as alternatives to the traditional
finite element, spectral, and finite difference methods. We performed some numerical tests
on a simple model of laminar flow and obtained promising results. At the same time, further
development of numerical algorithms and their testing are required.
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