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Microorganisms can efficiently navigate in anisotropic complex fluids, but the precise
swimming mechanisms remain largely unexplored. Their dynamics is determined by the
interplay between multiple effects, including the fluid’s orientation order, swimmer’s
undulatory gait and the finite length. Here, we extend the numerical study of the
two-dimensional undulatory motions of a flexible swimmer in lyotropic liquid-crystalline
polymers (LCPs) by Lin et al. (J. Fluid Mech., vol. 921, 2021, p. A25) to the scenario
of arbitrary swimming directions with respect to the nematic director. The swimmer is
modelled as a nearly inextensible yet flexible fibre with imposed travelling-wave-like
actuation. We investigate the orientation-dependent swimming behaviours in nematic
LCPs for an infinitely long sheet (i.e. Taylor’s swimming sheet model) and finite-length
swimmers. We demonstrate that the swimmer must be sufficiently stiff to produce
undulatory deformations to gain net motions. Moreover, a motile finite-length swimmer
can reorient itself to swim parallel with the nematic director, due to a net body torque
arising from the asymmetric distribution of the polymer force along the body.
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1. Introduction

There have been extensive studies on understanding swimming and locomotion of
biological swimmers (e.g. bacteria and microalgae) in microfluidic environments
where inertia is negligible (Purcell 1977; Lauga & Powers 2009). Especially, the
recent advancements in nanotechnology and fabrication permit biomimetic medical
micro-/nano-robots to navigate in non-Newtonian synthetic or biological fluids (Nelson,
Kaliakatsos & Abbott 2010; Li et al. 2017; Palagi & Fischer 2018; Wu et al. 2020).
Understanding the microscale locomotion dynamics in complex anisotropic fluids is
essential to design such microrobots that can efficiently operate inside the body for
clinical applications. Of particular interest here is to uncover the propulsion mechanism
of undulatory microswimmers in a class of anisotropic fluids, such as liquid-crystalline
polymers, with orientation-dependent physical and material properties. For example,
experimental observations have suggested that, when placed in solutions of liquid-crystal
(LC) molecules (chromonic liquid-crystal disodium cromoglycate), swimming bacteria
may exhibit intriguing behaviours, such as nematic director guided moving trajectories
and activity-triggered topological defect dynamics, due to the coupling between the flow
generation and the orientational order of the liquid medium (Zhou et al. 2014; Lavrentovich
2016; Zhou 2018).

Nevertheless, compared with the large body of literature on understanding the dynamics
in isotropic Newtonian or non-Newtonian fluids, so far there have been only a minimal
number of theoretical and computational models developed to understand swimming and
locomotion in anisotropic fluids (Lintuvuori, Würger & Stratford 2017; Zhou et al. 2017;
Cupples, Dyson & Smith 2018; Daddi-Moussa-Ider & Menzel 2018; Holloway et al.
2018; Rajabi et al. 2021). Most of these studies treat the fluid phase as suspensions
composed of small LC molecules, and the corresponding mathematical descriptions of the
constitutive relations are often built upon the classical LC models of Ericksen–Leslie (EL)
or Landau–de Gennes type that use phenomenological energy functions to characterize
the bend, twist and splay deformations for the LC’s orientational topological structures
(DeGennes 1974; Larson 1999). Also, undulatory microswimmers are modelled as either
a rigid rod-like particle (Zhou et al. 2017) or infinitely long swimming sheets (Krieger,
Spagnolie & Powers 2015, 2019). Recently, Lin, Chen & Gao (2021) developed a
fluid–structure interaction model to study the anisotropic undulatory swimming motion
of a finite-length flexible swimmer in a LC fluid for the first time. Instead of using
similar phenomenological, top–down LC models, we adopted a bottom–up Q-tensor model
coarse-grained form of Doi’s kinetic theory (Doi & Edwards 1988) to describe the ambient
fluid as suspensions of long, stiff liquid-crystalline polymers. Combining asymptotic
analysis and direct simulations, we have studied and illustrated the enhanced (retarded)
swimming motions in the nematic regime when the swimming direction is parallel with
(perpendicular to) the nematic director.

Using the same Q-tensor model of the Doi type, we extend the studies of simple
parallel or perpendicular gaits to more general scenarios when the swimming direction
is initially misaligned with the director. This work is also inspired by the analytical model
by Shi & Powers (2017), who obtained the asymptotic solutions of a Taylor swimming
sheet in solutions of small LC molecules with an arbitrary alignment angle. Moreover,
they demonstrated that the misalignment between the swimming sheet and the director
field could effectively produce a net body torque via the imposed anchoring condition
of the director field on the wavy body. It is natural to ask (i) whether the misalignment
condition will similarly lead to net polymer torque when using Doi’s Q-tensor that does not
require any anchoring condition to enforce alignment, and (ii) how a finite-length swimmer
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Anisotropic swimming and reorientation in LCPs

responds to such torque-imbalanced conditions arising from the LCP phase. Seeking the
answers to these questions will provide quantitative understandings of both efficiency
and stability of undulatory gaits of microswimmers, either biological or man-made, when
navigating in anisotropic fluids.

The paper is organized as follows. Section 2 revisits the mathematical formulation of
the fluid–structure interaction framework by Lin et al. (2021). In § 3, we perform the
asymptotic solutions of Taylor’s swimming sheet, and carry out numerical simulations
for infinitely long sheets and finite-length swimmers using the immersed boundary (IB)
method. Finally, we conclude and make some discussions in § 4. A few benchmarks studies
and the derivation of the asymptotic solutions are presented in the appendices.

2. Mathematical model

We first set up the problem and review the dimensionless equations of the mathematical
model developed by Lin et al. (2021) for completeness. Consider a one-dimensional
flexible swimmer of length Ls, whose undulatory kinematics can be described by the
parametric form X (s, t) in terms of the local arc length s ∈ [0, Ls] and time t � 0. The
swimmer is initially positioned along the x-axis, with an imposed target body curvature of
a travelling-wave form in the Lagrangian frame as

κ0 (s, t) = −k2A sin (ks − ωt) . (2.1)

Equation (2.1) describes the (rightward) propagating travelling waves with amplitude A,
wavenumber k and angular frequency ω. In the following, we fix the wavenumber k = 2π
and angular frequency ω = 2π. Imposing actuation in (2.1) drives elastic deformations to
yield a force distribution F e(X ) along the body, which effectively leads to periodic shape
changes (or swimming gaits). Following Peskin (2002), the Lagrangian body force can be
derived by performing the variational derivative upon the elastic energy E, i.e.

F e (X , t) = −δE [X (s, t)]
δX

. (2.2)

Here, the total elastic energy E[X ] includes the contributions from both stretching
(denoted by subscript s) and bending (denoted by subscript b) deformations (Fauci &
Peskin 1988)

E [X (s, t)] = σs

2

∫
ΩL

(∣∣∣∣∂X
∂s

∣∣∣∣− 1
)2

ds + σb

2

∫
ΩL

(
∂2X
∂s2 · n − κ0

)2

ds, (2.3)

where n denotes the local normal direction. After computing the elastic forces in the
moving Lagrangian frame (denoted by ΩL), we then convert it to the Eulerian form
f e(x, t) in the fixed coordinates as

f e (x, t) =
∫

ΩL

F e (s, t) δ (x − X (s, t)) ds, (2.4)

where δ denotes the Dirac delta function that maps between the Eulerian and Lagrangian
domain (Peskin 2002), written as

δ(x − X ) = 1
h2 ρ

(
x − X

h

)
ρ

(
y − Y

h

)
. (2.5)
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Here, h denotes the Eulerian mesh width, and the function ρ(r) is constructed using four
adjacent points as

ρ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, |r| � 2,

1
8

(
5 − 2|r| −

√
−7 + 12|r| − 4r2

)
, 2 � |r| � 1,

1
8

(
3 − 2|r| +

√
1 + 4|r| − 4r2

)
, 1 � |r| � 0,

(2.6)

which guarantees momentum conservation (Peskin 2002).
In the fluid phase (denoted by Ωf ), the constitutive evolution equation for LCPs

hydrodynamically couples with the fluid velocity field u, and takes the following form:

∇
D +2E : S = ζ

Pe
(D · D − D : S) − 1

Pe

(
D − I

2

)
+ 1

Pet

D, (2.7)

where
∇
D = ∂D/∂t + u · ∇D − (D · ∇u + ∇uT · D) is the so-called upper-convected time

derivative, E = 1
2 (∇u + ∇uT) is the symmetric strain-rate tensor and D and S are the

second and fourth moments of a probability distribution function for rod-like particles
(Doi & Edwards 1988), where S can be reconstructed by the lower-order moments via
various moment closure methods (e.g. Bingham closure Bingham 1974; Gao et al. 2015).
I is an identity tensor and superscript T is a transpose. The maximal non-negative
eigenvalue and the associated unit eigenvector for the two-dimensional order-parameter
tensor Q = D − I/2 define the scalar-order parameter and the nematic director,
respectively, which characterize the topological features of the orientational structures
of LCPs. In all simulations, we set up the initial LC field such that its director has a
certain alignment angle θ ∈ [0, π] with respect to the swimmer (see the schematic inserted
in figure 1a). The coefficient ζ represents the strength of a mean-field alignment torque
arising from the Maier–Saupe (MS) potential that effectively models the enhanced steric
interactions between polymers at a finite or high volume fraction (Doi & Edwards 1988).
To resolve the fluid–structure interactions (FSIs), we solve the Stokes equations

∇ · u = 0, (2.8)

∇p − 
u = Er∇ · τ p + f e. (2.9)

Here, the second forcing term on the right-hand side of (2.9) represents the force exerted
upon the ambient fluid from the undulatory swimmer. The first term is due to the extra
stress of LCPs

τ p =
(

D − I

2

)
− ζ (D · D − S : D) + βE : S. (2.10)

In the above equations, we introduce two Péclet numbers, Pe and Pet, which characterize
the ratio of the time scales for the rod’s rotation and transport over that of undulation
(i.e. ω−1), respectively. Here, Pe characterizes the time evolution of the orientation field.
In this study, we focus on the regime of Pe ∼ O(1) when the non-Newtonian swimming
behaviours become prominent. Meanwhile, Pet is chosen to be at least one order of
magnitude higher than Pe so that the translational diffusion effect is small or negligible.
The Ericksen number is chosen to be Er ∼ O(1) that characterizes the relatively strong
coupling between the LCPs and the viscous solvent (Krieger et al. 2015). In addition,
the stress term with a small empirical ‘crowdedness’ factor β ∼ O(10−3)–O(10−2)
(Feng, Sgalari & Leal 2000) takes into account the inextensibility of rod-like particles.
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Figure 1. The mean-speed ratio ULC/UN of an infinite-length sheet as a function of alignment angle θ

in nematic LCPs (ζ = 50, β = 0, Pe−1
t = 0.001). (a) Asymptotic solutions of Taylor’s swimming sheet.

(b) Results of numerical simulations for a stiff sheet when choosing σb = 0.5. The rescaled net polymer force
F̄p (c) and torque T̄p (d) as functions of time at different θ .

We emphasize that our model does not require imposing additional boundary conditions
(e.g. anchoring condition) to couple the D field and the swimmer motion. Hence, unlike
the EL model that enforces the LC molecules’ orientations on the swimmer’s body by
imposing anchoring conditions, here, the orientation variations of LCPs are driven by the
induced near-body fluid flows as a result of FSIs.

In the following, we simulate the swimmer’s undulatory motions in lyotropic LCPs with
an arbitrary alignment angle using the spectral IB method developed by Lin et al. (2021).
We treat the swimmer to be nearly inextensible by selecting a large stretching stiffness
σs = 500 but varying the bending stiffness over a wide range σb ∼ O(10−3)–O(10−1).
We choose the Lagrangian line segment 
s and the Eulerian grid width h as 
s =
4h = 1/32 and the time step 
t = 6.25 × 10−5. Note that the constitutive model in (2.7)
admits both the isotropic and nematic equilibrium states, and hence naturally captures
the isotropic–nematic phase transition when ζ is beyond a certain critical value ζc
(ζc = 4 in two dimensions). Here, we focus on studying the swimming mechanisms
in the nematic regime (i.e. ζ > ζc) where the nematically aligned LC structures lead
to intriguing anisotropic swimming behaviours. It needs to be mentioned that, when
non-dimensionalizing the governing equations, to flexibly model swimmers of either a
finite and an infinite length, we choose the actual wave speed and period of the imposed
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travelling-wave signal as the velocity (typically of the order of several μm/s) and time (of
the order of a few seconds) scales, respectively, and 2νkBT as the LCP’s stress scale with
ν being the LCP’s effective volume fraction (Lin et al. 2021). We refer the reader to our
previous publication by Lin et al. (2021) for more details of the derivation of the Q-tensor
model and the non-dimensionalization process. In addition, more benchmark studies of
the IB algorithm for an infinite swimming sheet are presented in Appendix A.

3. Results and discussion

3.1. Asymptotic analysis of Taylor’s swimming sheet
To understand the swimming mechanisms at different (initial) alignment angles θ , we
first perform an asymptotic analysis for Taylor’s swimming sheet of an infinite length
(Taylor 1951; Lauga 2007; Shi & Powers 2017; Lin et al. 2021) in strongly aligned
nematic LCPs (i.e. ζ → ∞). Instead of imposing a target curvature in (2.1), we describe
the time-dependent undulatory motion by specifying the kinematics of the vertical
displacement in the moving coordinate as

y (x, t) = ε sin (x − t) , ε � 1, (3.1)

which corresponds to the limit of σb → ∞ when the swimmer precisely follows the
imposed time-varying curvature. To facilitate analysis, we neglect the crowdedness effect
(i.e. β = 0) and the translational Brownian diffusion (i.e. Pe−1

t → 0), and employ a
streamfunction ϕ to replace the incompressible fluid velocity such that

u = ∇ × (
ϕêz

)
, (3.2)

where êz is the unit vector pointing to the out-of-place direction. Then, we impose a
no-slip condition on the wavy sheet, and perform asymptotic analyses by expanding all
the variables in the form of f (ij) with respect to ε (denoted by index i) and ζ−1 (denoted by
index j). After some algebraic manipulations, we can obtain the asymptotic solutions for
the mean swimming speed at the order of ε2, i.e.

ULC =
(

U(20)
LC + 1

ζ
U(21)

LC

)
ε2 + o

(
ε2
)

, (3.3)

which leads to the speed ratio by comparing with the swimming speed in the Newtonian
fluid (with the subscript ‘N’) when neglecting the higher-order terms of o(ε2)

ULC

UN
= 1 + Er Pe

ζ
(cos 4θ + cos 2θ) . (3.4)

Note that, at θ = 0 and π/2, the above equation recovers the results by Lin et al. (2021)
when expanding their asymptotic solutions with respect to ζ−1. The reader is referred to
Appendix B for the derivation details.

As shown in figure 1(a), the mean-speed ratio in (3.4) varies non-monotonically with θ ,
and is symmetric about the perpendicular direction at θ = π/2. An enhanced swimming
speed, i.e. ULC/UN > 1, is observed near θ = 0 or π for near-parallel swimming
motions, with the maximum value at θ = 0 (or π); while a retarded swimming motion
(ULC/UN < 1) occurs when θ approaches the minimum value close to π/4, at θm =
1
2 arccos(−1

4 ). Such θ -dependent behaviour is consistent with the previous study of
the parallel (θ = 0) and perpendicular (θ = π/2) swimming motions in LCPs by
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Anisotropic swimming and reorientation in LCPs

Lin et al. (2021). Interestingly, this result also recovers the θ -dependency derived by Shi &
Powers (2017) and Cupples et al. (2018) in the transversely isotropic limit of the EL-type
models.

To further validate our analytical predictions, we perform direct simulations
correspondingly for a relatively stiff (σb = 0.5) sheet undergoing a small-amplitude (A =
0.01) undulation in strongly aligned LCPs (ζ = 50) with the crowdedness factor being
ignored (β = 0). To model an infinite-length swimmer, we place it in a square box of size
Ls × Ls = 1 × 1 with periodic boundary conditions. Instead of directly setting Pe−1

t = 0,
we choose Pe−1

t = 10−3, which effectively adds a small damping effect in order to stabilize
numerical solutions. We observe that, for all simulations, when changing the alignment
angle θ with respect to the director, the sheet quickly approaches steady-state undulations
while maintaining the swimming motions along the x-axis. As shown in figure 1(b),
the computed speed ratios indeed exhibit quantitatively similar orientation-dependent
swimming behaviours as in panel (a). We then calculate the net polymer force exerted
on the swimmer by mapping the force distribution in the Eulerian coordinates to the
Lagrangian frame as

F̄p(t) = 1
Ls

∫
ΩL

∫
Ωf

∇ · τ p (x, t) δ (X (s) − x) · êU dx ds, (3.5)

where the net force is projected along with the swimming direction defined by the unit
vector êU = U/|U |, with U the centre-of-mass velocity of the swimmer. Similarly, we
define the net polymer torque rescaled by the sheet length as

T̄p(t) = 1
Ls

∫
ΩL

∫
Ωf

r × ∇ · τ p (x, t) δ (X (s) − x) · êz dx ds, (3.6)

where the unit vector êz points to the out-of-plane direction. As shown in panel (c) for
typical F̄p(t) curves obtained at different values of θ , the speed enhancement at steady
states directly correlates with a positive F̄p, indicating that the polymer force distribution
yields an effective thrust force to increase the mean swimming speed; while F̄p(t) appears
to be negative for all retarded swimming cases, corresponding to an effective drag force to
slow down the swimmer speed, and its magnitude |F̄p| becomes larger and larger as θ →
θm, where ULC approaches its minimum value. Meanwhile, as shown in panel (d), T̄p(t)
always vary symmetrically about a zero mean, which explains why an infinite swimming
sheet can keep the same swimming direction without being subjected to any net body
torque.

3.2. Direct simulation of a finite-length swimmer
Next, we examine the dynamics of a misaligned swimmer of length Ls = 1 in a
periodic domain of size Lx × Ly = 4 × 4, and choose a finite amplitude A = 0.05 in
actuation in (2.1). Unlike Taylor’s swimming sheet problem, deriving the analytical or
semi-analytical solution for a finite-length swimmer could be delicate and far from trivial.
Therefore, in this section we rely on pure numerical simulations to study the anisotropic
swimming behaviours.

For all the stiff cases with σb = 0.5, it is seen that the swimmer can simultaneously
translate and rotate, seemingly subjected to a net body torque. The swimmer shape change
and trajectories during the transient reorientation dynamics are shown in figures 2(a)
and 2(d) for θ = π/6 (see supplementary movie 1 available at https://doi.org/10.1017/
jfm.2022.621) and π/3 (see supplementary movie 2), respectively. As shown in the
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two supplemental movies, the swimmer eventually performs steady-state undulatory
swimming motions parallel to the director. We examine the time evolution of the net
polymer force F̄p(t) (panels b,e) and torque T̄p(t) (panels c, f ). To better analyse the
strongly oscillating data (marked as light-colour solid lines), we calculate their means
(marked as dark-colour solid lines) via the moving averaging (Hardle & Steiger 1995)

〈
F̄p
〉
(t) = 1

T

∫ t+T

t
F̄p
(
t′
)

dt′, (3.7)

〈
T̄p
〉
(t) = 1

T

∫ t+T

t
T̄p
(
t′
)

dt′, (3.8)

where the sliding time window T = 1 is selected to be the same as the undulation period.
Unlike the results of infinitely long sheets in figure 1(d), here, T̄p varies asymmetrically
about zero with a positive mean

〈
T̄p
〉

before reaching the steady states, which hence
effectively drives an entire-body, counter-clockwise rotation of the swimmer. In addition,
we observe the swimmer will achieve an enhanced speed at late times when swimming
parallel with the director, due to a positive mean

〈
F̄p
〉
. The reorientation dynamics of a

finite-length swimmer can be also explained by examining the instantaneous polymer force
distribution in the Lagrangian frame, i.e.

F p(s, t) =
∫

Ωf

∇ · τ p (x, t) δ (X (s) − x) dx, (3.9)

as shown in the insets of panels (a,d). Clearly, the Lagrangian polymer forces near the head
and tail are highly aligned with the director. In the meantime, the distribution exhibits an
apparent fore–aft asymmetry such that, from head to tail, not only the force magnitude
increases, but also its direction completely reverses, which leads to an effective non-zero
body torque.

We then examine the characteristic near-body polymer force and flow field in the
Eulerian frame by performing moving averages over one undulation period T = 1 as

〈
f p
〉
(x, t) = 1

T

∫ t+T

t
∇ · τ p

(
x, t′

)
dt′, (3.10)

〈u〉 (x, t) = 1
T

∫ t+T

t
u
(
x, t′

)
dt′. (3.11)

For the typical case at θ = π/6 shown in figure 3(a–c),
〈
f p
〉

reveals a strong (weak)
polymer force generation near the tail (head) due to the hydrodynamic coupling between
the elastic structure and the LC field. Especially, at t = 0, the resultant front-drag and
rear-thrust forces are seen to be tilted with respect to the swimmer, and are consistent
with the Lagrangian force distribution in figure 2. At the steady states, the near-body
polymer force distribution recovers that of the parallel swimming motions along with the
director by Lin et al. (2021). In panels (d–f ), we show that the induced fluid flows remain
extensile around the swimmer, with the magnitude decaying as the swimmer gradually
finishes during reorientation.

Nevertheless, the dynamics of soft swimmers can be entirely different from stiff ones.
As the examples shown in figure 4(a,b) where we choose σb to be two orders of magnitudes
smaller than the stiff cases shown in figure 2, i.e. σ = 0.005, but keeping the other
parameters the same, the swimmer barely moves. When tracking the body-shape change

946 A30-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

62
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.621


Anisotropic swimming and reorientation in LCPs

y

0 20 40 60

N
et

 p
o
ly

m
er

 f
o
rc

e

0 20 40 60

0 20 40 600 20 40 60

–0.4

0

0.4

N
et

 p
o
ly

m
er

 f
o
rc

e

–0.4

0

0.4

N
et

 p
o
ly

m
er

 t
o
rq

u
e

–0.4

0

0.4

N
et

 p
o
ly

m
er

 t
o
rq

u
e

–0.4

0

0.4

t = 0.1

t = 20

x

y

TimeTime

θ = π/6

θ = π/3

(b) (c)(a)

(d) (e) ( f )

t = 60

〈F̄p〉
F̄p

〈T̄p〉
T̄p

〈F̄p〉
F̄p

〈T̄p〉
T̄p

Figure 2. Reorientation of a stiff (σb = 0.5), finite-length (Ls = 1) swimmer in nematic LCPs (ζ = 8, β =
0.005, Pe = 1, Pe−1

t = 0.02), initially when choosing θ = π/6 (a–c) and π/3 (d–f ). (a,d) Sequential snapshots
of swimmer shape during the transient. The background shows the typical nematic director distributions at
certain time instants. The arrow denotes the swimming direction at quasi-steady states. Insets: instantaneous
polymer force distributions F p(s, t). The net polymer force (b,e) and torque (c, f ) are plotted as functions of
time, with both the instantaneous (light-colour lines) and the moving-averaged (dark-colour lines) values.

(see supplementary movies 3 and 4), it turns out that the swimmer quickly relaxes from
the initially curved shape (black lines) to become approximately straight (purple lines),
with small-amplitude wiggling motions. As shown in the insets, the Lagrangian force
distribution F p(s, t) along the body does not show any correlations with the nematic
director field. Similar results are obtained for infinitely long soft sheets (not reported here).
When performing parameter sweep, we find that non-trivial directional motions only occur
when σb goes up to O(10−2). As shown in panels (c,d) for a typical case at σb = 0.05 (also
see supplementary movies 5 and 6), the swimmer keeps translating and rotating but has
difficultly in reaching a steady state.

These results suggest that performing directional motions requires a swimmer to be
sufficiently stiff, which facilitates the generation of desired undulatory deformations to
gain net motions (Taylor 1951). Once a finite-length swimmer starts moving in nematic
LCPs, an asymmetric polymer force distribution automatically builds around the body
with a non-zero net torque to drive the entire-body rotation. To quantitatively examine the
role of σb in determining the rotational dynamics, we track the variation of the swimmer’s
orientation vector êU using a moving average with T = 1

〈φ〉 (t) = 1
T

∫ t+T

t
arccos

(|êU
(
t′
) · êx|

)
dt′. (3.12)
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U LC

U LC
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(d) (e) ( f )

Figure 3. The characteristic polymer force
〈
f p
〉

and fluid velocity 〈u〉 near the stiff (σb = 0.5) swimmer
superimposed on their magnitudes, corresponding to the case in figure 2(a–c) when θ = π/6 initially.

As typical examples shown in figure 5(a,b), σb needs to go beyond O(10−2) to successfully
reorient when the swimmer is initially misaligned with the director. Similar reorientation
dynamics has been consistently observed in the nematic regime when choosing ζ ∼ O(1).
To estimate the rotation time scale τR, we fit the time-dependent curves to a saturation
function of the form 〈φ〉 (t) ∼ 1 − exp(−t/τR). As shown in panel (c) for the typical τR −
θ curves plotted at two different values of σb, we see that soft swimmers generally rotate
slower than stiff ones at any given θ . When σb is fixed, τR monotonically increases with
θ , and the rotation time can be approximately one or two orders of magnitudes larger than
the swimming period at large θ .

Note that such anisotropic swimming behaviours are similar to those of a squirmer,
a coarse-grained micromechanical model of spherical active particles with specified
slip velocity conditions on the surface (Blake 1971), in nematic fluids. Several studies
(Lintuvuori et al. 2017; Daddi-Moussa-Ider & Menzel 2018; Mandal & Mazza 2021) have
found that pusher-type particles with local extensile flow generation tend to align with the
director while puller-type particles with contractile flows will swim perpendicular to the
director. Indeed, besides the steady-state ‘parallel gait’ discussed above, Lin et al. (2021)
reported a weak contractile flow around an undulatory swimmer that is initially aligned
perpendicular to the director. However, it is unclear whether such a ‘perpendicular gait’ is
stable, since slow entire-body rotation may still occur when θ is close to π/2, suggesting
small disturbances could cause the rotation. Interestingly, the hydrodynamically induced
reorientation dynamics for misaligned swimmers agrees with the stability condition
suggested by Shi & Powers (2017). In their work, the imposed anchoring condition is
converted to assess the exerted (local) torque per unit length as proportional to sin 2θ .
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σb = 0.005

θ = π/3
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θ = π/6
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Figure 4. Sequential snapshots of finite-length (Ls = 1) swimmers undulating in nematic LCPs (ζ = 8,
β = 0.005, Pe = 1, Pe−1

t = 0.02), when choosing the different bending stiffnesses (σb = 0.005, 0.05) and
initial angles (θ = π/6, π/3). The background shows the typical nematic director distributions at certain
time instants. The initial shape is marked by the black colour. In panels (a,b), typical instantaneous shapes
at quasi-steady states are marked by purple colour; in panels (c,d), the transient shapes are taken at t = 20
(red), 40 (blue), 60 (purple), 80 (green), with the green arrow denoting the swimming direction at t = 80.
Insets in (a,b): instantaneous polymer force F p(s, t) at late times.

It appears that the only stable steady-state motion (or equilibrium solution) is to swim
parallel with the director, i.e. θ = 0, such that the local torque vanishes. Nevertheless,
performing quantitative analysis of the rotational stability condition for a finite-length
swimmer using Doi’s Q-tensor model could be laborious, and will be the subject of
possible future investigations.

4. Conclusion and discussion

To summarize, we have adopted the same Q-tensor model developed in our previous
publication (Lin et al. 2021) to generally study the anisotropic motions of an undulatory
swimmer in nematic LCPs when the swimmer has an arbitrary alignment angle θ with
respect to the director. For an infinite-length swimming sheet undergoing small-amplitude
undulations, both the asymptotic analysis (i.e. Taylor’s swimming sheet model) and IB
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〈φ〉

Figure 5. Reorientation dynamics of the swimmer in nematic LCPs (ζ = 8) measured by the moving-averaged
orientation angle 〈φ(t)〉 when the initial alignment angle is chosen as π/6 (a) and π/3 (b) where σb varies over
three orders of magnitudes.

simulations capture the similar orientation-dependent swimming speed with respect to the
alignment angle, which exhibits a non-monotonic trend of enhancement and retardation.
Moreover, we have demonstrated that systematically varying the bending stiffness can lead
to drastic swimming behaviours when subjected to the same type of actuation. Especially,
we find that the swimmer has to be sufficiently stiff to produce desired undulatory
deformation to gain net motions. When initially misaligned with the nematic director, a
finite-length swimmer with a minimal bending stiffness can gradually reorient before it
swims steadily along with the director, when subjected to a net polymer torque arising
from LCPs. Note that our Q-tensor model is essentially apolar, and strictly satisfies
angular-moment conservation at the microscopic level (Feng et al. 2000; Lin et al.
2021). Hence, the net polymer torque is purely attributed to the finite-length effect that
effectively breaks the fore–aft symmetry of the LCP’s orientation structures surrounding
the swimmer, leading to asymmetric near-body polymer force distribution. We emphasize
that, besides the typical cases presented above, qualitatively similar anisotropic
swimming behaviours and reorientation dynamics have been consistently observed in
nematic LCPs.

Noticeably, some interesting agreements have been observed between the Doi- and
EL-type models that incorporate different mechanisms for resolving the reciprocal
coupling between the suspended polymers, moving structures and fluid flows. For example,
we have shown that the asymptotic solution of the mean swimming speed of Taylor’s
swimming sheet in (3.4) has the same θ -dependency as that derived from an EL model
by Shi & Powers (2017) in the transversely isotropic limit. Also, the reorientation of a
misaligned finite-length swimmer captured in this study confirms the stability condition
derived by the same authors in terms of the exerted local torque by LCPs arising from
the anchoring conditions. However, we emphasize that Doi’s Q-tensor model does not
require enforcement of the rods’ orientation directions along the swimmer body via any
anchoring conditions. Instead, the variations of orientational structures are simultaneously
determined by the induced near-body fluid flows and the LCP’s intrinsic nematic elasticity,
which is mainly characterized by the MS potential and the rotational diffusion. Without
specifying an explicit structure–orientation coupling at the solid boundary, the produced
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Figure 6. Rotation time τR as a function of the initial alignment angle θ for σb = 0.2, 0.5.

extra stresses effectively drive the fluid motions in a mean-field fashion, and couple with
the undulatory swimming motions hydrodynamically via the no-slip conditions.

To seek further connections between the two different LC models, one may consider
adding the contributions of distortion elasticity to the MS potential (Greco & Marrucci
1992) in Doi’s model, leading to equations that can mathematically recover the director
formulation of the EL model in the limit of weak flow and mild spatial distortion
(Feng et al. 2000). Also, the high-order orientational derivatives in the distortion elastic
terms require imposition of additional boundary conditions for the orientation field,
equivalent to applying anchoring conditions. Then it is straightforward to examine how
swimming dynamics will change in response to the additional structure–orientation
coupling. Moreover, it will be intriguing to study undulatory swimming motions in three
dimensions where the nematic field may exhibit far more complex topological structures
to impact the resultant FSIs and associated gait stability.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.621.
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Appendix A. Numerical method validation

We use the same spectral IB method developed by Lin et al. (2021). Here, we show
two benchmark studies for an infinite swimming sheet in both isotropic and anisotropic
fluids. As shown in figure 7, we first study the undulatory swimming motions of infinite
flexible sheet in an Oldroyd-B (OB) fluid where the dimensionless Deborah (De) number,
playing a similar role as Pe in the LC cases, is defined as the wave frequency by the OB

946 A30-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

62
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.621
https://orcid.org/0000-0001-8999-407X
https://orcid.org/0000-0001-8999-407X
https://orcid.org/0000-0001-5049-8538
https://orcid.org/0000-0001-5049-8538
https://doi.org/10.1017/jfm.2022.621


Z. Lin, Z. Yu, J. Li and T. Gao

Amplitude A

UOB

0 0.01 0.02 0.03 0.04 0.05 0.06

0.01

0.02

0.03

0.04

0.05

0.06

Lauga (analytical)

Salazar et al. (numerical)

Present (numerical)

Figure 7. Time-averaged centre-of-mass speed UOB for undulatory swimming motion in an OB fluid when
choosing De = 1.

fluid relaxation time. We measured the mean centre-of-mass swimming speed UOB of
the swimmer, and compared the speed ratio with the numerical data by Salazar, Roma &
Ceniceros (2016) and the asymptotic results for Taylor’s swimming sheet by Lauga (2007)

UOB

UN
=

1 +
(

ηs

ηs + ηp

)
De2

1 + De2 , (A1)

where ηs and ηp respectively represent the solvent and polymer contributions to the
viscosity. The Newtonian speed UN can be derived as

UN = 1
2

(ω

k

)
(Ak)2 + O (Ak)4 . (A2)

Next, we performed the convergence tests for an infinite stiff swimming sheet swimming
in LCPs as shown in figure 8, where we examine the time-dependent velocity components
by varying the grid width, time step, domain size and stiffness separately.

Appendix B. Asymptotic analysis

In the moving frame of the swimmer, we consider the vertical displacement of an infinitely
long wavy sheet with the described travelling-wave motion as y(x, t) = A sin(kx − ωt). We
then rescale it as

y(x, t) = ε sin(x − t), (B1)

by choosing 1/k the length scale, 1/ω the time scale and ω/k the velocity scale. To
model Taylor’s swimming sheet, we assume a small amplitude ε = Ak � 1. Following
the classical work by Lauga (2007), we adopt a streamfunction ϕ(x, y, t) to describe the
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Figure 8. Convergence tests with the time-dependent centre-of-mass velocity ux and uy when changing (a) the
Eulerian grid width, (b) the domain size and (c) the bending stiffness σb. These parameters are fixed: σs = 500,
σb = 0.5, A = 0.01, Pe = 1, Er = 1, ζ = 8, Pet

−1 = 0.02, β = 0.0005 and θ = π/6.

two-dimensional incompressible flow as

u = ∇ × (
ϕêz

)
. (B2)

Hence, the velocity components can be computed as ux = ∂ϕ/∂y, uy = −∂ϕ/∂x. The
boundary conditions for ϕ(x, y, t) arise from conditions at infinity and on the undulatory
sheet with a steady speed −ULC êx. Then the far-field condition at y = ∞ becomes

∇ϕ|(x,∞) = ULC êy. (B3)

On the swimming sheet, the no-slip velocity condition is imposed as

∇ϕ|(x,ε sin(x−t)) = ε cos(x − t)êx. (B4)

Recalling the forced Stokes equation

∇p = 
u + Er ∇ · τ p, (B5)

where polymer stress, when ignoring β, is given as

τ p =
(

D − I

2

)
− ζ (D · D − D : S) . (B6)

We focus on the effects of alignment angle θ on swimming speed in the nematic regime,
and adopt a classical quadratic closure to approximate the fourth moment S (Doi &
Edwards 1988) as

S = DD, (B7)

which facilitates analytical manipulation in the following. Note that this closure becomes
more and more accurate in deep nematic when ζ 
 ζc. Now the evolution equation of D
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reads
∇
D +2E : S = − 1

Pe

(
D − I

2

)
+ ζ

Pe
(D · D − D : S), (B8)

with
∇
D an upper-convected time derivative. When applying the curl on both sides of (B5),

we have

∇ × (∇ · τ p) = 1
Er

∇4ϕêz. (B9)

Next, we expand all the variables with ε to the second order and δ = ζ−1(ζ 
 1) to the
first order, i.e.

ϕ = ε(ϕ(10) + δϕ(11)) + ε2(ϕ(20) + δϕ(21)) + O
(
ε3, δ2

)
, (B10)

τ = (τ (00) + δτ (01)) + ε(τ (10) + δτ (11)) + ε2(τ (20) + δτ (21)) + O(ε3, δ2), (B11)

D = (D(00) + δD(01)) + ε(D(10) + δD(11)) + ε2(D(20) + δD(21)) + O(ε3, δ2), (B12)

ULC = ε(U(10)
LC + δU(11)

LC ) + ε2(U(20)
LC + δU(21)

LC ) + O
(
ε3, δ2

)
. (B13)

After some manipulations, we can derive the following governing equations at different
orders:

O(ε0, δ−1) order ∑
k+l=0

(
D(k0) · D(l0) − D(k0) : S(l0)

)
= 0. (B14)

O(ε0, δ0) order

τ (00)
p =

(
D(00) − I

2

)
−
∑

k+l=0

∑
i+j=1

(
D(ki) · D(lj) − D(ki) : S(lj)

)
, (B15)

∂D(00)

∂t
+
∑

k+l=0

∑
i+j=0

[
u(ki) · ∇D(lj) −

(
D(ki) · ∇u(lj) + ∇u(lj)T · D(ki)

)
+ 2E(ki) : S(lj)

]

= − 1
Pe

(
D(00) − I

2

)
+ 1

Pe

∑
k+l=0

∑
i+j=1

(
D(ki) · D(lj) − D(ki) : S(lj)

)
. (B16)

O(ε0, δ1) order

τ (01)
p = D(01) −

∑
k+l=0

∑
i+j=2

(
D(ki) · D(lj) − D(ki) : S(lj)

)
, (B17)

∂D(01)

∂t
+
∑

k+l=0

∑
i+j=1

[
u(ki) · ∇D(lj) −

(
D(ki) · ∇u(lj) + ∇u(lj)T · D(ki)

)
+ 2E(ki) : S(lj)

]

= − 1
Pe

D(01) + 1
Pe

∑
k+l=0

∑
i+j=2

(
D(ki) · D(lj) − D(ki) : S(lj)

)
. (B18)
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O(ε1, δ−1) order ∑
k+l=1

(
D(k0) · D(l0) − D(k0) : S(l0)

)
= 0. (B19)

O(ε1, δ0) order

τ (10)
p = D(10) −

∑
k+l=1

∑
i+j=1

(
D(ki) · D(lj) − D(ki) : S(lj)

)
, (B20)

∂D(10)

∂t
+
∑

k+l=1

∑
i+j=0

[
u(ki) · ∇D(lj) −

(
D(ki) · ∇u(lj) + ∇u(lj)T · D(ki)

)
+ 2E(ki) : S(lj)

]

= − 1
Pe

D(10) + 1
Pe

∑
k+l=1

∑
i+j=1

(
D(ki) · D(lj) − D(ki) : S(lj)

)
. (B21)

O(ε1, δ1) order

τ (11)
p = D(11) −

∑
k+l=1

∑
i+j=2

(
D(ki) · D(lj) − D(ki) : S(lj)

)
, (B22)

∂D(11)

∂t
+
∑

k+l=1

∑
i+j=1

[
u(ki) · ∇D(lj) −

(
D(ki) · ∇u(lj) + ∇u(lj)T · D(ki)

)
+ 2E(ki) : S(lj)

]

= − 1
Pe

D(11) + 1
Pe

∑
k+l=1

∑
i+j=2

(
D(ki) · D(lj) − D(ki) : S(lj)

)
. (B23)

O(ε2, δ−1) order ∑
k+l=2

(
D(k0) · D(l0) − D(k0) : S(l0)

)
= 0. (B24)

O(ε2, δ0) order

τ (20)
p = D(20) −

∑
k+l=2

∑
i+j=1

(
D(ki) · D(lj) − D(ki) : S(lj)

)
, (B25)

∂D(20)

∂t
+
∑

k+l=2

∑
i+j=0

[
u(ki) · ∇D(lj) −

(
D(ki) · ∇u(lj) + ∇u(lj)T · D(ki)

)
+ 2E(ki) : S(lj)

]

= − 1
Pe

D(20) + 1
Pe

∑
k+l=2

∑
i+j=1

(
D(ki) · D(lj) − D(ki) : S(lj)

)
. (B26)

O(ε2, δ1) order

τ (21)
p = D(21) −

∑
k+l=2

∑
i+j=2

(
D(ki) · D(lj) − D(ki) : S(lj)

)
, (B27)
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∂D(21)

∂t
+
∑

k+l=2

∑
i+j=1

[
u(ki) · ∇D(lj) −

(
D(ki) · ∇u(lj) + ∇u(lj)T · D(ki)

)
+ 2E(ki) : S(lj)

]

= − 1
Pe

D(21) + 1
Pe

∑
k+l=2

∑
i+j=2

(
D(ki) · D(lj) − D(ki) : S(lj)

)
. (B28)

At O(ε0), we can solve for homogeneous solutions. Now the boundary conditions at
O(ε1) become

O(ε1, δ0) order

∇ϕ(10)
∣∣∣
(x,∞)

= U(10)
LC êy, (B29)

∇ϕ(10)
∣∣∣
(x,0)

= cos(x − t)êx. (B30)

O(ε1, δ1) order

∇ϕ(11)
∣∣∣
(x,∞)

= U(11)
LC êy, (B31)

∇ϕ(11)
∣∣∣
(x,0)

= 0. (B32)

Note that, in the above, instead of being satisfied exactly along the wavy body, the no-slip
boundary condition is projected onto the x-axis, i.e. at y = 0. And at O(ε2), they take the
form

O(ε2, δ0) order

∇ϕ(20)
∣∣∣
(x,∞)

= U(20)
LC êy, (B33)

∇ϕ(20)
∣∣∣
(x,0)

= − sin(x − t)∇
(

∂ϕ(10)

∂y

)
|(x,0). (B34)

O(ε2, δ1) order

∇ϕ(21)
∣∣∣
(x,∞)

= U(21)
LC êy, (B35)

∇ϕ(21)
∣∣∣
(x,0)

= − sin(x − t)∇
(

∂ϕ(11)

∂y

)∣∣∣∣∣
(x,0)

. (B36)

To proceed, we choose to decompose the steady-state configuration tensor as

D(00) = M(θ)D(00)M−1(θ) (B37)

where D(00) = diag(D(00)
11 , 1 − D(00)

11 ), D(00)
11 > 1/2 and the rotation matrix M(θ) =( cos θ − sin θ

sin θ cos θ

)
. Then we solve D(00) via (B14) to obtain

0 = M−1(θ)
∑

k+l=0

(
D(k0) · D(l0) − D(k0) : S(l0)

)
M(θ)

=
∑

k+l=0

⎛
⎝D(k0) · D(l0) −

∑
l1+l2=0

(
D(k0) : D(l10)

)
D(l20)

⎞
⎠ , (B38)
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which yields the equilibrium solutions

D(00) =
(

1 0
0 0

)
, D(01) =

(−1
2 0

0 1
2

)
, D(02) =

(−1
4 0

0 1
4

)
. (B39a–c)

We denote

F = ∇u =
(

F11 F12
F21 −F11

)
. (B40)

At O(ε1, δ0), we solve configuration tensor D(10) as

D(10) = D(10)
12

(
0 1
1 0

)
, (B41)

which leads to τ
(10)
p = 0 and D(11)

11 = 0. We can further derive

∇4ϕ(10) = 0. (B42)

Given the boundary conditions, we obtain the solution

ϕ(10)(x, y, t) = (1 + y)e−y sin(x − t), (B43)

U(10)
LC = 0, (B44)

leading to the solution

D(10)
12 = ye−y cos(x − t + 2θ) + e−y cos(x − t). (B45)

At O(ε1, δ1) order, using (B22), we can derive

τ
(11)
p = D(12)

11

(
1 0
0 −1

)
. (B46)

Using (B23), we obtain the equations

1
Pe

τ
(11)
p,11 − 2F(10)

11 = 0, (B47)

∂D(11)
12

∂t
− F(11)

12 + 1
2

(
F(10)

12 − F(10)
21

)
= 0. (B48)

Then we can obtain the solutions

τ
(11)
p,11 = D(12)

11 = −2ye−y cos(x − t + 2θ)Pe, (B49)

which leads to
∇4ϕ(11) = 4( y − 1)e−y sin(x − t + 4θ)Er Pe. (B50)

Given the boundary conditions in (B31)–(B32), we obtain the solution

ϕ(11)(x, y, t) = 1
6 y3e−y sin(x − t + 4θ)Er Pe, (B51)

U(11)
LC = 0. (B52)
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Substituting (B51) into (B47), we can derive the solution

D(11)
12 = 1

6 Er Pe
[(

y3 − 3y2 + 3
2 y
)

e−y cos(x − t + 6θ)

+(3y2 − 3y)e−y cos(x − t + 4θ) + 3
2 ye−y cos(x − t + 2θ)

]
− e−y cos(x − t).

(B53)

At O(ε2, δ0), we solve configuration tensor D(20) via (B24) and get the form

D(20)
11 = −D(10)

12

2
. (B54)

Using (B25), we have

τ
(20)
p =

(
D(21)

11 − 2D(20)
11 + 2D(10)

12 D(11)
12 − D(10)

12

2)(1 0
0 −1

)
. (B55)

Using (B26), we can derive the equations

∂D(20)
11
∂t

+ 2F(10)
12 D(10)

12 + 1
Pe

τ
(20)
p,11 = 0, (B56)

∂D(20)
12
∂t

+
(

u(10) · ∇
)

D(10)
12 − F(20)

12 + 2E(10)
11 D(10)

12 = 0. (B57)

Then we can obtain

τ
(20)
p,11 = −Pe

⎛
⎝∂D(20)

11
∂t

+ 2F(10)
12 D(10)

12

⎞
⎠ = 0, (B58)

leading to

∇4ϕ(20) = 0. (B59)

Applying the boundary conditions (B33)–(B34), we obtain

ϕ(20)(x, y, t) = −1
2 ye−2y cos(2x − 2t) + 1

2 y, (B60)

U(20)
LC = 1

2 . (B61)

At O(ε2, δ1), using (B27), we first derive the equations

τ
(21)
p,11 = D(22)

11 − 2D(21)
11 − 2D(10)

12 D(11)
12 + 2D(10)

12 D(12)
12 + D(11)

12

2
− 1

2
D(10)

12

2
,

τ
(21)
p,12 = 2D(10)

12 D(12)
11 ,

τ
(21)
p,22 = −τ

(21)
p,11 .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(B62)
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Using (B28), we can further derive

∂D(21)
11

∂t
− 2E(20)

11 + 2F(11)
12 D(10)

12 + 2F(10)
12 D(11)

12 − 2E(10)
12 D(10)

12 + 1
Pe

τ
(21)
p,11 = 0,

∂D(21)
12

∂t
+
(

u(10) · ∇
)

D(11)
12 +

(
u(11) · ∇

)
D(10)

12 − F(21)
12 − 1

2

(
F(20)

21 − F(20)
12

)

+ 2D(10)
12

(
E(11)

11 − E(10)
11

)
+ 2E(10)

11 D(11)
12 + 1

Pe
τ

(21)
p,12 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B63)

Then we obtain

τ
(21)
p,11 = 2 Pe

(
2E(10)

12 D(10)
12 + E(20)

11

)
. (B64)

We apply the same manipulation used in (B9) and take the time averaging to get the form
of ϕ(21)

d2

dy2 〈ϕ(21)〉(x, y) = 2 Er Pe
(

cos 2θy2 + cos 4θy
)

e−2y. (B65)

Applying the boundary conditions leads to the solution

d
dy

〈ϕ(21)〉(x, y) = −2 Er Pe
(

cos 2θ

2
y2 + cos 4θ + cos 2θ

2
y + cos 4θ + cos 2θ

4

)
e−2y

+ Er Pe
2

(cos 4θ + cos 2θ) , (B66)

U(21)
LC = Er Pe

2
(cos 4θ + cos 2θ) . (B67)

Hence, we can eventually solve for the speed ratio at O(ε2, δ1) as

ULC

UN
=

ε2
(

U(20)
LC + δU(21)

LC

)
1
2ε2

= 1 + Er Pe
ζ

(cos 4θ + cos 2θ) . (B68)
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