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ON EIGENVALUES IN THE CONTINUUM OF 2-BODY
OR MANY-BODY SCHRODINGER OPERATORS
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Introduction

Let us consider the following two problems.
(A) Does either

(1) lim inf R«j lu(@) P daz > 0
R—o RBo<|z|<R
or
(2) lim inf (log R)! lu@)EFde > 0
R—roo Rog|zI<R

hold for the not identically vanishing solution wu(x) e H:, (2) of the equa-
tion

(3) —duw() + V(@)u(r) = 2u(x)

for xe 2 C R"(n > 3), where 2 is a constant satisfying 2 > E, and V(x)
is a 2-body or many-body potential?

(B) Can the selfadjoint realization of —4 4 V(x) in L*(£2) have eigen-
values in (F,, o0)?

In (A) we would like to take « satisfying (1) and E, as small as
possible. If (1) with « < 0 or (2) is satisfied, (B) is solved negatively.

In our previous papers (Mochizuki [7] and Uchiyama [10]) it was
shown that (1) with « < 0 or (2) holds under some conditions on V(x).
The results are an extension of Weidmann [11] and are summarized in
Proposition 1. The problem (B) is solved negatively by some papers
(e.g., Weidmann [11], [12], Agmon [1],[2], Albeverio [3], Miiller-Pfeiffer
[8], Kalf [6], Simon [9], and Jansen-Kalf [5]).

In this paper we give a slight modification of our previous results.
Theorem 1 can be easily reduced from Proposition 1. Theorem 2 which
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asserts the non-existence in (¥, o) of eigenvalues of —4 + V() is a
corollary of Theorem 1. Jansen-Kalf [5] gives similar results to Theo-
rem 1 in the 2-body case. On the other hand, our theorem can apply
to many-body problem.

In §2, we give some examples. Especially, example I shows that
our results in many-body case are pure extension of Weidmann [12],
Agmon [1] and Albeverio [3].

1. Theorems

We shall consider solutions of the equation
(1.1) —du + V(@)u — u=20

in an exterior domain 2 C R*(n > 3) of some compact set, where 4 is
the n-dimensional Laplacian, 1 is a real number and V(x) is assumed
to satisfy the following conditions:

(I) V() is a real-valued function which belongs to the Stummel
class Q. Namely, for some constant >0 and R,> 0 such that
{z;]2]| > R} C 2, we have

sup VP |z —y[ " *dy < oo  (f n>4)
z3 || >Ro J [2-91<1
sup VP dy < co ifn=3).

;|z|>Ro J [z-yI<1

(I1) Let V(x) = V(rw) = V(r,w), where r = || and v = «/|2|. Then
there exists a null set e C S*! = {x;|x| = 1} such that V(r,w) is differ-

entiable in » > R, for any we S"'\e. 'raa—V e Q. Further, there exists
r

at least one y €(0,2] such that

STy p) = sup {r?V_gi) + Ve, a))} <

w€Sn—1\e

for » > R, and

700

E() = X limsup 3] (r,p) < oo .
T
(III) The unique continuation property holds.

In the following, by a solution % of equation (1.1) is meant an H3,-
function which satisfies (1.1) in the distribution sense in 2. Here H’(Q2)
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denotes the class of L-functions in £ such that all distribution derivatives
up to 7 belong to L*(Q) and Hi, denotes the class of locally H’-functions
in Q.

LEMMA 1. Let u be a solution of (1.1). Suppose that there exists

a real C'-function (t) of t >0 such that {(xDu and '(xDu are in L* D),
where ¢’ = d¢/dt. Then we have for any R, > R,

(1.2) f rup + |V@)| uide < C f © + e |uf de ,
|zI>Ro+1 |z|>Rq

where C is a positive constant independent of (t) and R,.

Proof. Let ¢,(t) (s > R, + 2) be a C-function of ¢ > 0 satisfying the
following conditions: 0 < ¢,(f) <1 and |¢/(¢)| < C,, where C, is independent
of 5;¢8)=1for R, +1<t<s—1, and ¢,¢) =0 for t <R, and £ > s.
Multiply (1.1) by 2¢,(xD%¢(z)*% and integrate over 2. Integration by
parts gives

2f g irup de = ~[ 4p.0%% @ + p0uds

0
—2[ e — Dlur s .

Hence we have

[ o BT + V@) Jup)da
(1.3) aelel<s
< QL + 607 + S22 12 + 3| V@)D up de .

Ra<llz|<s

On the other hand, for the potential V(x) satisfying condition (I) Ikebe-
Kato [4] proves the fact that for any 6 > 0 there exists a constant C, > 0
such that

f V@) | @F de gf GBIVS@FP + C,| /(@ Pda
|z]|>Re [2|>Re

for any f(x)e H'(2) with support in {z;|z| > R,}. Put f = ¢ lu. Then
we have

[ s V@i o
Ra<lz|<s

< BV Lw) + Cop?C? (uf}da

Re<|zl<s
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= I Re<izI< {20 [Fuf + [20(6:C + ') + Copil’] uf}da .
This and (1.3) show that

1 — 69 1CZ(WuI2 + | V(@)||uPdx

RBa+1<|z| <8~

<|, o, A 6@+ 600 + GICR 2]+ 3C} |uf do
<C[  @+dupds.
Ra<lzl<s

Hence, choosing 66 < 1 and letting s — oo, we have (1.2). q.e.d.
LEMMA 2. Suppose that V(x) satisfies (I) and (II). Let
1.4) I'={re(0,2]; E(y) < oo} and E,=infE().
rer

Then we have E, > —oo.

Proof. We assume the contrary. Then for any positive integer p
there exists y,e€I" and r, > R, satisfying

—a%-(r’PV(r, w)) = W“(r?)—f + TpV> < —ppprT

for any r > r, and weS"'\e. Integrating both sides with respect to

r from p to tp, where p > r, and ¢t > 1, we have for any weS*'\e
Ep)*V(tp, w) — p*V(p, w) < —p{(tp)» — o7} .

Put y = pw. Then it follows that

1.5) ptr — 1) < —t7V(ty) + V() .

By (I), there exists a constant K > 0 such that

I \V@)Pdy <K  for any & satisfying |z| > R, .
lz-yI<1

Thus, integrating (1.5) over {y;|x — y| < 1} with respect to y, we have
for any x such that || > 7, + 1

M pitre — 1) < 2{t2wj VP dy + K}
lz—-yI<1
< 2{rst(2v/nt)* + VK ,

1.e)
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where M, is the volume of the unit ball of R*. Put ¢ = 2Y» in (1.6).
Then we have for any positive integer p

Mp* < 2{4@2vVn)" + 1}K .

This is a contradiction and the lemma is proved. q.e.d.
Now our results for the problem (A) can be stated in the following

THEOREM 1. Suppose that V(x) satisfies conditions (I), (II) and (III).
Let I' and E, be as in the above lemma, and let w be a not identically
vanishing solution of (1.1) with 2> E,. Then we have for any yel
satisfying E, < E(@) < 2

a.m lim inf R‘“‘””I |u(@)f dx > 0 ifo<y<2
R—o Ro<|Z|<R

and

1.3) lim inf (log R)~! lu@)pde >0 if r=2.
R—o Ro<|zI<R

As a corollary of this theorem, we have the following theorem which
solves the problem (B) negatively.

THEOREM 2. Let E, be as in Lemma 2. Then any selfadjoint real-
ization of —d4 + V(x) in L*(Q) has no eigenvalues in (E,, o).

In order to prove Theorem 1, we use the following proposition which
is obtained in Mochizuki [7; Theorem 1.3] (cf., also Uchiyama [10; Lem-
ma 3.15] where is proved the case £ <y < 2 by a different method).

PROPOSITION 1. Let u be a solution in 2 of the equation
1.9) —du — q@x)u=20,

where q(x) satisfies conditions (I), (III) and
(AI) there exist constants 0 <y < 2,6 >0 and R, >0 such that
{x; 2| > R} < 2, r(3q/ar) e Q= and

,’,aq +r9>0 for r > R, and weS" '\e,

or
where r = |z}, 0 = z/|x| and e C S*~! is the null set. If w satisfies the
condition
(1.10) lim inf Rrﬂf {9%,2 + (1 + [a@) |u|2}dS =0,
R 1zi=r \| o7
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then u must identically vanish in 9.

For the sake of self-containedness of this paper, we shall give a
brief proof of this proposition in Appendix.

Proof of Theorem 1. We fix a yel satisfying £, < E() <a. E()
>—oo0 by Lemma 2. Put q(@) =21 — V(x). Then by (II) we see that
for any ¢ > 0 there exists an R(6) > R, such that

r—?]— +ra>7Q—E@F) — ) for r > R(5) and weS™'\e.
7

We choose 6 = (1 — E(1))/2 and put R, = R(5) and ¢ =36 > 0. Then
q(x) = 2 — V(x) satisfies (I),(II1) and (II)’ with these 7,0 and R,. Let
% be a non-trivial solution of (1.1). Then by Proposition 1, we see that
there exist some C, > 0 and R, > R, such that

am | 4

Let Zz(t) be a C'-function of ¢ > 0 satisfying the following conditions:
0<®) <1 for t > 0,Lz¢t) =1 for 0 <t <R —1, where R > R, + 2,
L) =0 for t > R and |¢R(@)| < C, for ¢t > 0, where C, is a positive
constant independent of B. Multiply (1.11) by {z(s)? and integrate over
(R, + 1,00). Then we have

II&:I>R2+1 C%{

g%\ + A+ [a@) lulz}dS >Cs  for s>R,.

ou ? )
87( + A+ lg@Dluf}de

C, - - .
— 2t (R (R, + 1)-a/» fo<yr<2
2{1_(7/2){ (B, + D) i 0 <y

C\{log R — log (R, + 1)} if y=2.
Combining this and Lemma 1 with () = {z(t), we obtain (1.7) and (1.8).

q.e.d.

Remark 1. If 2 = R® and R, = 0 in conditions (I) and (II), then
condition (III) is not required to obtain the above theorems. In fact,
in this case, Proposition 1 is proved in Uchiyama [10; Lemma 4.3] with-
out (III).

Remark 2. If the interval (0,2] appearing in condition (II) and
Lemma 2 is replaced by (0,2 — 6] for any ¢ > 0, then similar results
can be obtained for a more general elliptic operators by use of Theorem

https://doi.org/10.1017/5S0027763000021826 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021826

SCHRODINGER OPERATORS 131

1.1 of Mochizuki [7]. For example, the above Theorem 2 holds true for
the operator —4 + V(z) + V(x), where V(x) satisfies (I), (I[) with
7€(0,2 — 6] and (III), and V(x) is a short range potential:

2| V(@) -0 as|z|— o

satisfying also (I) and (IID).

2. Examples and remarks

I. Let the potential V(z),x = (x,, - - -, 2:5) € R*Y, have the form
N
2.1 V(x) = Z Vj(rj) + Z ij(rjk) ’
j=1 1< <k<N
where r; = (®;;_p %551, ¥3;) and ry, = r; — r,.  We use the notation
N 1/2
ry=lrd rp=lrul and 7= (39)" =lal.
=
Then we have

2.2) ra—szrjan and ran" = T WV s .
or or; or or s,

PROPOSITION 2.1. Suppose that V(x) satisfies conditions (I), III) and

1( %Vf +7V><ET @, > 0)
L2l 1 1v) < B >0
r or i,
for some constants E7, E7, and 0 <y < 2. Then there exists an E, such
that
N
2.4 E, <> Et+ > En,
j=1 1<j<k<N

and —4 + V(x) has no eigenvalues in (E,, co).

Proof. 1t follows from (2.2) and (2.3) that
L+ V)< 5B+ 3 B
r

67‘ 1< <k<N

for r >0 and o = a/reS*\e. Hence, V(x) satisfies condition (II) with
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E@) < 00E; + Jicj<nsn B, and Theorem 2 leads the assertion.
q.e.d.
This results can be applied to generalized Coulomb-Yukawa poten-
tials:

C
(2.5) Vy= =Yg,  V, = lkeemrsn,
P4 rhe

where ¢y, ¢z, &, @i, B; and By, are all non-negative constants. We assume

(2.6) 0<B,<3/2, 0<g;,<3/2,
2.7 max {8,} < min {8} .
1<j<N 1<j<k<N

By (2.6) we see that the potential V() = 237, V; + Dlicjcien Vi satis-
fies condition (I). Condition (III) easily follows from (2.5). If we choose

2.8 y < min {8;},

1<j<ksN

then we have

Lo Ve 1 y,)
2.9) T ik )
< =c¢y; sup e~ HM(y — By )it — ap izt =0,
7‘ 0<7 <o

On the other hand, we have

2(r2re+1v)
2.10) T !

< lcj sup e “{(B; — Pr;¥ + a7y = Ky .
T 0<r j<o0

Thus, for the potential V(x) given by (2.1),(2.5),(2.6) and (2.7), there
exists an E; such that

@.11) E <3 B
7=1

and —4 + V(x) has no eigenvalues in (¥, o).
Note that in (2.10) each E% < o if a; and B; satisfy one of the
following three conditions.

(2.12) ;=0 and B; <7 (Coulomb type) ,
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(2.13) a; >0 and pB; < min{y, 1} (Yukawa type) ,
(2.14) a; >0 and B; <7y (Yukawa type) .

If a; and p; satisfy (2.12), then we have £, =0 (j =1,...,N). Thus,
for the Coulomb type potential V(x), —4 + V(x) has no positive eigen-
values. The concrete Yukawa potential is given by

N
(2.15) V@)= =3 Yewrs 4 57 Cikgamrs
. j=1 Tj 1<j<k<N Tjk

In this case we have LK} = c;a; since 8; =y =1 in (2.10), and hence E,
< 2li-1 505

The generalized Coulomb-Yukawa potentials (2.5) have been studied
by Weidmann [12], Agmon [1] and Albeverio [3]. Their results can be
applied to show that the Schridinger operator with the potential (2.15)
has no eigenvalues in (37, ¢;a;, ). However, we can show the

PROPOSITION 2.2. Let V(x) be the Yukawa potential given by (2.15).
Then we have

N
(2.16) E, < lim sup Z cjoe 8" = Z ¢;ee; — min {c,a;} .
ji=1 1<j<N

r—oco
Hence, —4 + V(x) has no eigenvalues in (35)., ¢;o; — min, g,y {c;a;}, 00).

Proof. We have

= F@Q) = lim sup <¢ﬂ + V)

700

= llm sup (Z Cjaje_“jrj —_ Z Cj,c(xjke_”/"”")
roo 1<j<k<N

< lim sup Z} c o e”

r—00

There exists a sequence 7(p) = /7,(P)? + -+ + 74(P)* — c0 (as P — o)
such that

lim sup Z ¢ oe” 9 = lim Z o 0TI |

r—o0 p-oo j=1

Since r(p) - oo as p — oo, there exists at least one k,1 < k < N, such
that
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N N
lim Z Cjotje“'""(p) __<_ Z Cit; — Cpay,
P j=1 j=1
X .
< >, ¢y — min {¢;a,} .
k=1 1<F<N

On the other hand, let ¢ a; = min,; » {c;¢;} and choose 7,(p) =0 (§ + k)
and 7,(p) — oo as p — co. Then

N N
Z Cjaj — Cplly = lim Z cjaje""‘”f(p)
j=1 p—roo F=1

700

N
< lim sup > cjoe;07 9 .
j=1

Summing up these results, we have (2.16). q.e.d.

Remark. If N = 2, then we have
2.17) E, = ¢, + ¢, — min {c,a;, cyo,} .

In fact, assuming ¢, > ¢, and choosing 7,(p) =0 and 7,(p) = p, we
have

E, = lim sup (c,@,¢" 1" + C,a,6™ "2 — Cppp,€” “12712)

F-rc0

> lim (e, + c,@6™ " — Ca,6™ %) = ¢y, .

P
II. Let us consider in R® the operator

@2.18) L= —4—4,—2_2

7 72

where 4, = > 3_,90*/0x%;_;, and r; = Q3.0 |%sy-xD"? (G = 1,2). The nega-

tive eigenvalues of each —4; — 2 form the set {———1?} . Thus, we
7‘] /n, N=1,2,000

see that {—l _1

noon

spectrum of L is [—1, o). This shows that (—4, co) is never the con-

tinuous spectrum of L for any & > 0, though (0, ) is continuous as is

seen in I.

} are eigenvalues of L and the essential
n1yng=1,2,--¢

III. The potential

2.19) V() = —52sinrlg®) cos r — 3g(r)sin’ ¢ + g(r) cos r + sin’r]
[1+ g(r)P
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in R% where g(») = 2r — sin 27, is given by von Neumann and Wigner
as an example which has the eigenvalue 41 with eigenfunction

W) = —_Sinr
r(l 4+ g(r)?)

Simon [9] proved that —4 + V(x) with the above potential V(x) has no
eigenvalues in (16, oo) using the equality

lim sup (’l‘ﬂ + V) =16
roo or

which follows from the following property of V(x):

Vi) = 2502 §a,

where V(z) and 317(90)/81" behave like O(r~?) as r — co. This property
shows that

rE(y) = lim sup (7‘%1 + rV) =16 for any .
oo 7

Thus, choosing y = 2, we can apply Theorem 2 to see that —4 + V()
has no eigenvalues in (8, co).

IV. The potential

—32k%* sin krl(kr + 1/2a) cos kr — sin kr]
1+ ah(MP

(2.20) Vix) =

in R®, where k,« are non-zero real constants and h(r) = 2kr — sin 2kr,
is given by Moses and Tuan (cf. Albeverio [3]) as an example which
has the eigenvalue +k* with eigenfunction

sin kr

U = )

The above V(x) has the following property:

+ V(@) ,

Viz) = __ 4k sin 2kr
r

where V(z) and oV (x)/or behave like O(r~?) as r — co. Thus, we have
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aV 2
rE(p) = hm sup r +¢V) =8k for any 7.

Choosing 7y = 2, we see that —4 4 V(x) has no eigenvalues in (4%?, o).

Note that in Kalf [6] is studied the potential V,(z) = V(z) — &:%?_—3_)

in R* (n > 38), where V(x) is given above. Using his virial theorem,
Kalf proved that —4 + V,(x) has no eigenvalues in (4/2, ), where

/1=sup( 2V+2V)>8k2.

TER™
In this case we have also E, = 4k

V. Kalf [6] also proved that the potential
Vi) = ‘fT 4 sin (log ) in R" (n>3),

where p > —[(n — 2)/2]%, does not have eigenvalues in (W5/2, o0) (this
can also proved by use of a theorem due to Agmon [1]). We consider
here the following potential

@.21) V) = 7/32_ + (@) sinlog#) in R* (n>83),
where +-(z) satisfies (I), (III) and
(2.22) lim(r,ﬁ‘ﬁl+w- 11) ~0.

T or
Then we have

oV —
rE() = lim sup T +1V)="1+47.

Thus, it follows that —4 + V(x) does not have eigenvalues in (v 5 /2, o).
Note that in this case Kalf’s virial theorem shows the non-existence of

eigenvalues in (4/2, c0), where

A =sup|(r

TER™

(9V+2V)>¢5

If y(x) =1, we have 4 = +/5.
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Remark. Applying Jansen-Kalf [5] to III, IV and V, we can have
the same results as mentioned above.

Appendix (Proof of Proposition 1)

We use the notation: B(R,%) = {z; R < |z| <t} for 0 < R <t¢, B(R)
= {x;|x| > R} for R > 0 and S(R) = {z;|x| = R} for R > 0.

Let % be a solution of (1.9) satisfying also condition (1.10). Obvi-

ously, we may take % to be a real-valued function. Let p(f) be a real-
valued, C’-function of ¢ > 0 and put

(3.1) (@) = e"Mulx)  (r=|x) .

Then v satisfies the equation

3.2) — v + 2009Y g” —gv=0 inzeBR),
where
(3.3) QZQ'}‘(P/’_P”_TL;]-,O/)-

We multiply (8.2) by »%v and integrate over B(R,t), where R, < R <.
Integrating by parts, we have

I (Pl — g loPds
B(R,t)

_U _j ]ﬂa%ds j (ﬁ +2p)a” vda .
O] S(R) B(R,t) r or

Similarly, integration by parts of (3.2) multiplied by 2r< g gives
7

[j‘s(t) - jS(R)] ( + q lvlz —_1_;:.& %Q))ds
3.5) = . {(z _ r)(umz ) + Ao — 7 + 20)| 9% ‘

1

o4 ~) e, v—1—7+a,, v}
roi v+ (207 — D—wvdx .
+(ar 74 )1v| . 2o'r + « )aT

First we put p() =0 and &« = ¢/2 in (3.5). Then v =u and § = ¢.
Noting the condition (II)/, the equality
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j pa=? 2v—vclac
B(R,t) or

= l[f — f ]1"“_2[’0[2 s — n__3+_CXI re* v} da
2 WUsw S(R) 2 B(B,1)

and the inequality  — 1 — y + @)@ — 1)(n — 3 + @) < 0, we have
o= Ll -t o
S(¢t) S(R)

+ 73—_2‘(8—%% —4= liulz)}ds > oI ety dx .
r or 2r B(R,t)

By (1.10), we can let { — co to obtain
3.6) af et |u da < j fr“{quF — qlul + @—li“luu)Z}ds < co.
B(R) S(B) 47
This and Lemma 1 with &(7)? = r*~! imply that
j P i(Pul + |up)de < oo .
B(R1)

Integrating (3.6) with respect to R from s to ¢, where R, < s <, using
(3.4) with g =« and p(r) = 0, and letting ¢ — oo, we obtain

GI r — s)yr'ulde
B(s)

< (o

— — 2

repeat the integration with respect to s. Then we finally have

)ds+cj w-(

In consideration of Lemma 1, we can

a“’ + |ul’)dw <o,

3.7 L(R (Pup + JuPds < oo

for arbitrary m > 0.
Next we prove that for any ¥ >0 and 0 <y <1

3.8) L(R) e (Puf + |up)de < oo .

For this purpose we put o(r) = m logr, where m >n, and e = —n + 1+ ¢
in (3.5). Then noting (3.7) and 4p’r — y + 2a > 0, we have for R > R,
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[, 7 (7or = alopas

3.9) 9i
> pet ('ra—z + r(}) [vEde .

T I

Here, by (3.3) and (II),
r_gi_]_rng-—(z——y)m(—m;zn—"'—z) for »r > R, and weS*\e.
r T

Multiply (3.9) by R-*™~= and integrate over (s, ), where s > R,. Then
we have

f rn(Pof — g |vPds
B(s)

> r {o —@- 7)(ﬁ>2}dR et |yt dgs
—Js R B(R)
If we put = —2m in (8.4) and let £ — oo, then

j (Pl — g loPde = _j ,,.—Zma_v,vds
B(s) S(s) or

= ._._]‘_i 7"”‘]/1)]2 ds — MJ r‘zm"llq)lz as .
2 ds Jsw» 2 809

Thus, noting 7~*™ [v|f = |u, we have

RE1E 1qs + ™ +as|
2 Lds L‘(s)lul + s fsmlul S

J fema-a(a)jn], et

We fix arbitrary & >0 and 0 <y <1, let m = kvs* (k = k +1) and choose
R, = R,(k,v) > R, so large that

(3.10)

kv \?
o—@— 7)(R%_u> >0.

Then it follows from (3.10) that

d

= |uf dS + Eus”‘lf ufdS<0 fors>R,.
ds Jse S(s)

Therefore, for any £ > 0 and 0 <y <1,
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L [updS < Ce ™  (h=k+1),
(s)

where C, is independent of s. This and Lemma 1 with &(r)? = ¢*” prove
3.8).

Now we can prove u# = 0. We return once more to (3.5) with p(r)
=kr and « = —n + 1 + 7. Since

oo f) -Boz2e0)

we have for R > R,
_Re (2
S(R)
3.11) >I P @l — g + 201)‘ | dw
B(R)

[ etz ( By 4 (2RO 22 E )

X|vf dx .

0 F _\pop + qivr)ds
or \

If we choose v such that 22;7 <y<1 and R, = R,(v) > R, sufficiently

large, then for any ¥ > 1 and » > R,
{4kur"—r—|—2a20,

(T_2+2y)<_7f_f)2+(;r+z_y)£’m_—z_%_ﬂ20
v T—V

Therefore, by (3.11),

3.12) I (2 av f
S(R) 81”

Since v = e¢*”u, we can write the left side of (8.12) in the form
e B M (R) + kM (R) + M(R)},

— [P} + ql’o]z)dS <0 for R > R, .

where

2
W = 255 [ 11 85

and M,(R) and M,(R) are independent of k. Suppose that M,(R) > 0 for
some R > R,. Then k can be chosen so large that (3.12) is no longer
valid. Hence # = 0 in B(R;). By the unique continuation property (III),
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we have u = 0 in £ and Proposition 1 is proved.
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