FORMAL MULTIPLICATION OF TRIGONOMETRIC SERIES
 Dedicated to the memory of Hanna Neumann
 MASAKO IZUMI and SHIN-ICHI IZUMI

(Received 1 May 1972)

Communicated by M. F. Newman

1. Introduction and Theorems

Let

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} a_{n} e^{i n t} \text { and } \sum_{n=+\infty}^{\infty} b_{n} e^{i n t} \tag{1}
\end{equation*}
$$

be the given trigonometric series, then the formal product of them is defined by

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} c_{n} e^{i n t} \text { with } \quad c_{n}=\sum_{n=-\infty}^{\infty} a_{n-m} b_{m} \tag{2}
\end{equation*}
$$

where the last series is supposed to be convergent for every n.
Rajchman [1] proved the following
Theorem A. If the two series (1) satisfy the conditions

$$
\begin{equation*}
a_{n}=o(1) \text { as }|n| \rightarrow \infty \text { and } \sum_{n=-\infty}^{\infty}\left|n b_{n}\right|<\infty, \tag{3}
\end{equation*}
$$

then the formal product (2) is convergent at the point where the second series of (1) converges to zero.

Recently, Zygmund [2] proved the
Theorem B. If the two series in (1) satisfy the conditions

$$
\begin{equation*}
a_{n}=O(1) \text { as }|n| \rightarrow \infty \text { and } \sum_{n=-\infty}^{\infty}\left|b_{n}\right|<\infty, \tag{4}
\end{equation*}
$$

then the function

$$
\begin{equation*}
f_{2}(t)=\frac{1}{2} c_{0} t^{2}-\sum_{n \neq 0} \frac{c_{n}}{n^{2}} e^{i n t} \tag{5}
\end{equation*}
$$

obtained by integrating the series (2) twice is smooth at each point where the
second series of (1) converges to zero. The function f is called to be smooth at the point t if

$$
\frac{f(t+h)-2 f(t)+f(t-h)}{h} \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

Our first theorem is as follows:
Theorem 1. If the two series in (1) satisfy the following conditions

$$
\begin{equation*}
a_{n}=O\left(|n|^{k}\right) \text { as } n \rightarrow \infty \text { and } \sum_{n=-\infty}^{\infty}\left|n^{k} b_{n}\right|<\infty \tag{6}
\end{equation*}
$$

where $0 \leqq k<1$, then the function (5) is smooth at each point where the second series in (1) converges to zero.

The case $k=0$ of Theorem 1 reduces to Theorem B.
We can generalize Theorem 1 as follows:
THEOREM 2. If the two series in (1) satisfy the conditions (6) where $k \geqq 0$, then the function

$$
f_{\alpha}(t)=P_{\alpha}(t)+\sum_{n \neq 0} \frac{c_{n}}{(i n)^{-}} e^{i n} \quad\left(P_{\alpha} \text { being a polynomial }\right)
$$

obtained by integrating the series (2) $v=[k]+2$ times is α-smooth at each point where the second series of (1) converges to zero. The α-smooth of f at the point t is defined by

$$
\frac{\Delta_{2 h}^{\alpha} f(t-\alpha h)}{h^{\alpha-1}} \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

where

$$
\Delta_{2 h}^{\alpha} f(t-\alpha h)=\sum_{j=0}^{\alpha}(-1)^{j}\binom{\alpha}{j} f(x+2 j h-\alpha h)
$$

The case $0 \leqq k<1$ of Theorem 2 reduces to Theorem 1 .

2. Proof of Theorem 1

By the assumption, we can suppose that the second series of (1) converges to zero at the origin and shall prove that f_{2} is smooth there. Since, by (5),

$$
f_{2}(2 h)-2 f_{2}(0)+f_{2}(-2 h)=o(h)+4 \sum_{n \neq 0} \frac{c_{n}}{n^{2}} \sin ^{2} n h
$$

we have to prove that

$$
P=\sum_{n \neq 0} c_{n} \frac{\sin ^{2} n h}{n^{2} h}=o(1) \quad \text { as } \quad h \rightarrow 0
$$

We shall define $a(u)$ and $b(u)$ on the whole interval $(-\infty, \infty)$ such that they are continuous everywhere, linear in any interval $(n, n+1)(n=0, \pm 1, \pm 2, \cdots)$ and

$$
a(n)=a_{n}, \quad b(n)=b_{n} \quad(n=0, \pm 1, \pm 2, \cdots)
$$

We write

$$
\begin{equation*}
c(u)=\sum_{m=-\infty}^{\infty} b(m) a(u-m) \quad(-\infty<u<\infty) \tag{7}
\end{equation*}
$$

Since we suppose $\sum_{m=-\infty}^{\infty} b(m)=0$, so that

$$
\begin{equation*}
\int_{-\infty}^{\infty} b(v) d v=0 \tag{8}
\end{equation*}
$$

If we write $j(u)=-u+[u]+1 / 2$ for all u, then we can write

$$
\begin{aligned}
P & =\int_{-\infty}^{\infty} c(u) \frac{\sin ^{2} u h}{u^{2} h} d u+\int_{\infty}^{\infty} c(u) \frac{\sin ^{2} u h}{u^{2} h} d j(u)+o(1) \\
& =P_{1}+P_{2}+o(1) \text { as } h \rightarrow 0
\end{aligned}
$$

and, by (7)

$$
\begin{aligned}
P_{1} & =\int_{-\infty}^{\infty} \frac{\sin ^{2} u h}{u^{2} h} d u\left(\int_{-\infty}^{\infty} b(v) a(u-v) d v+\int_{-\infty}^{\infty} b(v) a(u-v) d j(v)\right) \\
& =Q_{1}+Q_{2}
\end{aligned}
$$

By (6) and (8),

$$
\begin{aligned}
Q_{1} & =\int_{-\infty}^{\infty} b(v) d v \int_{-\infty}^{\infty} a(u-v) \frac{\sin ^{2} u h}{u^{2} h} d u \\
& =\int_{-\infty}^{\infty} b(v) d v\left(\int_{-\infty}^{\infty} a(u-v) \frac{\sin ^{2} u h}{u^{2} h} d u-\int_{-\infty}^{\infty} a(u) \frac{\sin ^{2} u h}{u^{2} h} d u\right) \\
& =\int_{-\infty}^{\infty} b(v) d v\left(\int_{-\infty}^{\infty} a(w) \frac{\sin ^{2}(w+v) h}{(w+v)^{2} h} d w-\int_{-\infty}^{\infty} a(w) \frac{\sin ^{2} w h}{w^{2} h} d w\right) \\
& =h \int_{-\infty}^{\infty} b(v) d v \int_{-\infty}^{\infty} a(w) d w \int_{w h}^{(w+v) h} d\left(\frac{\sin ^{2} y}{y^{2}}\right) \\
& =h\left(\int_{-1 / h}^{1 / h} d v+\int_{1 / h}^{\infty} d v+\int_{-\infty}^{-1 / h} d v\right)=R_{1}+R_{2}+R_{3} .
\end{aligned}
$$

$$
\begin{aligned}
R_{1} & =h \int_{-1 / h}^{1 / h} b(v) d v\left(\int_{-2 / h}^{2 / h}+\int_{2 / h}^{\infty}+\int_{-\infty}^{-2 / h}\right) a(w) d w \int_{w h}^{(w+v) h} d\left(\frac{\sin ^{2} y}{y^{2}}\right) \\
& =S_{1}+S_{2}+S_{3}
\end{aligned}
$$

where

$$
\begin{aligned}
\left|S_{1}\right| & \leqq A h^{2} \int_{-1 / h}^{1 / h}|v b(v)| d v \int_{-2 / h}^{2 / h}|w|^{k} d w \\
& \leqq A h^{1-k} \int_{-1 / h}^{1 / h}|v b(v)| d v=o(1) \quad \text { as } h \rightarrow 0
\end{aligned}
$$

since

$$
h^{1-k} \int_{-\varepsilon / h}^{\varepsilon / h}|v b(v)| d v \leqq \varepsilon^{1-k} \int_{-\varepsilon / h}^{\varepsilon / h}\left|v^{k} b(v)\right| d v
$$

for small ε and

$$
\int_{1 / h \geqq|v| \geqq \varepsilon / h}\left|v^{k} b(v)\right| d v=o(1) \quad \text { as } h \rightarrow 0 .
$$

Further we get

$$
\begin{aligned}
\left|S_{2}\right| & \leqq A \int_{-1 / h}^{1 / h}|v b(v)| d v \int_{2 / h}^{\infty} w^{k-2} d w \\
& \leqq A h^{1-k} \int_{-1 / h}^{1 / h}|v b(v)| d v=o(1) \quad \text { as } h \rightarrow 0
\end{aligned}
$$

$S_{3}=h \int_{-1 / h}^{1 / h} b(v) d v \int_{2 / h}^{\infty} a(-w) d w \int_{-w h}^{(-w+v) h} d\left(\frac{\sin ^{2} y}{y^{2}}\right)=o(1) \quad$ as $h \rightarrow 0$.
Thus we have proved $R_{1}=o(1)$. For the estimation of R_{2}, we divide the second integral in six parts as follows:

$$
\begin{gathered}
R_{2}=h \int_{1 / h}^{\infty} b(v) d v \int_{-\infty}^{\infty} a(w) d w \int_{w h}^{(w+v) h} d\left(\frac{\sin ^{2} y}{y^{2}}\right) \\
=h \int_{1 / h}^{\infty} b(v) d v\left(\int_{-\infty}^{-v-1 / 2 h}+\int_{-v-1 / 2 h}^{-v+1 / 2 h}+\int_{-v+1 / 2 h}^{-v / 2}+\int_{-v / 2}^{-1 / 2 h}+\int_{-1 / 2 h}^{1 / 2 h}+\int_{1 / 2 h}^{\infty}\right) \\
a(w) d w \cdot \int_{w h}^{(w+v) h} d\left(\frac{\sin ^{2} y}{y^{2}}\right),
\end{gathered}
$$

then

$$
\begin{aligned}
& \left|R_{2}\right| \leqq A h \int_{1 / h}^{\infty}|b(v)| d v\left(\int_{-\infty}^{-v-1 / 2 h} \frac{|w|^{k}}{(w+v)^{2} h^{2}} d w+\int_{-v-1 / 2 h}^{-v+1 / 2 h}|w|^{k} d w\right. \\
& \left.+\int_{-v+1 / 2 h}^{-v / 2} \frac{|w|^{k}}{(w+v)^{2} h^{2}} d w+\int_{-v / 2}^{-1 / 2 h} \frac{|w|^{k}}{w^{2} h^{2}} d w+\int_{-1 / 2 h}^{1 / 2 h}|w|^{k} d w+\int_{1 / 2 h}^{\infty} \frac{w^{k}}{w^{2} h^{2}} d w\right) \\
& \quad=o(1) \text { as } h \rightarrow 0 .
\end{aligned}
$$

Similarly we can prove that $R_{3}=o(1)$. Collecting above estimations, we get $Q_{1}=o(1)$ as $h \rightarrow 0$.

We shall now estimate Q_{2}. Using integration by parts for inner integral,

$$
\begin{aligned}
Q_{2} & =\int_{-\infty}^{\infty} \frac{\sin ^{2} u h}{u^{2} h} d u \int_{-\infty}^{\infty} b(v) a(u-v) d j(v) \\
& =-\int_{-\infty}^{\infty} \frac{\sin ^{2} u h}{u^{2} h} d u \int_{-\infty}^{\infty} j(v)\left(b^{\prime}(v) a(u-v)-b(v) a^{\prime}(u-v)\right) d v \\
& =-U_{1}-U_{2}
\end{aligned}
$$

By the definition of $b(u)$,

$$
\int_{-\infty}^{\infty} j(v) b^{\prime}(v) d v=0 \quad \text { and } \quad \int_{-\infty}^{\infty}|v|^{k}\left|b^{\prime}(v)\right| d v<\infty
$$

and then we can apply the method of estimation of Q_{1} to the integral

$$
U_{1}=\int_{-\infty}^{\infty} j(v) b^{\prime}(v) d v \int_{-\infty}^{\infty} \frac{\sin ^{2} u h}{u^{2} h} a(u-v) d u
$$

and we can see $U_{1}=o(1)$ as $h \rightarrow 0$. On the other hand we write

$$
\begin{aligned}
U_{2} & =\int_{-\infty}^{\infty} b(v) j(v) d v \int_{-\infty}^{\infty} a^{\prime}(u-v) \frac{\sin ^{2} u h}{u^{2} h} d u \\
& =\int_{-\infty}^{\infty} b(v) j(v) d v \int_{-\infty}^{\infty} a(u-v) d\left(\frac{\sin ^{2} u h}{u^{2} h}\right) \\
& =\int_{-M}^{M}+\left(\int_{-\infty}^{-M}+\int_{M}^{\infty}\right)=V_{1}+V_{2}
\end{aligned}
$$

for some M, where

$$
V_{1}=\int_{-M}^{M} b(v) j(v) d v \int_{-\infty}^{\infty} a(u-v)\left(\frac{\sin 2 u h}{u^{2}}-\frac{2 \sin ^{2} u h}{u^{3} h}\right) d u
$$

and then

$$
\begin{aligned}
\left|V_{1}\right|= & \int_{-M}^{M}|b(v)| d v\left(\int_{-\infty}^{-1 / h}+\int_{-1 / h}^{1 / h}+\int_{1 / h}^{\infty}\right)|a(u-v)|\left|\frac{\sin 2 u h}{u^{2}}-\frac{2 \sin ^{2} u h}{u^{3} h}\right| d u \\
& \leqq \int_{-M}^{M}|b(v)| d v\left\{\int_{-\infty}^{-1 / h}\left(\frac{1}{|u|^{2-k}}+\frac{1}{h|u|^{3-k}}\right) d u\right. \\
& \left.\quad+h \int_{-1 / h}^{1 / h} \frac{d u}{(|u|+1)^{1-k}}+\int_{1 / h}^{\infty}\left(\frac{1}{u^{2-k}}+\frac{1}{h u^{3-k}}\right) d u\right\} \\
= & o(1) \text { as } h \rightarrow 0 .
\end{aligned}
$$

Further

$$
\begin{aligned}
V_{2} & =h\left(\int_{-\infty}^{-M}+\int_{M}^{\infty}\right) b(v) j(v) d v \int_{-\infty}^{\infty} a\left(\frac{w}{h}-v\right) d\left(\frac{\sin ^{2} w}{w^{2}}\right) \\
& =h\left(\int_{-\infty}^{-M}+\int_{M}^{\infty}\right) b(v) j(v) d v\left(\int_{-\infty}^{-2 h|v|}+\int_{-2 h|v|}^{2 h|v|}+\int_{2 h|v|}^{\infty}\right)
\end{aligned}
$$

and then

$$
\begin{aligned}
\left|V_{2}\right| \leqq A h & \left(\int_{-\infty}^{-M}+\int_{M}^{\infty}\right)|b(v)| d v \\
& \cdot\left(\int_{-\infty}^{-2 h|v|}\left|\frac{w}{h}\right|^{k} \frac{d w}{w^{2}}+\int_{-2 h|v|}^{2 h|v|}|v|^{k}\left|d\left(\frac{\sin ^{2} w}{w^{2}}\right)\right|+\int_{2 h|v|}^{\infty}\left(\frac{w}{h}\right)^{k} \frac{d w}{w^{2}}\right)
\end{aligned}
$$

which may be made smaller when M is taken sufficiently large. Thus we have proved that $Q_{2}=o(1)$ as $h \rightarrow 0$ and then $P_{1}=o(1)$. Finally,

$$
\begin{aligned}
P_{2} & =\int_{-\infty}^{\infty} c(u) \frac{\sin ^{2} u h}{u^{2} h} d j(u) \\
& =\sum_{m=-\infty}^{\infty} b(m) \int_{-\infty}^{\infty} a(u-m) \frac{\sin ^{2} u h}{u^{2} h} d j(u) \\
& =\sum_{m=-\infty}^{\infty} b(m) \int_{-\infty}^{\infty} j(u)\left(a^{\prime}(u-m) \frac{\sin ^{2} u h}{u^{2} h} d u+a(u-m) d\left(\frac{\sin ^{2} u h}{u^{2} h}\right)\right) \\
& =-W_{1}-W_{2},
\end{aligned}
$$

where W_{2} is estimated similarly to U_{2}. We shall now estimate W_{1}. Since the integral of $j(u) a^{\prime}(u-m)$ over the interval with integral end points vanishes,

$$
\begin{aligned}
& \sum_{m=-[1 / h]}^{[1 / h]} b(m) \int_{-[1 / h]}^{[1 / h]} j(u) a^{\prime}(u-m) \frac{\sin ^{2} u h}{u^{2} h} d u \\
= & \sum_{m=-[1 / h]}^{[1 / h]} b(m) \int_{-[1 / h]}^{[1 / h]} j(u) a^{\prime}(u-m)\left(\frac{\sin ^{2} u h}{u^{2} h}-h\right) d u \\
= & \sum_{m=-[1 / h]}^{[1 / h]} b(m) \int_{-[1 / h]}^{[1 / h]} j(u) a^{\prime}(u-m)\left(\sum_{k=2}^{\infty} \frac{(-1)^{k-1} 2^{2 k-1}}{(2 k)!} u^{2 k-2} h^{2 k-1}\right) d u \\
= & \sum_{k=2}^{\infty} \frac{(-1)^{k-1} 2^{2 k-1}}{(2 k)!} C_{k}
\end{aligned}
$$

where

$$
\begin{aligned}
C_{k} & =h^{2 k-1} \sum_{m=-[1 / h]}^{[1 / h]} b(m) \int_{-[1 / h]}^{[1 / h]} j(u) a^{\prime}(u-m) u^{2 k-2} d u \\
& =(2 k-2) h^{2 k-1} \sum_{m=-[1 / h]}^{[1 / h]} b(m) \int_{-[1 / h]}^{[1 / h]} u^{2 k-3} d u \int_{-[1 / h]}^{u} j(v) a^{\prime}(v-m) d v \\
& =(2 k-2) h^{2 k-1} \sum_{m=-[1 / h]}^{[1 / h]} b(m) \int_{-[1 / h]}^{[1 / h]} u^{2 k-3} d u \int_{[u]}^{u} j(v) a^{\prime}(v-m) d v \\
& =O\left(h^{1-k} \sum_{m=-[1 / h]}^{[1 / h]}|b(m)|\right)=O\left(h^{1-k} \sum_{m=-[1 / h]}^{[1 / h]}|m|^{k}|b(m)|\right) \\
& =o(1), \text { as } h \rightarrow 0,
\end{aligned}
$$

so that we can get

$$
\sum_{m=-[1 / h]}^{[1 / h]} b(m) \int_{-[1 / h]}^{[1 / h]} j(u) a^{\prime}(u-m) \frac{\sin ^{2} u h}{u^{2} h} d u=o(1) \quad \text { as } \quad h \rightarrow 0 .
$$

On the other hand

$$
\begin{aligned}
& \sum_{m=[1 / h]}^{[1 / h]} b(m) \int_{[1 / h]}^{\infty} j(u) a^{\prime}(u-m) \frac{\sin ^{2} u h}{u^{2} h} d u \\
& =\sum_{m=-[1 / h]}^{[1 / h]} b(m) \int_{[1 / h]}^{\infty}\left(\frac{\sin 2 u h}{u^{2}}-\frac{2 \sin ^{2} u h}{u^{3} h}\right) \int_{[u]}^{u} j(v) a^{\prime}(v-m) d v \\
& =O\left(\sum_{m=-[1 / h]}^{[1 / h]}|b(m)| \int_{[1 / h]}^{\infty} \frac{d u}{u^{2-k}}\right)+O\left(\frac{1}{h_{m}} \sum_{-[1 / h]}^{[1 / h]}|b(m)| \int_{[1 / h]}^{\infty} \frac{d u}{u^{3-k}}\right)
\end{aligned}
$$

$$
=O\left(h^{1-k} \sum_{m=-[1 / h]}^{[1 / h]}|b(m)|\right)=o(1) \quad \text { as } \quad h \rightarrow 0 .
$$

Similarly we can estimate rest terms in W_{1} and we get $W_{1}=o(1)$ as $h \rightarrow 0$. Thus we get $P_{2}=o(1)$ and then $P=o(1)$, and we have proved the theorem.

3. Proof of Theorem 2

Under the conditions

$$
a_{n}=O\left(|n|^{k}\right), \quad \sum_{n=-\infty}^{\infty}\left|n^{k} b_{n}\right|<\infty(k \geqq 0) \quad \text { and } \quad \sum_{n=-\infty}^{\infty} b_{n}=0
$$

we have to prove that

$$
\Delta_{2 h}^{\alpha} f_{\alpha}(t-\alpha h)=o\left(h^{\alpha-1}\right),
$$

where $\alpha=[k]+2$ and

$$
\begin{aligned}
\Delta_{2 h}^{\alpha} f_{\alpha}(t-\alpha h) & =\sum_{j=0}^{\alpha}(-1)^{j}\binom{\alpha}{j} f_{\alpha}(t+2 j h-\alpha h) \\
& \sim \sum_{\substack{n=-\infty \\
n \neq 0}}^{\infty} \frac{c_{n}}{(i n)^{\alpha}} \sum_{j=0}^{\alpha}(-1)^{j}\binom{\alpha}{j} e^{i n(t+2 j h-\alpha h)} \\
& =\sum_{\substack{n=-\infty \\
n \neq 0}}^{\infty} \frac{c_{n}}{(i n)^{\alpha}} e^{i n t \cdot} \cdot 2^{\alpha} \sin ^{\alpha} n h
\end{aligned}
$$

We shall define $a(u), b(u) c(u)$ and $j(u)$ as before. Applying the method of proof of Theorem 1, we can prove that

$$
\begin{aligned}
P & =\sum_{n \neq 0} c_{n} \frac{\sin ^{\alpha} n h}{n^{\alpha} h^{\alpha-1}} \\
& =\int_{-\infty}^{\infty} c(u) \frac{\sin ^{\alpha} u h}{u^{\alpha} h^{\alpha-1}} d u+\int_{-\infty}^{\infty} c(u) \frac{\sin ^{\alpha} u h}{u^{\alpha} h^{\alpha-1}} d j(u)+o(1) \\
& =o(1) \text { as } h \rightarrow 0 .
\end{aligned}
$$

References

[1] A. Zygmund, Trigonometric series, Chapter IX (Cambridge University Press, 1959).
[2] A. Zygmund, 'A theorem on the formal multiplication of trigonometric series', Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Illinois, 1968), 224-227 Springer, New York, 1970).

Department of Mathematics
Australian National University

