A REMARK ON C-COMPACT SPACES

BHAMINI M. P. NAYAR

(Received 13 March 1997)

Communicated by J. A. Hillman

Abstract

It has been observed by a number of researchers that although it is well-known that all continuous functions defined on C-compact spaces are closed functions, this property does not characterize C-compact spaces. In this note we employ the notion of strongly subclosed relations to prove that a space is C-compact if and only if all functions on it with strongly subclosed inverses are closed functions.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 54D25; secondary 54C99. Keywords and phrases: C-compact spaces, strongly subclosed relations, closed functions.

Throughout this note all spaces are Hausdorff spaces. Let X be a space and let $A \subset X$. We denote the closure of A by \overline{A} and the collection of open sets which contain A by $\Sigma(A)$ ($\Sigma(x)$ if $A = \{x\}$); we use the notation $\Gamma(x) = \{V - \{x\} : V \in \Sigma(x)\}$. The θ -closure of A, denoted by $cl_{\theta}A$, is $\bigcap_{\Sigma(A)} \overline{V}$ and the θ -adherence of a filterbase Ω , denoted by $ad_{\theta}\Omega$, is $\bigcap_{\Omega} cl_{\theta}F$. These notions were introduced by Veličko for the purpose of studying H-closed spaces and have subsequently received wide usage (see [1, 2]). A relation $F \subset X \times Y$ is strongly subclosed if $ad_{\theta}F(\Gamma(x)) \subset F(x)$ for each $x \in X$ for which $\Gamma(x)$ is a filterbase on X [1]. We will say that a function $g : X \to Y$ has a strongly subclosed inverse if the relation g^{-1} is strongly subclosed. It is not difficult to prove that continuous, and indeed θ -continuous [1], functions have strongly subclosed inverses.

A space X is said to be *C*-compact if for each closed $A \subset X$, each cover of A by open subsets of X contains a finite subfamily \mathscr{V} such that $\{\overline{V} : V \in \mathscr{V}\}$ covers A. A space is H-closed if it is a closed subspace of every space in which it is embedded. It is known that a space X is C-compact if and only if each closed $A \subset X$ and filterbase Ω on A satisfy $A \cap ad_{\theta}\Omega \neq \emptyset$ and that a space X is H-closed if and only if every filterbase on X has nonempty θ -adherence [3]. We are now in a position to give a

^{© 1998} Australian Mathematical Society 0263-6115/98 \$A2.00 + 0.00

proof of the theorem.

THEOREM. A space X is C-compact if and only if all functions on X with strongly subclosed inverses are closed functions.

PROOF. Necessity. Let $A \subset X$ be closed, and $g : X \to Y$ have a strongly subclosed inverse. If y is a limit point of g(A) then $\Omega = \{g^{-1}(W) \cap A : W \in \Gamma(y)\}$ is a filterbase on A and hence $\emptyset \neq A \cap ad_{\theta}(\Omega) \subset A \cap g^{-1}(y)$. So g(A) is closed.

Sufficiency. Suppose A is a closed subset of X and that Ω is a filterbase on A such that $A \cap ad_{\theta}\Omega = \emptyset$. Since continuous functions have strongly subclosed inverses, it follows that X is H-closed and hence that $A \neq X$. Choose $v \in A$ and define $g: X \to Y$ by g(x) = x if $x \in A$, g(x) = v if $x \in X - A$, where Y = X with the topology $\{V \subset X : v \in X - V \text{ or some } F \in \Omega \text{ satisfies } F \subset V\}$. Then Y is Hausdorff and $g^{-1} \subset g(X) \times X$ is strongly subclosed since $\Gamma(y)$ is a filterbase on Y only if v = y, and $ad_{\theta}g^{-1}(\Gamma(v)) \subset ad_{\theta}\Omega \subset X - A \subset g^{-1}(v)$. There is an $F_0 \in \Omega$ and $W \in \Sigma(v)$ with $\overline{W} \cap F_0 = \emptyset$ in X. It follows that $g(F_0) = F_0 \subset A - W = g(A - W)$, so $v \in \overline{A - W} - (A - W)$ in Y. Since A - W is closed in X the function g is not a closed function.

References

- [1] J. E. Joseph, 'Multifunctions and graphs', Pacific J. Math 79 (1978), 509-529.
- [2] R. L. Krystock, 'Adherent compact spaces', Proc. Amer. Math. Soc. 107 (1989), 1117-1125.
- [3] N. V. Veličko, 'H-closed topological spaces', Mat. Sb. 70 (1966), 98-112; English transl. in Amer. Math. Soc. Transl. 78 (1968), 102-118.

Department of Mathematics Morgan State University Baltimore, MD 21251 USA e-mail: bnayar@morgan.edu