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Abstract

We consider a mod 7 Galois representation attached to a genus 2 Siegel cusp form of
level 1 and weight 28 and using some of its Fourier coefficients and eigenvalues computed
by N. Skoruppa and the classification of maximal subgroups of PGSp(4, p) we show that
its image is as large as possible. This gives a realization of PGSp(4, 7) as a Galois group
over Q and the corresponding number field provides a non-solvable extension of Q which
ramifies only at 7.

1. Introduction

This brief note is concerned with Gross’ conjecture about the existence of a non-solvable Galois
extension of Q unramified outside p for any prime p. For primes p > 7 such an extension of Q
was constructed by Serre using level 1 classical cuspidal modular forms (cf. [Ser73]) and, because
of Serre’s conjecture (in its strong form), it is easy to see that this approach cannot solve the
cases of small primes. Dembélé, Greenberg, and Voight have solved the problem for p= 2, 3, 5
(cf. [Dem09, DGV11]) using Galois representations attached to certain Hilbert modular forms:
see [DGV11] for details.

We will give a solution of this problem for the remaining case p= 7. The extension will
be obtained from a mod 7 representation attached to a level 1 genus 2 Siegel cusp form. The
study of the images of these Galois representations was already developed in the author’s thesis
(see [Die01, ch. 6], and its published version [Die02], which contains fewer computations), where
it was shown that the residual images were ‘as large as possible’ for almost every prime, provided
that the form was not a Maass spezialform and under a certain irreducibility condition on one
characteristic polynomial. In particular, for a Galois conjugacy class of cusp forms of level 1 and
weight 28 it was shown that the image was generically large.

We will consider one of the mod 7 residual representations obtained from such a Siegel cusp
form and we will prove that its projective image is PGSp(4, 7). In this way, we are realizing this
non-solvable group as a Galois group over Q in such a way that the corresponding number field
ramifies only at 7.

2. Determination of the image of the mod 7 representation

Let us recall the setup from [Die01] (or [Die02]): we start from a genus 2 Siegel cusp form f of
level 1 and weight 28, which is not a Maass spezialform (it is known to have multiplicity one).
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There is a unique conjugacy class, and the field E generated by the eigenvalues of f is the cubic
field generated by some root of P (x) = x3 − x2 − 294086x− 59412960.

Taylor and Weissauer proved the existence of a compatible family of λ-adic symplectic four-
dimensional Galois representations {ρλ} attached to f (see [Tay93] and [Wei05, pp. 68 and 76]).
This compatible system has conductor 1, that is, each representation ρλ ramifies only at `, where
` denotes the rational prime such that λ|`. The characteristic polynomial of ρλ(Frob p) when λ - p
is

Polp(x) = x4 − apx3 + (a2
p − ap2 − p2k−4)x2 − app2k−3x+ p4k−6,

where ai denotes the ith Hecke eigenvalue of f , for any i, and k denotes the weight of f .
A priori, the representations ρλ are not known to be defined over Eλ, even if all characteristic

polynomials have coefficients in E. Nevertheless, it was shown in [DKR01] that for the purpose
of determining the corresponding residual representation one can proceed as if they were, that is,
just formally reduce mod λ by reducing the coefficients of the characteristic polynomials and
the resulting residual representation exists and is known to be a quotient of ρλ. By construction,
this residual representation has coefficients in the residue field Fλ corresponding to the prime λ.

We consider a prime t dividing 7 in E and the corresponding residual representation ρ̄t: for
simplicity, let us call this residual representation ρ̄. The first Fourier coefficients of f are available
at [Sko], and have been quoted and used at [DKR01, Die01]. Moreover, using these coefficients
one can compute the first Hecke eigenvalues: a2, a4, a3, a9, a5, a25 (cf. [DKR01, Die01]). Because
we are only interested in a mod 7 representation, let us just give the values of these eigenvalues
in the residual representation. Let α be a root of P (x). All Fourier coefficients and eigenvalues
are computed in terms of α. If we reduce P (x) mod 7, we obtain

P (x)≡ (x+ 3)(x+ 4)(x+ 6) (mod 7).

Thus, 7 is split in E and we fix a prime t above 7; equivalently, we fix one of the three residual
representations with values on F7. We choose t to be the prime dividing 7 such that α is
congruent to 1 modulo t in order to compute, in F7, the residual values of the eigenvalues
and the characteristic polynomials of ρ̄. In this way, we obtain

a2 = 4, a4 = 5, a3 = 3, a9 = 2, a5 = 1, a25 = 2.

The following are the characteristic polynomials Polp(x) of ρ̄(Frob p) for p= 2, 3, 5, factorized
over F7:

Pol2(x) = x4 + 3x3 + 2x2 + 5x+ 2,
Pol3(x) = (x+ 3)(x+ 4)(x2 + 4x+ 5),
Pol5(x) = (x2 + x+ 3)(x2 + 5x+ 3).

Thus, ρ̄ has image in GSp(4, 7) containing three matrices with the above characteristic
polynomials, and it cuts an extension of Q ramifying only at 7. Using some group theory, Galois
theory, and number theory, our main result is the determination of the image of this residual
representation.

Theorem 2.1. Let f be the genus 2 Siegel cusp form of level 1 and weight 28 which is
not a Maass spezialform (unique up to Galois conjugation). Consider the compatible family
of symplectic four-dimensional Galois representations attached to f . Let ρ̄ be the residual
representation in characteristic 7 just described. Then the projective image of ρ̄ is PGSp(4, 7).
In particular, this non-solvable group corresponds to an extension of Q ramifying only at 7.
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Proof. To show that the image is indeed large, we consider the classification of maximal subgroups
of PGSp(4, q) given by Mitchell in geometric language and by Kleidman in group theoretic
language (cf. [Mit14, pp. 395–396] and [Kle86, Tables, pp. 191–220]; see also [KL90, Kin05]). For
the case of a prime field with p= 7, this classification reads as follows.

A subgroup of PGSp(4, 7) either contains PSp(4, 7) or is contained in one of the following
(see [KL90, p. 3 and ch. 4] for the notation of classes Ci and the definition of type S):

(1) a maximal parabolic subgroup (class C1);

(2) a stabilizer of a decomposition of the underlying vector space in two two-dimensional
subspaces (class C2);

(3) a stabilizer of the extension field F72 (class C3);

(4) a group isomorphic to PGL(2, 7) (of type S);

(5) a group isomorphic to 24 ·O−
4 (2) · 2 (class C6);

(6) a group isomorphic to A7 · 2 (of type S).

Comments/explanations: the image is contained in a group as in (1) if and only if the
representation is reducible. If the image is irreducible and is contained in a subgroup as in (2),
there is a quadratic number field K such that the restriction to K of ρ̄ is reducible, and for
primes p that are inert in K the trace of ρ̄ at p must be 0 (see [Die01]). Case (3) is similar
to the previous two cases, but after extending scalars to Fp2 : over this extension a subgroup
contained in a maximal subgroup in case (3) is again either reducible or contains a reducible
normal subgroup of index 2.

In case (5) the subgroup of order 16 is an elementary abelian 2-group, and the corresponding
maximal subgroup of Sp(4, 7) is known to be the normalizer of an extra-special group of order 32
(cf. [Kle86, KL88]).

Therefore, if we call a group as in (2) and (3) imprimitive, our goal is to show that the image
of ρ̄ is:

(a) absolutely irreducible;

(b) not imprimitive; and

(c) its projectivization is not contained in any of the groups listed in cases (4), (5), and (6).

(a) Assuming that ρ̄ is reducible over F̄7, we semisimplify it. In order to ease the notation, we
will call ρ̄ the semisimple representation thus obtained. Being reducible and semisimple, ρ̄ has
either a one-dimensional or a two-dimensional irreducible component, which we will call µ. If µ is
one dimensional, it corresponds to a character with values in a finite field of characteristic 7, but,
since the representation is unramified outside 7, the character µ must be equal to some power
of the mod 7 cyclotomic character χ; thus, it has values in F7. In particular, all characteristic
polynomials must have at least one root in F7, contradicting the fact that both Pol2 and Pol5
do not have any such root. If µ is two dimensional, the representation is the sum of two two-
dimensional components µ and ν. We can assume that they are both irreducible because the case
of characters has just been taken care of. In this case, the representation cannot be reducible
over F7 as in (1) because the image of ρ̄ would be contained in two copies of GL(2, 7), which
contradicts the existence of matrices in this image with irreducible characteristic polynomial as
Pol2. On the other hand, if the image is only reducible after extending scalars as in case (3), the
representations µ and ν must be conjugate to one another by the generator σ of Gal(F49/F7).
Observe also that µ and ν must have determinants defined over F7, because these determinants
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are characters of the absolute Galois group of Q unramified outside 7 and thus powers of χ. This
is incompatible with the shape of Pol3, because by direct computation we see that the only way
to factor Pol3 as a product of two quadratic polynomials such that both have their independent
terms in F7 is by taking these two quadratic factors to be (x+ 3)(x+ 4) and (x2 + 4x+ 5);
therefore, these polynomials have to be the characteristic polynomials of µ(Frob 3) and ν(Frob 3),
but this clearly contradicts the fact that µ and ν are σ-conjugates.

(b) If the image of ρ̄ were an irreducible imprimitive group, it should contain a normal
reducible subgroup H of index 2, and the trace of ρ̄(Frob p) is zero for every prime p that is
inert in the quadratic field K that is fixed by H (cf. [Die01, pp. 102–103]). Since ρ̄ is unramified
outside 7 and K is contained in the field fixed by the kernel of ρ̄, the field K must be equal to
Q(
√
−7) and in particular we should have trace(ρ̄(Frob 3)) = a3 = 0 (because 3 is not a square

mod 7), which is not the case.
(c) Using Pol2, we see that the projective image of ρ̄ is not contained in cases (4), (5), or (6),

because we easily compute the projective order of a matrix with this characteristic polynomial
to be 25. On the other hand, the order of O−

4 (2) is 120.
Having proved that the properties (a), (b), and (c) are enjoyed by the image of ρ̄, we conclude

from Mitchell’s classification that the image of the projectivization of ρ̄ contains PSp(4, 7). Since
the residue field is prime (thus it has odd degree) and the multiplier being χ2k−3, it is known
(cf. [DKR01]) that this implies that the image must be equal to PGSp(4, 7). This concludes the
proof of the theorem.

Remark 1. Reducing modulo the prime ideals above 7 that contain α− 3 or α− 4, one obtains
two more residual mod 7 representations. In these cases the determination of the image is not
so easy. In both cases, after computing the characteristic polynomials of the images of Frob p for
p= 2, 3, and 5, we see that these polynomials are not enough to eliminate directly some cases in
Mitchell’s classification. What seems achievable is to decide in both cases whether the image is
solvable or not, even if the exact group cannot be determined. For example, when we take the
prime ideal above 7 that contain α− 4, computations suggest that the projective image is either
PGSp(4, 7) or a group as in case (5) of the classification. In particular, the image is non-solvable.
In order to prove such a claim, we should also consider and eliminate all maximal subgroups of
a group as in case (5).

3. An upper bound for the root discriminant

We can give an upper bound for the root discriminant of the extension with Galois group
PGSp(4, 7) just constructed using the results of Moon in [Moo00]. In order to do so, since an
explicit description of the p-Sylow subgroup of Sp(4, p) is well known (see for example [Sri68]),
it is easy to see that this group has order p4, is non-abelian, and contains a normal p-elementary
subgroup of order p3.

Proposition 2.4 in [Moo00] then shows that the root discriminant of our extension is bounded
by 7c with c= 2 + 1 + 2/(7− 1) = 10/3. This gives the bound 710/3 ≈ 656.13.

A better bound can be obtained if we use the explicit description of the p-Sylow subgroup
of PGSp(4, p) in a more subtle way. Let us assume first that we are in the case of ‘fundamental
characters of level 1’, that is, that the image of inertia at 7 is contained in the group of upper-
triangular matrices and in the diagonal we have powers of χ. From now on, we consider the mod 7
representation ρ̄ without projectivizing: it is easy to see that its image is the group GSp(4, 7).
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We know the determinant and multiplier of ρ̄: the multiplier is χ−1 and the determinant is χ−2.
This implies that the image of the tame inertia group at 7 has order 6. Recall that the structure
of the 7-Sylow subgroup of GSp(4, 7) is known: it has order 74, length 2, and it contains
a 7-elementary normal subgroup of order 73. Using this information, we can apply [Moo00,
Lemma 2.3] to bound the root discriminant (see also the proof of Proposition 2.4 in [Moo00] for
the explanation of why the bound c in Lemma 2.3 is also a bound for the exponent of the p-part
of the root discriminant). In the notation of that lemma, we have

N = 2, m1 = 1, m2 = 3,
e0 = 6, e1 = 6 · 7 = 42, e2 = 6 · 74,

α1 = 2, α2 = 8.

Using this, we easily compute the constant c using the formula in [Moo00, Lemma 2.3]:

c= 3 +
1
6

+
1
6
−

(
1
7

+
1
73

+
1
42

+
8

6 · 74

)
≈ 3.1632.

Therefore, assuming that we are in the case where tame inertia acts through powers of the
cyclotomic character, we obtain the following upper bound for the root discriminant: 7c ≈ 471.21.

It remains to consider the complementary cases, where at least one fundamental character
of order greater than 1 appears in the action of tame inertia. But, in all such cases, using the
explicit description of the 7-Sylow subgroup of GSp(4, 7), suitably conjugated in GL(4, 7) so
that it is contained in the subgroup of upper-triangular matrices, we easily check that in these
complementary cases the image of wild inertia must be contained in the 7-elementary subgroup
of order 73 of the 7-Sylow subgroup. Thus, the 7-length of the inertia subgroup is 1. The bound
c in Lemma 2.3 of [Moo00], as noted by Moon, is smaller than N + 1 + (N/(7− 1)), where N
denotes the length of the inertia subgroup. So, having N = 1, we obtain c < 13/6 and this gives
the upper bound for the root discriminant: 7c = 713/6 ≈ 67.77.

In particular, we conclude that, in any case, the root discriminant of the extension determined
by ρ̄ is smaller than 471.22.

Proposition 3.1. Let ρ̄ be the residual representation considered in the previous section. Let F
be the fixed field of the kernel of ρ̄, a Galois number field with Galois group GSp(4, 7) unramified
outside 7. Then the root discriminant of F/Q is smaller than 471.22.
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Dem09 L. Dembélé, A non-solvable Galois extension of Q ramified at 2 only, C. R. Math. Acad. Sci.
Paris 347 (2009), 111–116.
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