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NUMERICAL SOLUTIONS OF STOCHASTIC FUNCTIONAL
DIFFERENTIAL EQUATIONS

XUERONG MAO

Abstract

In this paper, the strong mean square convergence theory is estab-
lished for the numerical solutions of stochastic functional differential
equations (SFDEs) under the local Lipschitz condition and the lin-
ear growth condition. These two conditions are generally imposed
to guarantee the existence and uniqueness of the true solution, so
the numerical results given here were obtained under quite general
conditions.

1. Introduction

Stochastic differential equations (SDEs) arise in mathematical models of physical systems
that possess inherent noise and uncertainty. Such models have been used with great success
in a variety of application areas, including biology, epidemiology, mechanics, economics
and finance. Most SDEs arising in practice are nonlinear, and cannot be solved explicitly,
so the construction of efficient computational methods is of great importance. A substantial
body of work has been done concerning approximate schemes for SDEs. Most of the
existing convergence theory for numerical methods requires a global Lipschitz assumption
on the drift and diffusion coefficients of SDEs; see [10, 15, 17, 18], for example. Recent
work has studied convergence in probability [3, 5] and almost sure convergence [4], under
more relaxed conditions on the coefficients. In particular, [7] has discussed the strong mean
square convergence for the Euler–Maruyama method, requiring only that the SDE be locally
Lipschitz and that thepth moments of the exact and numerical solution be bounded for some
p > 2. Moreover, [8] also considered the backward Euler method for SDEs without global
Lipschitz assumptions.

In many applications where SDEs are used, one assumes that the system under con-
sideration is governed by a principle of causality; that is, the future state of the system
is independent of the past states, and is determined solely by the present. Under closer
scrutiny, however, it becomes apparent that the principle of causality is often only a first
approximation to the true situation, and that a more realistic model would include some of
the past states of the system. Stochastic functional differential equations (SFDEs) give a
mathematical formulation for such systems (see, for example, [6]). A special and important
class of SFDEs is the stochastic differential delay equations (SDDEs)

dx(t) = F(x(t), x(t − τ)) dt +G(x(t), x(t − τ)) dB(t). (1.1)

As SDEs, most SDDEs cannot be solved explicitly, so numerical methods for SDDEs have
recently received a great deal of attention (see, for example, [1, 2, 9, 12, 13, 14]). Most
of the existing convergence theory for numerical methods requires F and G to be globally
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Stochastic functional differential equations

Lipschitz. However, there are many SDDEs that do not satisfy the global Lipschitz condition;
for example,

dx(t) = x(t)[1 + sin(x(t − τ))] dt + x(t)[1 + cos(x(t − τ))] dB(t)
satisfies only the local Lipschitz condition. It is in this spirit that recent work [16] has studied
the Euler–Maruyama scheme for SDDEs under the local Lipschitz condition.

On the other hand, little is as yet known about numerical solutions for SFDEs. In this
paper we study the Euler–Maruyama numerical solutions of the SFDE

dx(t) = f (xt ) dt + g(xt ) dB(t), t � 0, (1.2)

with initial data x0 = ξ ∈ LpF 0
([−τ, 0];Rn). Here,

f : C([−τ, 0];Rn) → Rn, g : C([−τ, 0];Rn) → Rn×m,

x(t) ∈ Rn for each t ,

xt = {x(t + θ) : −τ � θ � 0} ∈ C([−τ, 0];Rn),
and B(t) is an m-dimensional Brownian motion. The initial data ξ is an F0-measurable
C([−τ, 0];Rn)-valued random variable such that E‖ξ‖p < ∞ for some p > 2. Our
primary objective is to study strong mean-square convergence questions for the Euler–
Maruyama numerical approximations in the case where f and g satisfy both the local
Lipschitz condition and the linear growth condition. These two conditions are in general
imposed to guarantee the existence and uniqueness of the true solution, so our numerical
results are obtained under rather general conditions.

It is perhaps useful to emphasise the local Lipschitz condition. Technically speaking, most
of the existing convergence theory for the Euler–Maruyama numerical method requires the
global Lipschitz condition, even when the underlying equations are SDEs (see, for example,
[10, 15, 17, 18]) or SDDEs (see, for example, [1, 2, 9, 12, 13, 14]). Only recently have [7, 8]
and [16] studied the strong mean-square convergence for the Euler–Maruyama numerical
solutions for SDEs and SDDEs, respectively, without global Lipschitz assumptions. In
other words, the new numerical techniques for SDEs and SDDEs under the local Lipschitz
condition have only recently been developed. In this paper we generalize these techniques
to deal with much more general SFDEs.

In Section 2, we introduce the Euler–Maruyama method for SFDEs, and we state our
main result: that the Euler–Maruyama numerical solutions converge strongly to the exact
solution if f and g satisfy the local Lipschitz condition and the linear growth condition. The
proof of this result is rather technical, so we prepare a number of lemmas in Section 3, and
then complete the proof in Section 4. In Section 5, we reveal the order of the convergence of
the numerical solutions to the true solutions if the local Lipschitz condition is strengthened
to the global Lipschitz condition. We show that the order is halved, which is the same as
in the case of SDEs. In Section 6, we point out that our main result remains true if the
linear growth condition is replaced by the condition that the exact and numerical solution
have bounded pth moment for some p > 2. The bounded moment assumption will not, of
course, hold in general, although it holds under the linear growth condition. It is an open
problem to find other conditions, instead of the linear growth condition, that guarantee the
bounded moment for the numerical solution. In Section 7, a simpler numerical scheme is
presented in the case where both coefficients of the underlying SFDE are defined for step
functions as well.
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Stochastic functional differential equations

2. The Euler–Maruyama method

Throughout this paper, unless otherwise specified, we use the following notations. Let
| · | be the Euclidean norm in Rn. If A is a vector or matrix, its transpose is denoted by AT .
If A is a matrix, its trace norm is denoted by

|A| =
√

trace(AT A).

Let R+ = [0,∞), and let τ > 0. Denote by C([−τ, 0];Rn) the family of continuous
functions from [−τ, 0] to Rn with the norm ‖ϕ‖ = sup−τ�θ�0 |ϕ(θ)|.

Let (�,F , {Ft }t�0, P ) be a complete probability space with a filtration {Ft }t�0 satis-
fying the usual conditions (that is, it is increasing and right continuous, while F0 contains
all P -null sets). Let B(t) = (B1(t), . . . , Bm(t))

T be an m-dimensional Brownian motion
defined on the probability space. Let p > 0, and denote by LpF0

([−τ, 0];Rn) the family of
F0-measurable C([−τ, 0];Rn)-valued random variables such that E‖ξ‖p < ∞. If x(t) is
an Rn-valued stochastic process on t ∈ [−τ,∞), we let xt = {x(t + θ) : −τ � θ � 0} for
t � 0.

Let f : C([−τ, 0];Rn) → Rn and g : C([−τ, 0];Rn) → Rn×m. In this paper we
impose the following hypotheses.

Assumption 2.1 (the local Lipschitz condition). For each integer j � 1, there is a
right-continuous nondecreasing function µj : [−τ, 0] → R+ such that

|f (ϕ)− f (ψ)|2 ∨ |g(ϕ)− g(ψ)|2 �
∫ 0

−τ
|ϕ(θ)− ψ(θ)|2dµj (θ)

for thoseϕ,ψ ∈ C([−τ, 0];Rn)with ‖ϕ‖∨‖ψ‖ � j , where the integral is of the Lebesgue–
Stieltjes type.

Assumption 2.2 (the linear growth condition). There is a constant K > 0 such that

|f (ϕ)|2 ∨ |g(ϕ)|2 � K(1 + ‖ϕ‖2)

for all ϕ ∈ C([−τ, 0];Rn).
Consider the n-dimensional SFDE:

dx(t) = f (xt ) dt + g(xt ) dB(t), t � 0, (2.1)

with initial data x0 = ξ . We impose the following condition on the initial data.

Assumption 2.3. ξ ∈ LpF0
([−τ, 0];Rn) for some p > 2.

By [15, Theorem 5.2.5 on p. 153] and [15, Theorem 5.4.1 on p. 158], we can therefore
state the following theorem.

Theorem 2.4. Under Assumptions 2.1–2.3, equation (2.1) has a unique continuous solution
x(t) on t � −τ . Moreover, the solution has the property that

E

(
sup

−τ�t�T
|x(t)|p

)
� 2(p+4)/2(1 + E‖ξ‖p)eCT (2.2)

for any T > 0, where C = p[2√
K + (33p− 1)K]. In other words, the pth moment of the

solution is finite.
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Let us now introduce a numerical scheme for the SFDE (2.1); we refer to it as the Euler–
Maruyama method. Let the step size � ∈ (0, 1) be a fraction of τ , namely � = τ/N for
some integerN > τ . The discrete Euler–Maruyama approximate solution ȳ(k�), k � −N
is defined as follows:{

ȳ(k�) = ξ(k�), −N � k � 0,

ȳ((k + 1)�) = ȳ(k�)+ f (ȳk�)�+ g(ȳk�)�Bk, k � 0,
(2.3)

where �Bk = B((k + 1)�) − B(k�) and ȳk� = {ȳk�(θ) : −τ � θ � 0} is a
C([−τ, 0];Rn)-valued random variable defined as follows:

ȳk�(θ) = ȳ((k + i)�)+ θ − i�

�
[ȳ((k + i + 1)�)− ȳ((k + i)�)]

for i� � θ � (i + 1)�, i = −N,−(N − 1), . . . ,−1. (2.4)

That is, ȳk�(·) is the linear interpolation of ȳ((k − N)�), ȳ((k − N + 1)�), . . . , ȳ(k�).
We can re-write (2.4) as

ȳk�(θ) = �− (θ − i�)

�
ȳ((k + i)�)+ θ − i�

�
ȳ((k + i + 1)�),

which yields

|ȳk�(θ)| = �− (θ − i�)

�
|ȳ((k + i)�)| + θ − i�

�
|ȳ((k + i + 1)�)|

� |ȳ((k + i)�)| ∨ |ȳ((k + i + 1)�)|.
We therefore have

‖ȳk�‖ = max
−N�i�0

|ȳ(k + i)�|, ∀k � 0. (2.5)

In our analysis it will be more convenient to use continuous-time approximations. We
hence introduce the C([−τ, 0];Rn)-value step process

ȳt =
∞∑
k=0

ȳk�1[k�,(k+1)�)(t), t � 0, (2.6)

and we define the continuous Euler–Maruyama approximate solution as follows:

y(t) =


ξ(t), −τ � t � 0,

ξ(0)+
∫ t

0
f (ȳs) ds +

∫ t

0
g(ȳs) dB(s), t � 0.

(2.7)

It should be pointed out that the C([−τ, 0];Rn)-value process ȳt is simply defined by
(2.6), but we do not define here anRn-valued continuous process ȳ(t) from which ȳt is then
induced by ȳt = {ȳ(t + θ) : −τ � θ � 0}. It should also be pointed out that the reason
why we do not use the linear interpolation of ȳ(k�) as a continuous-time approximation
for x(t), instead using y(t) from (2.7), is because the linear interpolation of ȳ(k�) is not
Ft -adapted.

It follows from (2.7) that for any t � 0 and any integer k � 0 that satisfy k� � t ,

y(t) = ξ(0)+
∫ k�

0
f (ȳs) ds +

∫ k�

0
g(ȳs) dB(s)+

∫ t

k�

f (ȳs) ds +
∫ t

k�

g(ȳs) dB(s)

= ȳ(k�)+
∫ t

k�

f (ȳs) ds +
∫ t

k�

g(ȳs) dB(s). (2.8)
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In particular, we observe that y(k�) = ȳ(k�) for all k � −N . That is, the discrete and
continuous Euler–Maruyama approximate solutions coincide at the gridpoints. It is then
obvious that

‖ȳk�‖ � ‖yk�‖, ∀k � 0. (2.9)

Moreover, for any t � 0, let [t/�] be the integer part of t/�. Then

‖ȳt‖ = ‖ȳ[t/�]�‖ (2.10)

� ‖y[t/�]�‖ (2.11)

� sup
−τ�s�t

|y(s)|. (2.12)

This property will be used frequently in what follows, without further explanation.
To illustrate our numerical scheme, as well as to see why we call it the Euler–Maruyama

method, let us consider a special SFDE

dx(t) = F(D(xt )) dt +G(D(xt )) dB(t), (2.13)

where F : Rn → Rn,G : Rn → Rn×m, andD is a linear operator from C([−τ, 0];Rn) to
Rn given by

D(ϕ) = 1

τ

∫ 0

−τ
ϕ(θ) dθ, ϕ ∈ C([−τ, 0];Rn);

that is, D is an average operator. In this case, the discrete approximate solution (2.3) takes
the following simple form:{

ȳ(k�) = ξ(k�), −N � k � 0,

ȳ((k + 1)�) = ȳ(k�)+ F(D(ȳk�))�+G(D(ȳk�))�Bk, k � 0,
(2.14)

where

D(ȳk�) = 1

τ

∫ 0

−τ
ȳk�(θ) dθ

= 1

τ

−1∑
i=−N

�

2
[ȳ((k + i)�)+ ȳ((k + i + 1)�)]

= 1

N

(
1

2
ȳ((k −N)�)+ ȳ((k −N + 1)�)+ . . .+ ȳ((k − 1)�)+ 1

2
ȳ(k�)

)
.

We see clearly from this simple form that the discrete approximate solution (2.3) is a natural
generalization of the classical Euler–Maruyama numerical scheme for SDEs, and that is
why we call (2.3) the Euler–Maruyama approximate solution.

The primary aim of this paper is to establish the following main result.

Theorem 2.5. Under Assumptions 2.1–2.3,

lim
�→0

E

(
sup

0�t�T
|x(t)− y(t)|2

)
= 0, ∀T > 0. (2.15)

The proof of this theorem is very technical, so we present a number of lemmas in
Section 3, and then we complete the proof in Section 4.
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3. Lemmas

Lemma 3.1. Let Assumption 2.3 hold. Define α : (0, τ ] → R+ by

α(u) = sup
t,s∈[−τ,0], |t−s|<u

E|ξ(t)− ξ(s)|2.

Then α is nondecreasing and has the property that α(u) → 0 as u → 0. Moreover,

E|ξ(t)− ξ(s)|2 � α(t − s), −τ � s � t � 0. (3.1)

Proof. From the definition of α we see clearly that α is nondecreasing and (3.1) holds. We
therefore need only to show that α(u) → 0 as u → 0. If this is not true, then

lim
u→0

α(u) = ε0 > 0.

From the definition of α we observe that for each integer k � 1 we can find a pair of tk and
sk in [−τ, 0] with |tk − sk| < 1/k for which

E|ξ(tk)− ξ(sk)|2 � ε0

2
. (3.2)

Since {tk} is a sequence in the bounded interval [−τ, 0], it must have a convergent subse-
quence. Without any loss of generality, we may assume that {tk} is already a convergent
sequence, and that it converges to t̄ ∈ [−τ, 0]. Clearly, {sk} converges to t̄ too. Now, by the
continuity of ξ(·),

lim
k→∞ |ξ(tk)− ξ(t̄)|2 = 0, almost surely.

Moreover,
|ξ(tk)− ξ(t̄)|2 � 2|ξ(tk)|2 + 2|ξ(t̄)|2

� 4‖ξ‖2,

while (by Assumption 2.3 and the Hölder inequality)

E‖ξ‖2 � (E‖ξ‖p)2/p < ∞.

We can then apply the dominated convergence theorem to obtain

lim
k→∞E|ξ(tk)− ξ(t̄)|2 = 0.

Similarly, we can show that

lim
k→∞E|ξ(sk)− ξ(t̄)|2 = 0.

Consequently, we have

lim
k→∞E|ξ(tk)− ξ(sk)|2 = 0,

but this is in contradiction to (3.2). We therefore must have

lim
u→0

α(u) = 0.

The proof is therefore complete.

Lemma 3.2. Under Assumptions 2.2 and 2.3,

E

(
sup

−τ�t�T
|y(t)|p

)
� H, ∀T > 0, (3.3)

where H is a positive number dependent only on ξ , K , p and T , but independent of �.
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Proof. By the Hölder inequality, it is easy to see from (2.7) that

|y(t)|p � 3p−1
[
|ξ(0)|p + tp−1

∫ t

0
|f (ȳs)|pds +

∣∣∣∣
∫ t

0
g(ȳs) dB(s)

∣∣∣∣
p]
.

Hence, for any t1 ∈ [0, T ],

E

(
sup

0�t�t1
|y(t)|p

)
� 3p−1

[
E|ξ(0)|p + T p−1E

∫ t1

0
|f (ȳs)|pds

+E
(

sup
0�t�t1

|
∫ t

0
g(ȳs) dB(s)|p

)]
. (3.4)

By Assumption 2.2, we compute that

E

∫ t1

0
|f (ȳs)|pds � 2(p−2)/2Kp/2E

∫ t1

0
(1 + ‖ȳ(s)‖p) ds

� 2(p−2)/2Kp/2
[
T +

∫ t1

0
E

(
sup

−τ�t�s
|y(t)|p

)
ds

]
. (3.5)

We also compute, using the Burkholder–Davis–Gundy inequality,

E

(
sup

0�t�t1

∣∣∣∣
∫ t

0
g(ȳs) dB(s)

∣∣∣∣
p)

� cpE

( ∫ t1

0
|g(ȳs)|2ds

)p/2

� cpT
(p−2)/2E

∫ t1

0
|g(ȳs)|pds,

where cp is a constant dependent only on p. In the same way as (3.5) was obtained, we can
then show that

E

(
sup

0�t�t1

∣∣∣∣
∫ t

0
g(ȳs) dB(s)

∣∣∣∣
p)

� cp(2T )
(p−2)/2Kp/2

[
T +

∫ t1

0
E

(
sup

−τ�t�s
|y(t)|p

)
ds

]
.

(3.6)

Substituting (3.5) and (3.6) into (3.4) yields

E

(
sup

0�t�t1
|y(t)|p

)
� 3p−1E|ξ(0)|p + C1 + C2

∫ t1

0
E

(
sup

−τ�t�s
|y(t)|p

)
ds, (3.7)

where C1 and C2 are two positive numbers dependent only on K , p and T . We then derive
the following inequalities:

E

(
sup

−τ�t�t1
|y(t)|p

)
� E‖ξ‖p + E

(
sup

0�t�t1
|y(t)|p

)

� (1 + 3p−1)E‖ξ‖p + C1 + C2

∫ t1

0
E

(
sup

−τ�t�s
|y(t)|p

)
ds.

(3.8)

By the well-known Gronwall inequality we find that

E

(
sup

−τ�t�T
|y(t)|p

)
� [(1 + 3p−1)E‖ξ‖p + C1]eC2T ,

and hence the required assertion must hold.
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Lemma 3.3. Let Assumptions 2.1–2.3 hold, and let T > 0. Then there is a nondecreasing
function β : (0, τ ] → R+ that has the property that β(u) = 0 as u → 0, such that

E|y(s + θ)− ȳs(θ)|2 � β(�), s ∈ [0, T ], θ ∈ [−τ, 0]. (3.9)

Proof. Fix any s ∈ [0, T ] and θ ∈ [−τ, 0]. Let ks and kθ be the integers for which
s ∈ [ks�, (ks + 1)�) and θ ∈ [kθ�, (kθ + 1)�], respectively. (When θ/� is an integer,
the choice for kθ may not be unique, but this will not affect the proof below.) Clearly,
0 � s − ks� < � and 0 � θ − kθ� � �, so

0 � s + θ − (ks + kθ )�

< 2�. (3.10)

Moreover, it follows from (2.4) and (2.6) that

ȳs(θ) = ȳks�(θ)

= ȳ((ks + kθ )�)+ θ − kθ�

�
[ȳ((ks + kθ + 1)�)− ȳ((ks + kθ )�)].

Hence

E|y(s + θ)− ȳs(θ)|2 � 2E|y(s + θ)− ȳ((ks + kθ )�)|2
+2E|ȳ((ks + kθ + 1)�)− ȳ((ks + kθ )�)|2. (3.11)

If ks + kθ � −1, then, by Lemma 3.1,

E|ȳ((ks + kθ + 1)�)− ȳ((ks + kθ )�)|2 � α(�).

If ks + kθ � 0, by Assumption 2.2 and Lemma 3.2 we compute from (2.3) that

E|ȳ((ks + kθ + 1)�)− ȳ((ks + kθ )�)|2
= �2E|f (ȳ(ks+kθ )�)|2 +�E|g(ȳ(ks+kθ )�)|2
� 2�K(1 + E‖ȳ(ks+kθ )�‖2)

� 2�K

(
1 + E

[
sup

−τ�u�(ks+kθ )�
|y(u)|2

])

� 2�K

{
1 +

(
E

[
sup

−τ�u�(ks+kθ )�
|y(u)|p

])2/p}

� 2K(1 +H 2/p)�,

where H is the constant specified in Lemma 3.2. We hence always have

E|ȳ((ks + kθ + 1)�)− ȳ((ks + kθ )�)|2 � 2K(1 +H 2/p)�+ α(�).

Using this bound in (3.11) gives

E|y(s + θ)− ȳs(θ)|2 � 2E|y(s + θ)− ȳ((ks + kθ )�)|2 + 4K(1 +H 2/p)�+ 2α(�).
(3.12)

To bound the first term on the right-hand side, let us discuss the following four possible
cases.

Case 1: ks + kθ � 0. It follows from (2.8) that

y(s + θ)− ȳ((ks + kθ )�) =
∫ s+θ

(ks+kθ )�
f (ȳr ) dr +

∫ s+θ

(ks+kθ )�
g(ȳr ) dB(r).
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By Assumption 2.2 and Lemma 3.2, we compute that

E|y(s + θ)− ȳ((ks + kθ )�)|2 � 2

[
2�E

∫ s+θ

(ks+kθ )�
|f (ȳr )|2dr + E

∫ s+θ

(ks+kθ )�
|g(ȳr )|2dr

]

� 6KE
∫ s+θ

(ks+kθ )�
(1 + ‖ȳr )‖2) dr

� 6K
∫ s+θ

(ks+kθ )�

(
1 + E

[
sup

−τ�u�r
|y(u)|2

])
dr

� 6K
∫ s+θ

(ks+kθ )�

{
1 +

(
E

[
sup

−τ�u�r
|y(u)|p

])2/p}
dr

� 12K(1 +H 2/p)�. (3.13)

Case 2: ks + kθ = −1 and � < s + θ − (ks + kθ )� < 2�. In this case,

0 � �+ (ks + kθ )�

< s + θ

< 2�+ (ks + kθ )�

= �.

So

E|y(s + θ)− ȳ((ks + kθ )�)|2 = E|y(s + θ)− ȳ(−�)|2
� E|y(s + θ)− ξ(0)|2 + 2E|ξ(0)− ξ(−�)|2.

It can be shown in the same way as in Case 1 that

E|y(s + θ)− ξ(0)|2 � 4K(1 +H 2/p)�,

while by Lemma 3.1,

E|ξ(0)− ξ(−�)|2 � α(�).

We therefore see that

E|y(s + θ)− ȳ((ks + kθ )�)|2 � 8K(1 +H 2/p)�+ 2α(�). (3.14)

Case 3: ks + kθ = −1 and 0 � s + θ − (ks + kθ )� � �. In this case,

−� � (ks + kθ )�

< s + θ

< �+ (ks + kθ )�

= 0.

So

E|y(s + θ)− ȳ((ks + kθ )�)|2 = E|ξ(s + θ)− ȳ(−�)|2
= E|ξ(s + θ)− ξ(−�)|2.

By Lemma 3.1, we then have

E|y(s + θ)− ȳs(θ)|2 � α(�). (3.15)
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Case 4: ks + kθ � −2. In this case we have s + θ � 0. So

E|y(s + θ)− ȳ((ks + kθ )�)|2 = E|ξ(s + θ)− ξ((ks + kθ )�)|2.
By Lemma 3.1 and (3.10), we then have

E|y(s + θ)− ȳ((ks + kθ )�)|2 � α(2�). (3.16)

Combining the four cases above together, we can conclude that we always have

E|y(s + θ)− ȳ((ks + kθ )�)|2 � 12K(1 +H 2/p)�+ 2α(2�). (3.17)

Now, we define β : (0, τ ] → R+ by

β(u) = 28K(1 +H 2/p)u+ 6α(2u).

Clearly, β is nondecreasing. Moreover, it follows from (3.12) and (3.17) that

E|y(s + θ)− ȳs(θ)|2 � β(�),

which is the required assertion. The proof is complete.

4. Proof of Theorem 2.5

Let us now begin to prove Theorem 2.5. We first note from Theorem 2.4 and Lemma 3.2
that there is a positive constant H̄ such that

E

(
sup

−τ�t�T
|x(t)|p

)
∨ E

(
sup

−τ�t�T
|y(t)|p

)
� H̄ . (4.1)

Let j be a sufficiently large integer. Define the stopping times

uj := inf{t � 0 : ‖xt‖ � j}, vi := inf{t � 0 : ‖yt‖ � j}, ρj := uj ∧ vj ,
where we set inf ∅ = ∞ as usual. Let

e(t) := x(t)− y(t).

Obviously,

E

[
sup

0�t�T
|e(t)|2

]
= E

[
sup

0�t�T
|e(t)|21{uj>T,vj>T }

]
+ E

[
sup

0�t�T
|e(t)|21{uj�T or vj�T }

]
.

Recall the following elementary inequality:

aγ b1−γ � γ a + (1 − γ )b, ∀a, b > 0, γ ∈ [0, 1].
We thus have, for any δ > 0,

E

[
sup

0�t�T
|e(t)|21{uj�T or vj�T }

]

= E

[(
δ sup

0�t�T
|e(t)|p

)2/p(
δ−2/(p−2)1{uj�T or vj�T }

)(p−2)/p]

� 2δ

p
E

[
sup

0�t�T
|e(t)|p

]
+ p − 2

pδ2/(p−2)
P (uj � T or vj � T ).
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Hence

E

[
sup

0�t�T
|e(t)|2

]
� E

[
sup

0�t�T
|e(t)|21{ρj>T }

]
+ 2δ

p
E

[
sup

0�t�T
|e(t)|p

]

+ p − 2

pδ2/(p−2)
P (uj � T or vj � T ). (4.2)

Now,

P

(
uj � T

)
= E

[
1{uj�T }

‖xuj ‖p
jp

]

� 1

jp
E

[
sup

−τ�t�T
|x(t)|p

]

� H̄

jp
,

using (4.1). Similarly, we have

P

(
vj � T

)
� H̄

jp
.

Thus

P(uj � T or vj � T ) � P(uj � T )+ P(vj � T )

� 2H̄

jp
.

We also have

E

[
sup

0�t�T
|e(t)|p

]
� 2p−1E

[
sup

0�t�T

(
|x(t)|p + |y(t)|p

)]

� 2pH̄ .

Moreover,

E

[
sup

0�t�T
|e(t)|21{ρj>T }

]
= E

[
sup

0�t�T
|e(t ∧ ρj )|21{ρj>T }

]

� E

[
sup

0�t�T
|e(t ∧ ρj )|2

]
.

Using these bounds in (4.2) yields

E

[
sup

0�t�T
|e(t)|2

]
� E

[
sup

0�t�T
|e(t ∧ ρj )|2

]
+ 2p+1δH̄

p
+ (p − 2)2H̄

pδ2/(p−2)jp
. (4.3)

Now

|e(t ∧ ρj )|2 = |x(t ∧ ρj )− y(t ∧ ρj )|2

=
∣∣∣∣
∫ t∧ρj

0
[f (xs)− f (ȳs)] ds +

∫ t∧ρj

0
[g(xs)− g(ȳs)] dB(s)

∣∣∣∣
2

� 2

[
T

∫ t∧ρj

0
|f (xs)− f (ȳs)|2ds +

∣∣∣∣
∫ t∧ρj

0
[g(xs)− g(ȳs)] dB(s)

∣∣∣∣
2]
.
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By the Doob martingale inequality we have, for any t1 � T ,

E

[
sup

0�t�t1
|e(t ∧ ρj )|2

]

� 2

[
T E

∫ t1∧ρj

0
|f (xs)− f (ȳs)|2ds + 4

∫ t1∧ρj

0
|g(xs)− g(ȳs)|2ds

]

= 4(T + 4)E
∫ t1∧ρj

0
[|f (xs)− f (ȳs)|2 ∨ |g(xs)− g(ȳs)|2] ds.

But, by Assumption 2.1, we derive that, for s ∈ (0, t1 ∧ ρj ],
|f (xs)− f (ȳs)|2

� 2|f (xs)− f (ys)|2 + 2|f (ys)− f (ȳs)|2

� 2
∫ 0

−τ
|x(s + θ)− y(s + θ)|2dµj (θ)+ 2

∫ 0

−τ
|y(s + θ)− ȳs(θ)|2dµj (θ)

� 2
∫ 0

−τ

[
sup

−τ�θ�0
|x(s + θ)− y(s + θ)|2

]
dµj (θ)+ 2

∫ 0

−τ
|y(s + θ)− ȳs(θ)|2dµj (θ)

� 2(µj (0)− µj (−τ))
[

sup
0�t�s

|x(t)− y(t)|2
]

+ 2
∫ 0

−τ
|y(s + θ)− ȳs(θ)|2dµj (θ).

A similar result can be obtained for |g(xs)− g(ȳs)|2, so that

E

[
sup

0�t�t1
|e(t ∧ ρj )|2

]
� 8(T + 4)(µj (0)− µj (−τ))E

∫ t1∧ρj

0

[
sup

0�t�s
|e(s)|2

]
ds

+8(T + 4)E
∫ t1∧ρj

0

[ ∫ 0

−τ
|y(s + θ)− ȳs(θ)|2dµj (θ)

]
ds (4.4)

� 8(T + 4)(µj (0)− µj (−τ))
∫ t1

0
E

[
sup

0�t�s
|e(s ∧ ρj )|2

]
ds

+8(T + 4)
∫ T

0

[ ∫ 0

−τ
E|y(s + θ)− ȳs(θ)|2dµj (θ)

]
ds. (4.5)

By Lemma 3.3 we therefore find that

E

[
sup

0�t�t1
|e(t ∧ ρj )|2

]
� 8(T + 4)(µj (0)− µj (−τ))

∫ t1

0
E

[
sup

0�t�s
|e(s ∧ ρj )|2

]
ds

+8T (T + 4)(µj (0)− µj (−τ))β(�).
The Gronwall inequality implies that

E

[
sup

0�t�T
|e(t ∧ ρj )|2

]
� Cjβ(�),

where

Cj = 8T (T + 4)(µj (0)− µj (−τ)) exp[8T (T + 4)(µj (0)− µj (−τ))].
Substituting this into (4.3) gives

E

[
sup

0�t�T
|e(t)|2

]
� Cjβ(�)+ 2p+1δH̄

p
+ (p − 2)2H̄

pδ2/(p−2)jp
. (4.6)
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Given any ε > 0, we can now choose δ sufficiently small for (2p+1δH̄ )/p < ε/3, then
choose j sufficiently large for

(p − 2)2H̄

pδ2/(p−2)jp
<
ε

3

and finally choose � so that

Cjβ(�) <
ε

3
.

Thus, in (4.6),E[sup0�t�T |e(t)|2] < ε, as required. The proof of Theorem 2.5 is therefore
complete.

5. Order of convergence under the global Lipschitz condition

Under the general conditions (namely the local Lipschitz condition and the linear growth
condition) that are normally imposed for the existence and uniqueness of the solution,
Theorem 2.5 shows the strong convergence of the Euler–Maruyama approximate solutions
to the true solution. However, this theorem does not give the order of the convergence. In
this section we reveal the order of the convergence, but here we need to replace the local
Lipschitz condition by the global Lipschitz condition. To be more precise, we state the
assumption as follows.

Assumption 5.1 (the global Lipschitz condition). There is a right-continuous nonde-
creasing function µ : [−τ, 0] → R+ such that

|f (ϕ)− f (ψ)|2 ∨ |g(ϕ)− g(ψ)|2 �
∫ 0

−τ
|ϕ(θ)− ψ(θ)|2dµ(θ)

for all ϕ,ψ ∈ C([−τ, 0];Rn).
It is easy to see from this global Lipschitz condition that for any ϕ ∈ C([−τ, 0];Rn),

|f (ϕ)|2 ∨ |g(ϕ)|2 � 2(|f (0)|2 ∨ |g(0)|2)+ 2(µ(0)− µ(−τ))‖ϕ‖2.

That is, the global Lipschitz condition implies the linear growth condition (Assumption 2.2)
with the growth coefficient

K = 2[(|f (0)|2 ∨ |g(0)|2) ∨ (µ(0)− µ(−τ))]. (5.1)

In addition, we need to slightly strengthen Assumption 2.3 on the initial data.

Assumption 5.2. Assume that ξ ∈ LpF0
([−τ, 0];Rn) for some p > 2; moreover, there is

a positive constant λ such that

E|ξ(t)− ξ(s)|2 � λ(t − s), −τ � s � t � 0.

We can now state another theorem, which reveals the order of the convergence.

Theorem 5.3. Under Assumptions 5.1 and 5.2,

E

(
sup

0�t�T
|x(t)− y(t)|2

)
= O(�), ∀T > 0. (5.2)

Proof. First of all, we note that Lemma 3.1 is now replaced by Assumption 5.2, and the
function α(·) there takes the simple linear form α(u) = λu. Moreover, Lemmas 3.2 and 3.3
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hold withK defined by (5.1), while the function β(·) in Lemma 3.3 is now a linear function,
namely

β(u) = 4(7K(1 +H 2/p)+ 3λ)u.

So the proof of Theorem 2.5 still works, except the local Lipschitz condition has now been
replaced by the global one; in other words, µj is replaced by µ. As a result, the constant Cj
in (4.4) becomes

C = 8T (T + 4)(µ(0)− µ(−τ)) exp[8T (T + 4)(µ(0)− µ(−τ))],
which is independent of j . So inequality (4.4) can be written as

E

[
sup

0�t�T
|e(t)|2

]
� Cβ(�)+ 2p+1δH̄

p
+ (p − 2)2H̄

pδ2/(p−2)jp
. (5.3)

Since this holds for arbitrary δ > 0 and j > 1, we may let j → ∞ and δ → 0, in order to
obtain

E

[
sup

0�t�T
|e(t)|2

]
� Cβ(�) = 4C(3K(1 +H 2/p)+ λ)�, (5.4)

as required. The proof is complete.

6. A generalized result

We observe from the proof of Theorem 2.5 that it is the pth moment bound (4.1) that
plays an important role, while the linear growth condition (namely Assumption 2.2) is
mainly used to guarantee (4.1). We therefore wonder whether Theorem 2.5 would still hold
if Assumption 2.2 were replaced by (4.1). The main aim of this section is to give a positive
answer to this question. Let us state (4.1) as an assumption.

Assumption 6.1. For some p > 2, there is a positive constant H̄ , which may depend on
ξ , p and T , but is independent of �, such that

E

(
sup

−τ�t�T
|x(t)|p

)
∨ E

(
sup

−τ�t�T
|y(t)|p

)
� H̄ . (6.1)

Our generalized result can now be stated as follows.

Theorem 6.2. Under Assumptions 2.1, 2.3 and 6.1,

lim
�→0

E

(
sup

0�t�T
|x(t)− y(t)|2

)
= 0, ∀T > 0. (6.2)

Proof. We use the same notations as in the proof of Theorem 2.5, and we note that everything
up to inequality (4.4) still holds. However, we observe that we derived (4.5) from (4.4) in
order to apply Lemma 3.3, which requires Assumption 2.2. It is there that we need a much
more careful consideration, and we use a truncation technique to overcome the difficulty.

Let j be a positive integer, and let Sj = {x ∈ Rn : |x| � j}. Define the projection
πj : Rn → Sj by

πj (x) = j ∧ |x|
|x| x,

where we set πj (0) = 0 as usual.
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It is easy to see that

|πj (x)− πj (y)| � |x − y|, ∀x, y ∈ Rn.
Define the operator π̄j : C([−τ, 0];Rn) → C([−τ, 0];Rn) by

π̄j (ϕ) = {πj (ϕ(θ)) : −τ � θ � 0}.
Clearly,

‖π̄j (ϕ)‖ � j, ∀ϕ ∈ C([−τ, 0];Rn).
Define the truncation functions fj : C([−τ, 0];Rn) → Rn and gj : C([−τ, 0];Rn) →
Rn×m by

fj (ϕ) = f (π̄j (ϕ)) and gj (ϕ) = g(π̄j (ϕ)),

respectively. By Assumption 2.1, we compute that for any ϕ,ψ ∈ C([−τ, 0];Rn),
|fj (ϕ)− fj (ψ)|2 ∨ |gj (ϕ)− gj (ψ)|2

= |f (π̄j (ϕ))− f (π̄j (ψ))|2 ∨ |g(π̄j (ϕ))− g(π̄j (ψ))|2

�
∫ 0

−τ
|πj (ϕ(θ))− πj (ψ(θ))|2dµj (θ)

�
∫ 0

−τ
|ϕ(θ)− ψ(θ)|2dµj (θ),

and

|fj (ϕ)|2 ∨ |gj (ϕ)|2 � K(1 + ‖ϕ‖2),

where

K = K(j) = 2[(|f (0)|2 ∨ |g(0)|2) ∨ (µj (0)− µj (−τ))].
In other words, fj and gj satisfy both the global Lipschitz condition and the linear growth
condition. Consider the SFDE

dxj = fj (x
j
t ) dt + gj (x

j
t ) dB(t), t � 0, (6.3)

with initial data xj0 = ξ . Applying the Euler–Maruyama method to this SFDE, we can
define: the discrete approximate solution ȳj (k�) for k � −N , the C([−τ, 0];Rn)-value
step process

ȳ
j
t =

∞∑
k=0

ȳ
j
k�1[k�,(k+1)�)(t), t � 0, (6.4)

and then the continuous Euler–Maruyama approximate solution

yj (t) =


ξ(t), −τ � t � 0,

ξ(0)+
∫ t

0
fj (ȳ

j
s ) ds +

∫ t

0
gj (ȳ

j
s ) dB(s), t � 0.

(6.5)

Applying Lemma 3.3 to (6.5), we see that there is a nondecreasing function βj : (0, τ ] →
R+, which has the property that βj (u) = 0 as u → 0, such that

E|yj (s + θ)− ȳ
j
s (θ)|2 � βj (�), s ∈ [0, T ], θ ∈ [−τ, 0]. (6.6)
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Moreover, by the definition of ρj , it is easy to observe that for s ∈ (0, t1 ∧ ρj ], we have

ȳs = ȳ
j
s and

y(s) = ξ(0)+
∫ s

0
f (ȳr ) dr +

∫ s

0
g(ȳr ) dB(r)

= ξ(0)+
∫ s

0
fj (ȳ

j
r ) dr +

∫ s

0
gj (ȳ

j
r ) dB(r)

= yj (s).

By (6.6), we then derive from (4.4) that

E

[
sup

0�t�t1
|e(t ∧ ρj )|2

]
� 8(T + 4)(µj (0)− µj (−τ))E

∫ t1∧ρj

0

[
sup

0�t�s
|e(s)|2

]
ds

+8(T + 4)E
∫ t1∧ρj

0

[ ∫ 0

−τ
|yj (s + θ)− ȳ

j
s (θ)|2dµj (θ)

]
ds

� 8(T + 4)(µj (0)− µj (−τ))E
∫ t1

0

[
sup

0�t�s
|e(s ∧ ρj )|2

]
ds

+8(T + 4)
∫ T

0

[ ∫ 0

−τ
E|yj (s + θ)− ȳ

j
s (θ)|2dµj (θ)

]
ds

� 8(T + 4)(µj (0)− µj (−τ))
∫ t1

0
E

[
sup

0�t�s
|e(s ∧ ρj )|2

]
ds

+8T (T + 4)(µj (0)− µj (−τ))βj (�).
The Gronwall inequality implies that

E

[
sup

0�t�T
|e(t ∧ ρj )|2

]
� Cjβj (�),

where Cj is as defined in the proof of Theorem 2.5. The remainder of the proof is the same
as before, so now the proof is complete.

7. A simpler scheme

In this section we establish a simpler version of the Euler–Maruyama numerical scheme
than the one that we introduced in Section 2. To motivate the new scheme, let us consider
a special SFDE

dx(t) = F(D(xt )) dt +G(D(xt )) dB(t), (7.1)

where F : Rn → Rn,G : Rn → Rn×m andD is a nonlinear operator from C([−τ, 0];Rn)
to Rn given by

D(ϕ) =
∫ 0

−τ
κ(ϕ(θ)) dθ, ϕ ∈ C([−τ, 0];Rn),

in which κ is a continuous function from Rn to itself. In this case, the discrete approximate
solution (2.3) takes the following simple form:{

ȳ(k�) = ξ(k�), −N � k � 0,

ȳ((k + 1)�) = ȳ(k�)+ F(D(ȳk�))�+G(D(ȳk�))�Bk, k � 0,
(7.2)
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where

D(ȳk�) =
∫ 0

−τ
κ(ȳk�(θ)) dθ.

Since κ(ȳk�(θ)) is continuous in θ ∈ [−τ, 0], the above integration may be approximated
by the following simple sum:

−1∑
i=−N

κ(ȳ((k + i)�))�.

This is equivalent to saying that ȳk� is defined as a step-function-valued random variable
as follows:{
ȳk�(θ) = ȳ((k − i)�) for − i� � θ < (−i + 1)�, i = N, (N − 1), . . . , 1,

ȳk�(0) = ȳ(k�),
(7.3)

instead of a C([−τ, 0];Rn)-valued random variable as defined by (2.4). The question is:
should ȳk� be defined by (7.3) instead of (2.4), and will the numerical solution (7.2) still
converge to the true solution of equation (7.1)? There seems no reason why it should not
work. However, when we think more generally to see whether Theorems 2.5 and 6.2 still
hold in this way, we first face a problem: both coefficients f and g of equation (2.1) are
defined only on C([−τ, 0];Rn). If we define ȳk� by (7.3), then f (ȳk�) and g(ȳk�) may
not be well defined, and hence the discrete approximate solution (2.3) may not make sense
at all, let alone converge to the true solution.

However, if we have another look at equation (7.2), we find there is no such problem
for equation (7.2), since the operator D can be naturally extended to step functions. This
gives us an idea that we need to extend the domain of f and g to include at least step
functions as well, in order to find a simpler numerical scheme. Now that the domain needs
to include continuous and step functions, as well as their linear combinations, it is better
to work on the space of cadlag (that is, right continuous and left limit) functions from the
stochastic analysis point of view. We therefore denote by Ca([−τ, 0];Rn) the family of
cadlag functions ϕ from [−τ, 0] to Rn with the norm ‖ϕ‖ = sup−τ�θ�0 |ϕ(θ)|. Clearly,
C([−τ, 0];Rn) ⊂ Ca([−τ, 0];Rn). From now on, we assume that

f : Ca([−τ, 0];Rn) → Rn and g : Ca([−τ, 0];Rn) → Rn×m.

Assumptions 2.1 and 2.2 need to be changed accordingly, so we state the new assumptions.

Assumption 7.1 (the local Lipschitz condition). For each integer j � 1, there is a
right-continuous nondecreasing function µj : [−τ, 0] → R+ such that

|f (ϕ)− f (ψ)|2 ∨ |g(ϕ)− g(ψ)|2 �
∫ 0

−τ
|ϕ(θ)− ψ(θ)|2dµj (θ)

for those ϕ,ψ ∈ Ca([−τ, 0];Rn) with ‖ϕ‖ ∨ ‖ψ‖ � j .

Assumption 7.2 (the linear growth condition). There is a constant K > 0 such that

|f (ϕ)|2 ∨ |g(ϕ)|2 � K(1 + ‖ϕ‖2)

for all ϕ ∈ Ca([−τ, 0];Rn).
Clearly, if we restrict f and g on C([−τ, 0];Rn), Assumptions 2.1 and 2.2 hold; so the

theory developed in the previous section holds. But our aim here is to design a simpler
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numerical scheme. To distinguish our new scheme from the one introduced in Section 2,
we use the notation z̄ and z instead of ȳ and y, respectively.

The new scheme is formed as follows. Define the discrete approximate solution z̄(k�),
k � −N by{

z̄(k�) = ξ(k�), −N � k � 0,

z̄((k + 1)�) = z̄(k�)+ f (z̄k�)�+ g(z̄k�)�Bk, k � 0,
(7.4)

where z̄k� = {z̄k�(θ) : −τ � θ � 0} is a Ca([−τ, 0];Rn)-valued random variable defined
by{
z̄k�(θ) = z̄((k − i)�), for − i� � θ < (−i + 1)�, i = N, (N − 1), . . . , 1,

z̄k�(0) = z̄(k�).
(7.5)

Clearly, z̄k� is determined only by z̄((k −N)�), z̄((k −N + 1)�), . . . , z̄(k�). Introduce
the Ca([−τ, 0];Rn)-value step process

z̄t =
∞∑
k=0

z̄k�1[k�,(k+1)�)(t), t � 0, (7.6)

and define the continuous Euler–Maruyama approximate solution by

z(t) =


ξ(t), −τ � t � 0,

ξ(0)+
∫ t

0
f (z̄s) ds +

∫ t

0
g(z̄s) dB(s), t � 0.

(7.7)

For any t � 0 and any integer k � 0 that satisfies k� � t , we have

z(t) = ξ(0)+
∫ k�

0
f (z̄s) ds +

∫ k�

0
g(z̄s) dB(s)+

∫ t

k�

f (z̄s) ds +
∫ t

k�

g(z̄s) dB(s)

= z̄(k�)+
∫ t

k�

f (z̄s) ds +
∫ t

k�

g(z̄s) dB(s). (7.8)

In particular, we observe that z(k�) = z̄(k�) for all k � −N . In the same way as that in
which Lemma 3.2 was proved, we can show that the following lemma holds.

Lemma 7.3. Under Assumptions 7.2 and 2.3,

E

(
sup

−τ�t�T
|z(t)|p

)
� H, ∀T > 0, (7.9)

where H is a positive number dependent only on ξ , K , p and T , but independent of �.

Let us establish another key lemma.

Lemma 7.4. Let Assumptions 7.1, 7.2 and 2.3 hold, and let T > 0. Then there is a non-
decreasing function β : (0, τ ] → R+, which has the property that β(u) = 0 as u → 0,
such that

E|z(s + θ)− z̄s (θ)|2 � β(�), s ∈ [0, T ], θ ∈ [−τ, 0]. (7.10)

Proof. Fix any s ∈ [0, T ] and θ ∈ [−τ, 0]. Let ks and kθ be the integers for which
s ∈ [ks�, (ks + 1)�) and θ ∈ [kθ�, (kθ + 1)�). Clearly, 0 � s − ks� < � and
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0 � θ − kθ� < �, so we see that

0 � s + θ − (ks + kθ )� (7.11)

< 2�. (7.12)

Moreover, it follows from (7.5) and (7.6) that

z̄s (θ) = z̄ks�(θ)

= z̄((ks + kθ )�.

Hence

E|z(s + θ)− z̄s (θ)|2 = E|z(s + θ)− z̄((ks + kθ )�)|2. (7.13)

In the same way as was shown in the four steps in the proof of Lemma 3.3, we can show
that

E|z(s + θ)− z̄((ks + kθ )�)|2 � 12K(1 +H 2/p)�+ 2α(2�), (7.14)

where H is as specified in Lemma 7.3. The assertion follows immediately.
Using these lemmas, we can show the following theorem in the same way as that in

which Theorem 2.5 was proved.

Theorem 7.5. Under Assumptions 7.1, 7.2 and 2.3,

lim
�→0

E

(
sup

0�t�T
|x(t)− z(t)|2

)
= 0, ∀T > 0. (7.15)

If we replace the local Lipschitz condition by the global Lipschitz condition given in
Assumption 7.6, we can also prove Theorem 7.7, which reveals the order of the convergence.

Assumption 7.6. There is a right-continuous nondecreasing function µ : [−τ, 0] → R+
such that

|f (ϕ)− f (ψ)|2 ∨ |g(ϕ)− g(ψ)|2 �
∫ 0

−τ
|ϕ(θ)− ψ(θ)|2dµ(θ)

for all ϕ,ψ ∈ Ca([−τ, 0];Rn).
Theorem 7.7. Under Assumptions 7.6 and 5.2,

E

(
sup

0�t�T
|x(t)− z(t)|2

)
= O(�), ∀T > 0. (7.16)

Similarly, if the linear growth condition is replaced by the bounded moment condition
given in Assumption 7.8, we have the generalised result given in Theorem 7.9.

Assumption 7.8. For some p > 2, there is a positive constant H̄ , which may depend on
ξ , p and T , but is independent of �, such that

E

(
sup

−τ�t�T
|x(t)|p

)
∨ E

(
sup

−τ�t�T
|z(t)|p

)
� H̄ , (7.17)

Theorem 7.9. Under Assumptions 7.1, 2.3 and 7.8,

lim
�→0

E

(
sup

0�t�T
|x(t)− z(t)|2

)
= 0, ∀T > 0. (7.18)
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8. Summary

Our aim in this work has been to discuss the strong mean-square convergence for the
Euler–Maruyama numerical solutions for SFDEs. We give a strong convergence theorem
under the local Lipschitz condition and the linear growth condition. When the local Lipschitz
condition is replaced by the global Lipschitz condition, we reveal that the order of the
convergence is halved, which is the same as in the case of SDEs.A more general convergence
theorem is presented for the Euler–Maruyama method in the case where the coefficients
of SFDEs are locally Lipschitz and moment bounds are available. A simpler numerical
scheme is presented in the case when both coefficients of the underlying SFDE are defined
for cadlag functions.
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